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ALIENATION OF DRYGAS’ AND CAUCHY’S
FUNCTIONAL EQUATIONS

Youssef Aissi , Driss Zeglami, Brahim Fadli

Abstract. Inspired by the papers [2, 10] we will study, on 2-divisible groups
that need not be abelian, the alienation problem between Drygas’ and the
exponential Cauchy functional equations, which is expressed by the equation

f(x+ y) + g(x+ y) + g(x− y) = f(x)f(y) + 2g(x) + g(y) + g(−y).

We also consider an analogous problem for Drygas’ and the additive Cauchy
functional equations as well as for Drygas’ and the logarithmic Cauchy func-
tional equations. Interesting consequences of these results are presented.

1. Introduction

The alienation and strong alienation problems are introduced by Dhombres
([3]), who gave the following definitions.

Definition 1.1. Let E1(f) = 0 and E2(f) = 0 be two functional equations
for a function f : X → Y , where X and Y are non-empty sets. The equations
E1 and E2 are alien with respect to X and Y , if any solution f : X → Y of

E1(f) + E2(f) = 0
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is a solution of the system {
E1(f) = 0,

E2(f) = 0.

Definition 1.2. Let E1(f) = 0 and E2(g) = 0 be two functional equations
for functions f, g : X → Y , where X and Y are non-empty sets. The equations
E1 and E2 are strongly alien, if any solution f, g : X → Y of

E1(f) + E2(g) = 0

is a solution of the system {
E1(f) = 0,

E2(g) = 0.

Later on, several papers and lectures have appeared on this subject (see
[4–11, 13–16, 18, 19]). For more details concerning the alienation phenomenon
in the theory of functional equations we refer to the survey article [12], which
was authored by Ger and Sablik.

The aim of the present paper is to study the alienation phenomenon be-
tween Drygas’ and Cauchy’s functional equations. Firstly, we will solve the
functional equation

(1.1) f(x + y) + g(x + y) + g(x− y)

= f(x)f(y) + 2g(x) + g(y) + g(−y), x, y ∈ X,

which is strictly connected with the problem of alienation of Drygas’ functional
equation, that is

(1.2) g(x + y) + g(x− y) = 2g(x) + g(y) + g(−y), x, y ∈ X,

and the exponential Cauchy functional equation

(1.3) f(x + y) = f(x)f(y), x, y ∈ X,

where (X,+) is 2-divisible group that need not be abelian, and f and g are
the unknown functions which take their values in an unital commutative ring
Y of characteristic different from 2.
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As consequences, we will introduce and discuss the solutions of the follow-
ing functional equations

f(x + y) + g(x + y) + g(x− y) =f(x)f(y) + 2g(x) + 2g(y), x, y ∈ X,(1.4)

f(x + y) + g(x + y) + g(x− y)

= f(x)f(y) + f(x) + f(y) + 2g(x) + g(y) + g(−y),

and

f2
(x + y

2

)
+ g(x + y) + g(x− y) = f(x)f(y) + 2g(x) + g(y) + g(−y).

The last equation results from summing up side by side Drygas’ functional
equation and Lobachevsky’s functional equation, that is

(1.5) f2
(x + y

2

)
= f(x)f(y), x, y ∈ X.

Secondly, we will describe the solutions of the equation

(1.6) f(x + y) + g(x + y) + g(x− y)

= f(x) + f(y) + 2g(x) + g(y) + g(−y), x, y ∈ X,

which is derived by summing up side by side the equations (1.2) and the
additive Cauchy functional equation, that is

(1.7) f(x + y) = f(x) + f(y), x, y ∈ X.

We show that modulo a constant, equations (1.2) and (1.7) are strongly alien
on a 2-divisible group.

As applications, we will examine, on 2-divisible abelian groups, the alien-
ation phenomenon between the equation (1.2) and the Jensen-additive func-
tional equation, that is

2f
(x + y

2

)
= f(x) + f(y), x, y ∈ X,

and we get the result [9, Theorem 2.1], which was established by Ger about
the alienation phenomenon of additivity and quadraticity up to a constant.

