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JACOBSTHAL REPRESENTATION HYBRINOMIALS

Mirosław Liana, Anetta Szynal-Liana , Iwona Włoch

Abstract. Jacobsthal numbers are a special case of numbers defined recur-
sively by the second order linear relation and for these reasons they are also
named as numbers of the Fibonacci type. They have many interpretations,
representations and applications in distinct areas of mathematics. In this pa-
per we present the Jacobsthal representation hybrinomials, i.e. polynomials,
which are a generalization of Jacobsthal hybrid numbers.

1. Introduction

Let n ≥ 0 be an integer. Numbers defined recursively by the second order
linear recurrence relation of the form

an = b1an−1 + b2an−2 for n ≥ 2,

where b1 ≥ 0 and b2 ≥ 0 are integers with given non negative integers a0, a1
are named as numbers of the Fibonacci type.

For special values of b1, b2, a0 and a1 we obtain well-known recurrences
which define numbers of the Fibonacci type. We list some of them
(1) Fibonacci numbers Fn,

Fn = Fn−1 + Fn−2 for n ≥ 2 with F0 = 0, F1 = 1,
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(2) Lucas numbers Ln,
Ln = Ln−1 + Ln−2 for n ≥ 2 with L0 = 2, L1 = 1,

(3) Jacobsthal numbers Jn,
Jn = Jn−1 + 2Jn−2 for n ≥ 2 with J0 = 0, J1 = 1,

(4) Jacobsthal–Lucas numbers jn,
jn = jn−1 + 2jn−2 for n ≥ 2 with j0 = 2, j1 = 1.

Jacobsthal numbers and Jacobsthal–Lucas numbers were introduced in [3]
and [4], respectively. A natural extension of Jacobsthal numbers is given by
Jacobsthal polynomials, which were introduced by Horadam in [5] and defined
as follows.

For any variable quantity x, the Jacobsthal polynomial Jn(x) is defined as
Jn(x) = Jn−1(x) + 2x · Jn−2(x) for n ≥ 2 with J0(x) = 0, J1(x) = 1.

The Jacobsthal–Lucas polynomial jn(x) is defined as jn(x) = jn−1(x) +
2x · jn−2(x) for n ≥ 2 with initial terms j0(x) = 2, j1(x) = 1.

For x = 1 we obtain Jacobsthal numbers and Jacobsthal–Lucas numbers,
respectively. Moreover, observe that Jn(12) = Fn and jn(12) = Ln.

Since Jn(x) and jn(x) are defined by the second-order linear recurrence
relation, so we can solve it and then we obtain direct formulas of the form

Jn(x) =
αn(x)− βn(x)

α(x)− β(x)
,(1.1)

jn(x) = αn(x) + βn(x),(1.2)

where α(x) = 1
2

(
1 +
√

8x+ 1
)
and β(x) = 1

2

(
1−
√

8x+ 1
)
.

These equations are named as Binet formulas for Jacobsthal and Jacob-
sthal–Lucas polynomials.

Jacobsthal numbers and Jacobsthal–Lucas numbers belong to the family of
numbers of the Fibonacci type which have many interesting applications not
only in number theory and combinatorics also in the theory of hypercomplex
numbers, see for details [11]. Jacobsthal polynomials and Jacobsthal–Lucas
polynomials can be applied to different problems related to combinatorics,
graph theory, algebra, see e.g. [3, 10, 12]. In the literature we can find general-
ized Jacobsthal sequences which were used in studing hypercomplex numbers,
see for example [1].

In this paper we use following results.

Theorem 1.1 ([5]). Let n be an integer. Then

jn(x) = Jn+1(x) + 2x · Jn−1(x) for n ≥ 1,(1.3)

Jn(x) + jn(x) = 2Jn+1(x) for n ≥ 0,(1.4)
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n∑
l=0

Jl(x) =
Jn+2(x)− 1

2x
for n ≥ 0,(1.5)

n∑
l=0

jl(x) =
jn+2(x)− 1

2x
for n ≥ 0.(1.6)

Properties of some generalizations of Jacobsthal polynomials can be found
in [2, 6]. In this paper we use Jacobsthal and Jacobsthal–Lucas polynomials
in the theory of hybrid numbers.

Hybrid numbers were introduced by Özdemir in [8] as a new generalization
of complex, hyperbolic and dual numbers.