Finally, we will study the alienation problem, on a ring, of Drygas’ and
the logarithmic Cauchy functional equations, which is expressed as follows

(1.8) f(xy)+g(x+y)+g(x−y) = f(x)+f(y)+2g(x)+g(y)+g(−y), x, y ∈ X.
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Furthermore, we will describe the solutions of the equation

f(xy) + g(x + y) + g(x− y) = f(x) + f(y) + 2g(x) + 2g(y), x, y ∈ X.

The monographs by Aczél and Dhombres ([1]) and by Stetkær ([17]) contain
many references about Drygas’ and Cauchy’s functional equations.

Notation. The following notation will be used throughout the paper un-
less explicitly stated otherwise. Let (X,+) and (Y,+) be groups. We deal
with the very classical functional equations defining additivity and quadratic-
ity functions, i.e.

A(x + y) = A(x) + A(y), x, y ∈ X,

and

Q(x + y) + Q(x− y) = 2Q(x) + 2Q(y), x, y ∈ X

respectively, where A andQ are functions mappingX into Y . A mapD : X →
Y is called Drygas’ map provided that it satisfies the following functional
equation

D(x + y) + D(x− y) = 2D(x) + D(y) + D(−y), x, y ∈ X.

2. Drygas’ and the exponential Cauchy functional equations

Our first main result describes the solutions f, g : X → Y of Pexider type
functional equation

f(x + y) + g(x + y) + g(x− y) =f(x)f(y) + 2g(x) + g(y) + g(−y), x, y ∈ X,

resulting from summing up Drygas’ and the exponential Cauchy functional
equations side by side.

Theorem 2.1. Let (X,+) be a 2-divisible group (not necessarily commuta-
tive), and (Y,+, ·, 1) be an unital commutative ring of characteristic different
from 2. Then, functions f, g : X → Y satisfy the functional equation (1.1) if
and only if we have one of the following two cases:
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(1) f(0) = 1 and{
f(x + y) = f(x)f(y),

g(x + y) + g(x− y) = 2g(x) + g(y) + g(−y), x, y ∈ X.

(2) f(0) 6= 1 and there exists a Drygas’ map D : X → Y such that{
(1− f(0))f(x) = 2g(0),

g(x)(1− f(0))2 = D(x)− 2g(0)2 + g(0)(1− f(0)), x ∈ X.

Moreover if f(0) = 0 then f ≡ 0 and g is a solution of (1.2).

Proof. Let f, g : X → Y be a solution of (1.1). For x = y = 0 in (1.1) we
have

(2.1) f(0)(1− f(0)) = 2g(0).

If we put y = 0 in (1.1) we get

(2.2) f(x)(1− f(0)) = 2g(0)

for all x ∈ X. Next, we distinguish between two cases:
Case 1: Suppose that f(0) = 1, then we get from (2.1) that 2g(0) = 0. Let

(2.3) Γ(x, y) = f(x)f(y)−f(x+y) = g(x+y)+g(x−y)−2g(x)−g(y)−g(−y),

where x, y ∈ X. Since Γ satisfies the following equation

Γ(x + y, z) + f(z)Γ(x, y) = Γ(x, y + z) + f(x)Γ(y, z), x, y, z ∈ X,

then

g(x + y + z) + g(x + y − z)− 2g(x + y)− g(z)− g(−z) + f(z)Γ(x, y)

= g(x + y + z) + g(x− y − z)− 2g(x)− g(y + z)

− g(−y − z) + f(x)Γ(y, z)

for all x, y, z ∈ X, i.e.,

g(x + y − z)− 2g(x + y)− g(z)− g(−z) + f(z)Γ(x, y)(2.4)

= g(x− y − z)− 2g(x)− g(y + z)− g(−y − z) + f(x)Γ(y, z)
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for all x, y, z ∈ X. If we replace z by −z in (2.4), we obtain that

g(x + y + z)− 2g(x + y)− g(−z)− g(z) + f(−z)Γ(x, y)(2.5)

= g(x− y + z)− 2g(x)− g(y − z)− g(−y + z) + f(x)Γ(y, z),

for all x, y ∈ X (because Γ(x,−y) = Γ(x, y) for all x, y ∈ X).
Now, subtract equalities (2.4) and (2.5), and use the identity (2.3) to get

g(x + y − z) + g(x− y + z) + [f(z)− f(−z)]Γ(x, y)(2.6)

= g(x + y + z) + g(x− y − z)− g(y + z)− g(−y − z)

+ g(−y + z) + g(y − z).

Replacing y by −y in (2.6) we get

g(x− y − z) + g(x + y + z) + [f(z)− f(−z)]Γ(x,−y)(2.7)

= g(x− y + z) + g(x + y − z)− g(−y + z)− g(y − z)

+ g(−y − z) + g(y + z).

Since Γ(x,−y) = Γ(x, y) and Y has a characteristic different from 2 we get
by subtracting (2.6) and (2.7) that

g(x + y − z) + g(x− y + z) = g(x + y + z) + g(x− y − z)− g(y + z)

− g(−y − z) + g(y − z) + g(−y + z),

which, after setting z = y, leads to

2g(x) = g(x + 2y) + g(x− 2y)− g(2y)− g(−2y), x, y ∈ X.

Since X is 2-divisible we get

g(x + y) + g(x− y) = 2g(x)− g(y)− g(−y), x, y ∈ X.

Going back to (1.1), we infer that f is solution of (1.3).
Case 2: Suppose that f(0) 6= 1. For the special subcase f(0) = 0 we get,

by using (2.1), that 2g(0) = 0, which implies from (2.2) that f ≡ 0.
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We turn now to f(0) 6= 1 (zero or not). By using (2.2), the equation (1.1)
multiplied by (1− f(0))2 gives

2g(0)(1− f(0)) + g(x + y)(1− f(0))2 + g(x− y)(1− f(0))2

= 4g(0)2 + 2g(x)(1− f(0))2 + g(y)(1− f(0))2 + g(y)(1− f(0))2,

which means that

(2.8) G(x + y) + G(x− y) = 2c + 2G(x) + G(y) + G(−y), x, y ∈ X,

where c = 2g(0)2 − g(0)(1− f(0)) and G : X → Y is defined by

G(x) = g(x)(1− f(0))2, x ∈ X.

If we put D(x) := G(x) + c, the equation (2.8) becomes

D(x + y) + D(x− y) = 2D(x) + D(y) + D(−y), x, y ∈ X.

Hence, there exists a Drygas’ map D : X → Y such that{
(1− f(0))f(x) = 2g(0),

g(x)(1− f(0))2 = D(x)− c, x ∈ X.

The converse is straightforward. �

As a consequence of Theorem 2.1, we get the following result on the alien-
ation of Drygasity and exponentiality up to a constant.

Corollary 2.2. Let (X,+) be a 2-divisible group (not necessarily com-
mutative), and (Y,+, ·) be a field of characteristic different from 2. Then,
functions f, g : X → Y satisfy the functional equation (1.1) if and only if we
have one of the following two cases:
(1) f(0) = 1 and f satisfies (1.3) and g solves (1.2).
(2) f(0) 6= 1 and there exist a Drygas’ map D : X → Y and a constant c ∈ Y

such that {
f(x) = 2c,

g(x) = D(x)− 2c2 + c, x ∈ X.

Moreover, if f(0) = 0 then f ≡ 0 and g is a solution of (1.2).
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Proof. The assertion (1) follows from Theorem 2.1.
For (2), in view of Theorem 2.1 there exists a Drygas’ map D : X → Y

such that{
(1− f(0))f(x) = 2g(0),

g(x)(1− f(0))2 = D(x)− 2g(0)2 + g(0)(1− f(0)), x ∈ X.

Then {
f(x) = 2c,

g(x) =
(
(1− f(0))2

)−1
D(x)− 2c2 + c, x ∈ X,

where c = g(0) (1− f(0))
−1. So we get the claimed result because the map(

(1− f(0))2
)−1

D is also a Drygas’ map.
The other direction is easy to check. �

The following result is devoted to study the alienation problem between
exponentiality and quadraticity.