Let K be the set of hybrid numbers Z of the form

Z = a+ bi + cε + dh,

where a, b, c, d ∈ R and i, ε, h are operators such that

(1.7) i2 = −1, ε2 = 0, h2 = 1,

and

(1.8) ih = −hi = ε + i.

If Z1 = a1 + b1i + c1ε + d1h, and Z2 = a2 + b2i + c2ε + d2h, are any
two hybrid numbers then equality, addition, subtraction and multiplication
by scalar are defined as follows:
equality: Z1 = Z2 only if a1 = a2, b1 = b2, c1 = c2, d1 = d2,
addition: Z1 + Z2 = (a1 + a2) + (b1 + b2)i + (c1 + c2)ε + (d1 + d2)h,
subtraction: Z1 − Z2 = (a1 − a2) + (b1 − b2)i + (c1 − c2)ε + (d1 − d2)h,
multiplication by scalar s ∈ R: sZ1 = sa1 + sb1i + sc1ε + sd1h.

The hybrid numbers multiplication is defined using (1.7) and (1.8). Note
that using formulas (1.7) and (1.8) we can find the product of any two hybrid
units. Table 1 presents products of i, ε, and h.

Table 1. The hybrid number
multiplication
· i ε h

i −1 1− h ε+ i

ε h+ 1 0 −ε

h −ε− i ε 1
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Using rules given in Table 1 the multiplication of hybrid numbers can
be made analogously as multiplications of algebraic expressions. For hybrid
numbers details, see [8].

A special kind of hybrid numbers, namely Jacobsthal hybrid numbers and
Jacobsthal–Lucas hybrid numbers, were introduced as a sequel of Fibonacci
type hybrid numbers in [9] as follows.

The nth Jacobsthal hybrid number JHn and the nth Jacobsthal–Lucas
hybrid number jHn are defined as

JHn = Jn + iJn+1 + εJn+2 + hJn+3,(1.9)

jHn = jn + ijn+1 + εjn+2 + hjn+3,(1.10)

respectively.
Interesting results of Jacobsthal and Jacobsthal–Lucas hybrid numbers

obtained recently can be found in [12].
The concept of hybrinomials first appears in [13] with respect to Fibonacci

and Lucas hybrid numbers and next applied for Pell and Pell–Lucas hybrid
numbers, see [7]. In the book [11] we defined Jacobsthal and Jacobsthal–Lucas
hybrinomials and we presented some results for them, however no proofs were
given. This article is a complementary of our results mentioned in [11].

For n ≥ 0 Jacobsthal and Jacobsthal–Lucas hybrinomials are defined by

(1.11) JHn(x) = Jn(x) + iJn+1(x) + εJn+2(x) + hJn+3(x)

and

(1.12) jHn(x) = jn(x) + ijn+1(x) + εjn+2(x) + hjn+3(x),

where Jn(x) is the nth Jacobsthal polynomial, jn(x) is the n-th Jacobsthal–
Lucas polynomial and i, ε, h are hybrid units satisfying (1.7) and (1.8).

For x = 1 we obtain Jacobsthal hybrid numbers and Jacobsthal–Lucas
hybrid numbers, respectively.

2. Properties of Jacobsthal hybrinomials

Theorem 2.1. For any variable quantity x, we have

(2.1) JHn(x) = JHn−1(x) + 2x · JHn−2(x) for n ≥ 2

with JH0(x) = i+ε+h ·(2x+1) and JH1(x) = 1+ i+ε ·(2x+1)+h ·(4x+1).
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Proof. If n = 2 we have

JH2(x) = JH1(x) + 2x · FH0(x)

= 1 + i + ε · (2x+ 1) + h · (4x+ 1)

+ 2x · (i + ε + h · (2x+ 1))

= 1 + i · (2x+ 1) + ε · (4x+ 1) + h · (4x2 + 6x+ 1)

= J2(x) + iJ3(x) + εJ4(x) + hJ5(x).

If n ≥ 3 then using the definition of Jacobsthal polynomials we have

JHn(x) = Jn(x) + iJn+1(x) + εJn+2(x) + hJn+3(x)

= (Jn−1(x) + 2x · Jn−2(x)) + i(Jn(x) + 2x · Jn−1(x))

+ ε(Jn+1(x) + 2x · Jn(x)) + h(Jn+2(x) + 2x · Jn+1(x))

= Jn−1(x) + i · Jn(x) + ε · Jn+1(x) + h · Jn+2(x)

+ 2x · (Jn−2(x) + i · Jn−1(x) + ε · Jn(x) + h · Jn+1(x))

= JHn−1(x) + 2x · JHn−2(x),

which ends the proof. �

In the same way one can easily prove the next theorem.