Theorem 2.3. Let (X,+) be a 2-divisible group (not necessarily commuta-
tive), and (Y,+, ·, 1) be an unital commutative ring of characteristic different
from 2. Then, functions f, g : X → Y satisfy the equation (1.4) if and only
if there exists a quadratic function Q : X → Y such that one of the following
two cases holds:
(1) f(0) = 1 and{

f(x + y) = f(x)f(y),

g(x + y) + g(x− y) = 2g(x) + 2g(y), x, y ∈ X.

(2) f(0) 6= 1 and{
(1− f(0))f(x) = 2g(0),

g(x)(1− f(0))2 = Q(x)− 2g(0)2 + g(0)(1− f(0)), x ∈ X.

Moreover, if f(0) = 0 then f ≡ 0 and g is a solution of (1.2).

Proof. Setting y = 0 in (1.4) we get

(2.9) f(x)(1− f(0)) = 2g(0), x ∈ X.
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Replacing y by −y in (1.4) we obtain

(2.10) f(x−y)+g(x−y)+g(x+y) = f(x)f(−y)+2g(x)+2g(−y), x, y ∈ X.

Subtracting (1.4) from (2.10) we get

(2.11) f(x+y)−f(x−y) = f(x)[f(y)−f(−y)]+2[g(y)−g(−y)], x, y ∈ X.

Setting x = 0 in (2.11) gives us

2[g(y)− g(−y)] = (1− f(0))[f(y)− f(−y)] for all y ∈ X,

which yields, by using (2.9), that

2[g(y)− g(−y)] = (1− f(0))f(y)− (1− f(0))f(−y)

= 2g(0)− 2g(0) = 0,

for all y ∈ X. This means that g is even, i.e., g(−y) = g(y) for all y ∈ X,
because Y has a characteristic different from 2. Thus, from Theorem 2.1 we
get the proof of the first direction.

The converse statement can be trivially shown. �

A result about the alienation of quadraticity and exponentiality up to a
constant will be shown in the following corollary

Corollary 2.4. Let (X,+) be a 2-divisible group (not necessarily com-
mutative), and (Y,+, ·) be a field of characteristic different from 2. Then,
functions f, g : X → Y satisfy the functional equation (1.1) if and only if
there exist a quadratic function Q : X → Y and a constant c ∈ Y such that
one of the following two cases holds:
(1) f(0) = 1 and f satisfies (1.3) and g(x) = Q(x) for all x ∈ X.
(2) f(0) 6= 1 and {

f(x) = 2c,

g(x) = Q(x)− 2c2 + c, x ∈ X.

Moreover, if f(0) = 0 then f ≡ 0 and g(x) = Q(x) for all x ∈ X.

Proof. The proof follows from Theorem 2.3 by using similar arguments
as in proof of Corollary 2.2. �
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Now, we will study the solutions f, g : X → Y of the equation

(2.12) f(x + y) + g(x + y) + g(x− y)

= f(x)f(y) + f(x) + f(y) + 2g(x) + g(y) + g(−y),

where x, y ∈ X.

Corollary 2.5. Let (X,+) be a 2-divisible group (not necessarily commu-
tative), and (Y,+, ·, 1) be an unital commutative ring of characteristic different
from 2. Then, functions f, g : X → Y satisfy the functional equation (2.12) if
and only if one of the following two cases holds:
(1) f + 1 satisfies (1.3), f(0) = 0 and g is a solution of (1.2).
(2) f(0) 6= 0 and there exists a Drygas’s map D : X → Y such that{

f(0)f(x) = −2g(0)− f(0),

g(x)f(0)2 = D(x)− 2g(0)2 − g(0)f(0), x ∈ X.

Moreover, if f(0) = −1 then f ≡ −1 and g is a solution of (1.2).