Theorem 2.2. For any variable quantity x, we have

jHn(x) = jHn−1(x) + 2x · jHn−2(x) for n ≥ 2

with jH0(x) = 2 + i + ε · (4x+ 1) + h · (6x+ 1) and jH1(x) = 1 + i · (4x+ 1)
+ ε · (6x+ 1) + h · (8x2 + 8x+ 1).

Now we give identities for Jacobsthal and Jacobsthal–Lucas hybrinomials
which relate to Theorem 1.1.

Theorem 2.3. Let n ≥ 1 be an integer. Then

jHn(x) = JHn+1(x) + 2x · JHn−1(x).
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Proof. Using (1.3) we have

JHn+1(x) + 2x · JHn−1(x)

= Jn+1(x) + iJn+2(x) + εJn+3(x) + hJn+4(x)

+ 2x · (Jn−1(x) + iJn(x) + εJn+1(x) + hJn+2(x))

= (Jn+1(x) + 2x · Jn−1(x)) + i(Jn+2(x) + 2x · Jn(x))

+ ε(Jn+3(x) + 2x · Jn+1(x)) + h(Jn+4(x) + 2x · Jn+2(x))

= jn(x) + ijn+1(x) + εjn+2(x) + hjn+3(x) = jHn(x). �

Theorem 2.4. Let n ≥ 0 be an integer. Then

JHn(x) + jHn(x) = 2JHn+1(x).

Proof. Using (1.4) and proceeding in the same way as in Theorem 2.3
the result follows. �

Theorem 2.5. Let n ≥ 0 be an integer. Then

n∑
l=0

JHl(x) =
JHn+2(x)− JH1(x)

2x
.

Proof. For an integer n ≥ 0 we have

n∑
l=0

JHl(x) = JH0(x) + JH1(x) + . . .+ JHn(x)

= J0(x) + iJ1(x) + εJ2(x) + hJ3(x)

+ J1(x) + iJ2(x) + εJ3(x) + hJ4(x) + · · ·

+ Jn(x) + iJn+1(x) + εJn+2(x) + hJn+3(x)

= J0(x) + J1(x) + · · ·+ Jn(x)

+ i(J1(x) + J2(x) + · · ·+ Jn+1(x) + J0(x)− J0(x))

+ ε(J2(x) + J3(x) + · · ·+ Jn+2(x) + J0(x) + J1(x)

− J0(x)− J1(x))

+ h(J3(x) + J4(x) + · · ·+ Jn+3(x) + J0(x) + J1(x) + J2(x)

− J0(x)− J1(x)− J2(x))
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and using (1.5) we have

n∑
l=0

JHl(x) =
Jn+2(x)− 1

2x
+ i

(
Jn+3(x)− 1

2x
− J0(x)

)
+ ε

(
Jn+4(x)− 1

2x
− J0(x)− J1(x)

)
+ h

(
Jn+5(x)− 1

2x
− J0(x)− J1(x)− J2(x)

)
=
Jn+2(x)− 1

2x
+ i

(
Jn+3(x)− 1

2x

)
+ ε

(
Jn+4(x)− (1 + 2x)

2x

)
+ h

(
Jn+5(x)− (1 + 4x)

2x

)
,

which completes the proof. �

Theorem 2.6. Let n ≥ 0 be an integer. Then

n∑
l=0

jHl(x) =
jHn+2(x)− jH1(x)

2x
.

Proof. Using (1.6) and proceeding in the same way as in Theorem 2.5
the result follows. �

Next we shall give the generating function for Jacobsthal hybrinomials.

Theorem 2.7. The generating function for the Jacobsthal hybrinomial
sequence {JHn(x)} is

G(t) =
i + ε + h · (2x+ 1) + (1 + ε · (2x) + h · (2x))t

1− t− 2xt2
.

Proof. Assume that the generating function of the Jacobsthal hybrino-

mial sequence {JHn(x)} has the form G(t) =
∞∑

n=0
JHn(x)tn. Then

G(t) = JH0(x) + JH1(x)t+ JH2(x)t2 + . . .