Proof. Let f, g : X → Y be a solution of the equation (2.12). If we add
the identity element 1 in the two sides of (2.12), we get

F (x+ y) + g(x+ y) + g(x− y) =F (x)F (y) + 2g(x) + g(y) + g(−y), x, y ∈ X,

where F (x) := f(x) + 1 for all x ∈ X. So by Theorem 2.1 we get the claimed
result. The other direction is easy to check. �

As another application of our first main result, we investigate the alien-
ation phenomenon of Lobachevsky’s and the exponential Cauchy functional
equations, i.e., the equation

(2.13) f2
(x + y

2

)
+ g(x + y) + g(x− y)

= f(x)f(y) + 2g(x) + g(y) + g(−y), x, y ∈ X,

on 2-divisible abelian group, where the functions f and g take their values in
a field K of characteristic different from 2. We will show that (1.5) and (1.2)
are strongly alien in the sense of Dhombres.



Alienation of Drygas’ and Cauchy’s functional equations 141

Corollary 2.6. Let (X,+) be a 2-divisible abelian group, and K be a
field of characteristic different from 2. The pair of functions f, g : X → K is a
solution of (2.13) if and only if it is a solution of the system of two equations{

f2
(x + y

2

)
= f(x)f(y),

g(x + y) + g(x− y) = 2g(x) + g(y) + g(−y), x, y ∈ X.

Moreover, if f(0) = 0 then f ≡ 0 and g is a solution of (1.2).

Proof. Setting x = y = 0 in (2.13), we see that 2g(0) = 0. If we put
y = 0 in (2.13), we get

(2.14) f2(
x

2
) = f(x)f(0), x ∈ X.

We first suppose that f(0) = 0. So, from (2.14) we infer that f ≡ 0. Going
back to (2.13) we deduce that g is a solution of the equation (1.2). We now
suppose that f(0) 6= 0. By using (2.14), the equation (2.13) becomes

f(x + y)f(0) + g(x + y) + g(x− y)

= f(x)f(y) + 2g(x) + g(y) + g(−y),

for all x, y ∈ X. If we multiply the last equation by f(0)−2, we get

F (x + y) + G(x + y) + G(x− y) = F (x)F (y) + 2G(x) + G(y) + G(−y),

for all x, y ∈ X, where F (x) := f(x)f(0)−1 and G(x) := g(x)f(0)−2. Since
F (0) = 1, then according to Theorem 2.1 we get that F satisfies (1.3) and G
solves (1.2). These mean that

(2.15) f(x + y)f(0)−1 = f(x)f(0)−1f(y)f(0)−1, x, y ∈ X,

and

g(x + y)f(0)−2 + g(x− y)f(0)−2

= 2g(x)f(0)−2 + g(y)f(0)−2 + g(−y)f(0)−2, x, y ∈ X.(2.16)

If we multiply the equations (2.15) and (2.16) by f(0)2 we get, by using (2.14),
that f satisfies (1.5) and g solves (1.2).

Conversely, it is elementary to show the other direction. �
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3. Drygas’ and the additive Cauchy functional equations

In this section we show that modulo a constant, the equation (1.6):

f(x + y) + g(x + y) + g(x− y)

= f(x) + f(y) + 2g(x) + g(y) + g(−y), x, y ∈ X,

on 2-divisible non-abelian group, forces f to be an additive function and g to
be a solution of Drygas’ functional equation (1.2).

Theorem 3.1. Let (X,+) be a 2-divisible group (not necessarily commu-
tative), and (Y,+) be an abelian group. The pair of functions f, g : X → Y is
a solution of (1.6) if and only if it is a solution of the system of two equations{

f(x + y) = f(x) + f(y) + 2c,

g(x + y) + g(x− y) = 2g(x) + g(y) + g(−y)− 2c, x, y ∈ X,

where c ∈ Y is a constant.

Proof. Putting x = y = 0 in (1.6) we get

(3.1) f(0) + 2g(0) = 0.

Define F (x) := f(x) − f(0) and G(x) := g(x) − g(0) for all x ∈ X. So
by (3.1) we see easily that the pair (F,G) is a solution of (1.6) such that
F (0) = G(0) = 0.