Multiplying the above equality on both sides by −t and then by −2xt2 we
obtain

−G(t)t = −JH0(x)t− JH1(x)t2 − JH2(x)t3 − . . .
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−G(t) · (2x)t2 = −JH0(x) · (2x)t2 − JH1(x) · (2x)t3 − JH2(x) · (2x)t4 − . . .

By adding these three equalities above, we will get

G(t)(1− t− 2xt2) = JH0(x) + (JH1(x)− JH0(x))t

since JHn(x) = JHn−1(x) + 2x · JHn−2(x) (see (2.1)) and the coefficients
of tn for n ≥ 2 are equal to zero. Moreover, JH0(x) = i + ε + h · (2x + 1),
JH1(x)− JH0(x) = 1 + ε · (2x) + h · (2x). �

In the same way we obtain the generating function g(t) for Jacobsthal–
Lucas hybrinomials.

Theorem 2.8. The generating function for the Jacobsthal–Lucas hybrino-
mial sequence {jHn(x)} is

g(t) =
jH0(x) + (jH1(x)− jH0(x))t

1− t− 2xt2
,

where jH0(x) = 2 + i + ε · (4x + 1) + h · (6x + 1) and jH1(x) − jH0(x) =
−1 + i · (4x) + ε · (2x) + h · (8x2 + 2x).

Now we give so called Binet formulas for Jacobsthal and Jacobsthal–Lucas
hybrinomials being their direct formulas.

Theorem 2.9. Let n ≥ 0 be an integer. Then

JHn(x) =
αn(x)

α(x)− β(x)

(
1 + iα(x) + εα2(x) + hα3(x)

)
− βn(x)

α(x)− β(x)

(
1 + iβ(x) + εβ2(x) + hβ3(x)

)
,

(2.2)

where α(x) = 1
2

(
1 +
√

8x+ 1
)
and β(x) = 1

2

(
1−
√

8x+ 1
)
.

Proof. Using (1.1), (1.9) and (1.11) we have

JHn(x) = Jn(x) + iJn+1(x) + εJn+2(x) + hJn+3(x)

=
αn(x)− βn(x)

α(x)− β(x)
+ i

αn+1(x)− βn+1(x)

α(x)− β(x)

+ ε
αn+2(x)− βn+2(x)

α(x)− β(x)
+ h

αn+3(x)− βn+3(x)

α(x)− β(x)

and after calculations the result follows. �
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In the same way, using (1.2), (1.10) and (1.12), we obtain the Binet formula
for Jacobsthal–Lucas hybrinomials.

Theorem 2.10. Let n ≥ 0 be an integer. Then

jHn(x) = αn(x)
(
1 + iα(x) + εα2(x) + hα3(x)

)
+ βn(x)

(
1 + iβ(x) + εβ2(x) + hβ3(x)

)
,

(2.3)

where α(x) = 1
2

(
1 +
√

8x+ 1
)
and β(x) = 1

2

(
1−
√

8x+ 1
)
.

Now we will give some identities which will be named as Catalan, Cassini
and d’Ocagne identities for the Jacobsthal and Jacobsthal–Lucas hybrinomi-
als since they are analogous to Catalan, Cassini and d’Ocagne identities for
the classical Fibonacci numbers. These identities can be proved using Binet
formulas.

For simplicity of notation let

∆(x) = α(x)− β(x),

α̂(x) = 1 + iα(x) + εα2(x) + hα3(x),

β̂(x) = 1 + iβ(x) + εβ2(x) + hβ3(x).

Then we can write (2.2) and (2.3) as

JHn(x) =
αn(x)

∆(x)
α̂(x)− βn(x)

∆(x)
β̂(x)

and

jHn(x) = αn(x)α̂(x) + βn(x)β̂(x),

respectively. Moreover, α(x) · β(x) = −2x and ∆2(x) = 8x+ 1.

Theorem 2.11 (Catalan identity for Jacobsthal hybrinomials). Let n ≥ 0,
r ≥ 0 be integers such that n ≥ r. Then

JHn−r(x) · JHn+r(x)− (JHn(x))
2

=
(−2x)n

8x+ 1
α̂(x)β̂(x)

(
1− βr(x)

αr(x)

)
+

(−2x)n

8x+ 1
β̂(x)α̂(x)

(
1− αr(x)

βr(x)

)
.
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Proof. Let n, r be as in the statement of the theorem. Then

JHn−r(x) · JHn+r(x)− (JHn(x))
2

=

(
αn−r(x)

∆(x)
α̂(x)− βn−r(x)

∆(x)
β̂(x)

)
·
(
αn+r(x)

∆(x)
α̂(x)− βn+r(x)

∆(x)
β̂(x)

)

−
(
αn(x)

∆(x)
α̂(x)− βn(x)

∆(x)
β̂(x)

)
·
(
αn(x)

∆(x)
α̂(x)− βn(x)

∆(x)
β̂(x)

)

= −α
n−r(x)

∆(x)
α̂(x)

βn+r(x)

∆(x)
β̂(x)− βn−r(x)

∆(x)
β̂(x)

αn+r(x)

∆(x)
α̂(x)

+
αn(x)

∆(x)
α̂(x)

βn(x)

∆(x)
β̂(x) +

βn(x)

∆(x)
β̂(x)

αn(x)

∆(x)
α̂(x)

= −α
n−r(x)βn+r(x)

∆2(x)
α̂(x)β̂(x)− βn−r(x)αn+r(x)

∆2(x)
β̂(x)α̂(x)

+
αn(x)βn(x)

∆2(x)
α̂(x)β̂(x) +

βn(x)αn(x)

∆2(x)
β̂(x)α̂(x)

=
αn(x)βn(x)

∆2(x)
α̂(x)β̂(x)

(
1− βr(x)

αr(x)

)

+
αn(x)βn(x)

∆2(x)
β̂(x)α̂(x)

(
1− αr(x)

βr(x)

)

=
(−2x)n

8x+ 1
α̂(x)β̂(x)

(
1− βr(x)

αr(x)

)
(−2x)n

8x+ 1
β̂(x)α̂(x)

(
1− αr(x)

βr(x)

)
,

which completes the proof. �

In the same way one can easily prove the next theorem, which gives Catalan
identity for Jacobsthal–Lucas hybrinomials.

Theorem 2.12 (Catalan identity for Jacobsthal–Lucas hybrinomials). Let
n ≥ 0, r ≥ 0 be integers such that n ≥ r. Then

jHn−r(x) · jHn+r(x)− (jHn(x))
2

= (−2x)nα̂(x)β̂(x)

(
βr(x)

αr(x)
− 1

)
+ (−2x)nβ̂(x)α̂(x)

(
αr(x)

βr(x)
− 1

)
.
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Note that for r = 1 we get Cassini identities for Jacobsthal and Jacob-
sthal–Lucas hybrinomials. Moreover, for r = 1 we have

1− β(x)

α(x)
=
α(x)− β(x)

α(x)
=

∆(x)

α(x)
and 1− α(x)

β(x)
=
β(x)− α(x)

β(x)
= −∆(x)

β(x)
.

Corollary 2.13 (Cassini identities for Jacobsthal and Jacobsthal–Lucas
hybrinomials). Let n ≥ 1 be an integer. Then

JHn−1(x) · JHn+1(x)− (JHn(x))
2

=
(−2x)n−1β(x)

∆(x)
α̂(x)β̂(x)− (−2x)n−1α(x)

∆(x)
β̂(x)α̂(x),

jHn−1(x) · jHn+1(x)− (jHn(x))
2

= (−2x)nα̂(x)β̂(x)

(
β(x)

α(x)
− 1

)
+ (−2x)nβ̂(x)α̂(x)

(
α(x)

β(x)
− 1

)
.

Theorem 2.14 (d’Ocagne identity for Jacobsthal hybrinomials). Let
m ≥ 0, n ≥ 0 be integers such that m ≥ n. Then

JHm(x) · JHn+1(x)− JHm+1(x) · JHn(x)

=
(−2x)nαm−n(x)

∆(x)
α̂(x)β̂(x)− (−2x)nβm−n(x)

∆(x)
β̂(x)α̂(x).