We put G := F + G, then the equation (1.6) becomes

G(x + y) + G(x− y) = G(x) + G(y) + G(x) + G(−y), x, y ∈ X.

We define

Γ(x, y) := G(x + y)− G(x)− G(y) = G(x) + G(−y)−G(x− y),

for all x, y ∈ X. The map Γ, as a Cauchy difference, satisfies the cocycle
equation

Γ(x + y, z) + Γ(x, y) = Γ(x, y + z) + Γ(y, z), x, y, z ∈ X.
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Consequently,

G(x + y) + G(−z)−G(x + y − z) + G(x) + G(−y)−G(x− y)

= G(x) + G(−y − z)−G(x− y − z) + G(y) + G(−z)−G(y − z),

for all x, y, z ∈ X, which is equivalent to

G(x + y)−G(x + y − z)−G(x− y) + G(−y)(3.2)

= G(−y − z)−G(x− y − z) + G(y)−G(y − z), x, y, z ∈ X.

Replacing z by −z in (3.2), we get

G(x + y)−G(x + y + z)−G(x− y) + G(−y)(3.3)

= G(−y + z)−G(x− y + z) + G(y)−G(y + z), x, y, z ∈ X.

Subtracting (3.2) from (3.3) we obtain

G(x + y + z)−G(x + y − z) = G(x− y + z)−G(x− y − z)

+ G(y + z) + G(−y − z)−G(y − z)−G(−y + z)

i.e.,

G(x + y + z) + G(x− y − z) = G(x− y + z) + G(x + y − z)

+ G(−y − z)−G(y − z)−G(−y + z) + G(y + z),

which, after setting z = y, leads to

G(x + 2y) + G(x− 2y) = 2G(x) + G(−2y) + G(2y), x, y ∈ X.

Due to the 2-divisibility of X, we deduce that

G(x + y) + G(x− y) = 2G(x) + G(−y) + G(y), x, y ∈ X.

Hence g is a solution of the equation

g(x + y) + g(x− y) = 2g(x) + g(y) + g(−y)− 2g(0), x, y ∈ X.

Going back to the equation (1.6), we see that f is a solution of the equation

f(x + y) = f(x) + f(y) + 2g(0), x, y ∈ X.

The converse statement can be trivially shown. �
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The following corollary states that Drygas’ functional equation and Jensen’s
functional equation are strongly alien, on 2-divisible abelian group, in the
sense of Dhombres.

Corollary 3.2. Let (X,+) be a 2-divisible abelian group, and (Y,+) be
an abelian group. The pair of functions f, g : X → Y is a solution of the
equation

(3.4) 2f
(x + y

2

)
+ g(x+ y) + g(x− y) = f(x) + f(y) + 2g(x) + g(y) + g(−y),

for all x, y ∈ X if and only if it is a solution of the system of two equations{
2f
(x + y

2

)
= f(x) + f(y),

g(x + y) + g(x− y) = 2g(x) + g(y) + g(−y), x, y ∈ X.

Proof. Substituting x = y = 0 in (3.4), we get 2g(0) = 0. For y = 0 in
(3.4), we obtain

(3.5) 2f
(x

2

)
= f(x) + f(0), x ∈ X.

So by (3.5), the equation (3.4) becomes

f(x + y) + f(0) + g(x + y) + g(x− y) = f(x) + f(y) + 2g(x)

+ g(y) + g(−y).

If we define F (·) := f(·)− f(0), we get

F (x + y) + g(x + y) + g(x− y) = F (x) + F (y) + 2g(x) + g(y) + g(−y),

for all x, y ∈ X. Then, according to Theorem 3.1, we have

(3.6)

{
f(x + y) = f(x) + f(y)− f(0),

g(x + y) + g(x− y) = 2g(x) + g(y) + g(−y), x, y ∈ X,

(because, using the notation in Theorem 3.1, here the constant 2c = −F (0) =
0). Setting x = y in the equation f(x + y) = f(x) + f(y)− f(0), gives

f(2x) = 2f(x)− f(0), x ∈ X.
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Hence, (3.6) becomes{
2f(x + y) = f(2x) + f(2y),

g(x + y) + g(x− y) = 2g(x) + g(y) + g(−y), x, y ∈ X,

which is equivalent to{
2f
(x + y

2

)
= f(x) + f(y),

g(x + y) + g(x− y) = 2g(x) + g(y) + g(−y), x, y ∈ X,

because X is divisible by 2. The converse statement is easy to shown. �

As another consequence of Theorem 3.1, we get the following result due
to Ger ([9]) about the alienation phenomenon of additivity and quadraticity
up to a constant.