Proof. For integers m ≥ 0, n ≥ 0 and m ≥ n we have

JHm(x) · JHn+1(x)− JHm+1(x) · JHn(x)

=

(
αm(x)

∆(x)
α̂(x)− βm(x)

∆(x)
β̂(x)

)
·
(
αn+1(x)

∆(x)
α̂(x)− βn+1(x)

∆(x)
β̂(x)

)

−
(
αm+1(x)

∆(x)
α̂(x)− βm+1(x)

∆(x)
β̂(x)

)
·
(
αn(x)

∆(x)
α̂(x)− βn(x)

∆(x)
β̂(x)

)

=
αm+n+1(x)

∆2(x)
α̂2(x)− αm(x)βn+1(x)

∆2(x)
α̂(x)β̂(x)− αn+1(x)βm(x)

∆2(x)
β̂(x)α̂(x)

+
βm+n+1(x)

∆2(x)
β̂2(x)− αm+1+n(x)

∆2(x)
α̂2(x) +

αm+1(x)βn(x)

∆2(x)
α̂(x)β̂(x)

+
αn(x)βm+1(x)

∆2(x)
β̂(x)α̂(x)− βm+1+n(x)

∆2(x)
β̂2(x)
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=
αm+1(x)βn(x)− αm(x)βn+1(x)

∆2(x)
α̂(x)β̂(x)

+
αn(x)βm+1(x)− αn+1(x)βm(x)

∆2(x)
β̂(x)α̂(x)

=
αm(x)βn(x)(α(x)− β(x))

∆2(x)
α̂(x)β̂(x)

+
αn(x)βm(x)(β(x)− α(x))

∆2(x)
β̂(x)α̂(x)

=
αm(x)βn(x)

∆(x)
α̂(x)β̂(x)− αn(x)βm(x)

∆(x)
β̂(x)α̂(x)

=
(−2x)nαm−n(x)

∆(x)
α̂(x)β̂(x)− (−2x)nβm−n(x)

∆(x)
β̂(x)α̂(x).

Thus the theorem is proved. �

In the same way we can prove next theorems.

Theorem 2.15 (d’Ocagne identity for Jacobsthal–Lucas hybrinomials).
Let m ≥ 0, n ≥ 0 be integers such that m ≥ n. Then

jHm(x) · jHn+1(x)− jHm+1(x) · jHn(x)

= (−2x)nβm−n(x)∆(x)β̂(x)α̂(x)− (−2x)nαm−n(x)∆(x)α̂(x)β̂(x).

Theorem 2.16. Let m ≥ 0, n ≥ 0 be integers. Then

JHm(x) · jHn(x)− jHm(x) · JHn(x)

=
2(−2x)nαm−n(x)

∆(x)
α̂(x)β̂(x)− 2(−2x)nβm−n(x)

∆(x)
β̂(x)α̂(x).

We will give the matrix representation of Jacobsthal hybrinomials.

Theorem 2.17. Let n ≥ 0 be an integer. Then[
JHn+2(x) JHn+1(x)
JHn+1(x) JHn(x)

]
=

[
JH2(x) JH1(x)
JH1(x) JH0(x)

]
·
[

1 1
2x 0

]n
.
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Proof. (by induction on n)
If n = 0 then assuming that the matrix to the power 0 is the identity matrix
the result is obvious. Now assume that for any n ≥ 0 holds[

JHn+2(x) JHn+1(x)
JHn+1(x) JHn(x)

]
=

[
JH2(x) JH1(x)
JH1(x) JH0(x)

]
·
[

1 1
2x 0

]n
.

We shall show that[
JHn+3(x) JHn+2(x)
JHn+2(x) JHn+1(x)

]
=

[
JH2(x) JH1(x)
JH1(x) JH0(x)

]
·
[

1 1
2x 0

]n+1

.

By simple calculation using induction’s hypothesis we have[
JH2(x) JH1(x)
JH1(x) JH0(x)

]
·
[

1 1
2x 0

]n
·
[

1 1
2x 0

]

=

[
JHn+2(x) JHn+1(x)
JHn+1(x) JHn(x)

]
·
[

1 1
2x 0

]

=

[
JHn+2(x) + 2x · JHn+1(x) JHn+2(x)
JHn+1(x) + 2x · JHn(x) JHn+1(x)

]
=

[
JHn+3(x) JHn+2(x)
JHn+2(x) JHn+1(x)

]
,

which ends the proof. �

In the same way we obtain the matrix representation for Jacobsthal–Lucas
hybrinomials.

Theorem 2.18. Let n ≥ 0 be an integer. Then[
jHn+2(x) jHn+1(x)
jHn+1(x) jHn(x)

]
=

[
jH2(x) jH1(x)
jH1(x) jH0(x)

]
·
[

1 1
2x 0

]n
.
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