Corollary 3.3 ([9]). Let (X,+) be a 2-divisible group (not necessarily
commutative), and (Y,+) be an abelian group. Then, functions f, g : X → Y
satisfy the functional equation

(3.7) f(x+y)+g(x+y)+g(x−y) = f(x)+f(y)+2g(x)+2g(y), x, y ∈ X,

if and only if there exist an additive function A : X → Y , a quadratic function
Q : X → Y , and a constant c ∈ Y such that

f(x) = A(x)− 2c and g(x) = Q(x) + c for all x ∈ X.

Proof. Putting x = y = 0 in (3.7) we get

(3.8) f(0) + 2g(0) = 0.

Replacing x by 0 in (3.7) and using (3.8) we obtain that g(−y) = g(y) for
all y ∈ X. So by applying Theorem 3.1 we get the desired result. Conversely,
it is elementary to verify that the above formulas of f and g is a solution
of (3.7). �
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4. Drygas’ and the logarithmic Cauchy functional equations

This section is devoted to study the equation (1.8), namely

f(xy) + g(x+ y) + g(x− y) = f(x) + f(y) + 2g(x) + g(y) + g(−y), x, y ∈ X,

which results from summing up the well known Drygas’ and the logarithmic
functional equations side by side.

Theorem 4.1. Let (X,+, ·) be a ring, and (Y,+) be a 2-torsion-free abelian
group. Then the pair of functions f, g : X → Y is a solution of the functional
equation (1.8) if and only if there exist a Drygas’ map D : X → Y and a
constant c ∈ Y such that

f(x) = −2c and g(x) = D(x) + c, x ∈ X.

Proof. Putting x = y = 0 in (1.8) we get

f(0) + 2g(0) = 0.

If we put y = 0 in (1.8), we see that f(x) = f(0) = −2g(0) for all x ∈ X. So,
going back to the equation (1.8), we obtain

g(x + y) + g(x− y) = −2g(0) + 2g(x) + g(y) + g(−y), x, y ∈ X.

This is equivalent to

D(x + y) + D(x− y) = 2D(x) + D(y) + D(−y), x, y ∈ X,

where D(x) := g(x)− g(0) for all x ∈ X. Thus,

f(x) = f(0) = −2g(0) and g(x) = D(x) + g(0),

for all x ∈ X, whereD is a Drygas’s map fromX to Y . The converse statement
can be trivially shown. �

As a consequence we have the following result:

Corollary 4.2. Let (X,+, ·, 1) be an unital ring, and (Y,+) be a 2-
torsion-free abelian group. The pair of functions f, g : X → Y is a solution of
the functional equation

(4.1) f(xy) + g(x+ y) + g(x− y) = f(x) + f(y) + 2g(x) + 2g(y), x, y ∈ X,
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if and only if there exist a quadratic function Q : X → Y and a constant c ∈ Y
such that

f(x) = −2c and g(x) = Q(x) + c, x ∈ X.

Proof. Let f, g : X → Y be a solution of (4.1). Replacing y by −y in
(4.1) gives us

(4.2) f(−xy)+g(x+y)+g(x−y) = f(x)+f(−y)+2g(x)+2g(−y), x, y ∈ X.

If we subtract (4.1) from (4.2), we get

(4.3) f(xy)− f(−xy) = f(y)− f(−y) + 2g(y)− 2g(−y).

Setting x = 1 in (4.3), we obtain that g is even. So by applying Theorem 4.1
we get the desired result. Conversely, it is elementary to show that the above
formulas of f and g are solutions of (4.1). �
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