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A NEW PROOF AND CONSEQUENCES OF
THE FIXED POINT THEOREM OF MATKOWSKI

Eugeniusz Barcz

Abstract. In this work it was proved Matkowski’s fixed point theorem. The
consequences of this theorem are also presented.

1. Introduction

The presented work concerns Matkowski’s fixed point theorem and the
conclusions from this theorem. These results were used to study the limit
behaviors of quotients Fn+1

Fn
of the Fibonacci type numbers. This work the-

matically refers to works [2] and [3]. For these studies Edelstein’s fixed point
theorem was used in [2], while in [3], the fixed point theorem was proved and
used for the „d (f(x), f(y)) ≤ φ (d(x, y))” type mappings of the interval 〈a, b〉,
where the function φ is right continuous and fulfills additional conditions.

In the presented work there is a new and easy proof of Matkowski’s fixed
point theorem. In this theorem the function φ is not assumed to be continuous.
There are also proven conclusions from this theorem.The obtained results
concern the mentioned type of mappings of complete spaces. Their application
is illustrated by the approximation of the golden number ϕ = 1+

√
5

2 .
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In this work, based on Matkowski’s theorem, we present and demonstrate
a certain extension of the Hutchinson theorem about the fixed point of the
mapping determined by the so-called hyperbolic iterated functional system
marked with symbol IFS. In proof of this theorem from 1981, Hutchinson
applied Banach Contraction Principle. Banach’s principle is a conclusion from
Matkowski’s theorem. It is worth adding that the basic tool enabling the
construction of the so-called self-similar sets, important in fractal theory, is
the Hutchinson theorem.

2. Fixed point theorems of the Matkowski type generalized
contractions and their applications

Definition 1. A map f : (X, d) → (Y, g) of metric spaces that satisfies
the inequality d (f(x), f(x′)) ≤ Ld(x, x′) for some fixed constant L and all
x, x′ ∈ X is called Lipschitzian; the smallest such L is called the Lipschitz
constant λ of f . If λ < 1, the map f is called the contraction (with contraction
constant λ).

Definition 2. Let (X, d) be a metric space. A map f : (X, d) → (X, d)
is called a Banach contraction, if there exists constant λ < 1 satisfying the
inequality d (f(x), f(x′)) ≤ λd(x, x′) for all x, x′ ∈ X.

Definition 3. Let (X, d) be a metric space. For a given map φ : 〈0,∞)→
〈0,∞) satisfying the condition

φ(t) < t for all t > 0,

we say that, f : X → X is φ-contraction, if

d (f(x), f(x′)) ≤ φ (d(x, x′)) for all x, x′ ∈ X.

Definition 4. Let (X, d) be a metric space. A map f : X → X is called
a Browder contraction, if f is φ-contraction for some function φ which is non-
decreasing and right continuous.

Definition 5. Let (X, d) be a metric space. We say, that f : X → X is
a contraction of Matkowski, if f is φ-contraction for some function φ which is
nondecreasing and limn→∞ φ

n(t) = 0 for any t > 0.
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Definition 6. Fibonacci sequence is a sequence defined recursively as
follows:

f1 = f2 = 1, fn+1 = fn−1 + fn, n > 2

(sometimes formally accepted f0 = 0 and then the recursive formula is valid
for n > 1).

Definition 7. Fibonacci numbers are called consecutive terms of the se-
quence (fn).

Definition 8. A sequence (Fn) of the form Fn+1 = Fn + Fn−1, n > 2,
where F1 and F2 are given positive integers we call a Fibonacci type sequence.

For example, this sequence is the so-called Lucas sequence (ln):

1, 3, 4, 7, 11, 18, 29, . . .

These numbers can be described by a formula

l1 = 1, l2 = 3, ln+1 = ln + ln−1, n > 2.

Definition 9. A generalized Fibonacci sequence is a sequence (Gn) de-
fined recursively as follows: Gn+1 = Gn + Gn−1, n > 2, with G1 = a and
G2 = b, a, b > 0.

Below we present proof of Matkowski’s fixed point theorem, which is one
of the more general extensions of Banach Contraction Principle. In this proof
we will use Cantor’s intersection theorem. Before the theorem and its proof,
let us note that the last two conditions of Matkowski’s contraction imply the
condition φ(t) < t for all t > 0 (see [1]).

Theorem 1 ([4, Theorem 3.2, 12 p.], [7]). Let (X, d) be a complete metric
space. If f : X → X is the contraction of Matkowski, then f has a unique fixed
point u, and fn(x)→ u for each x ∈ X.

Proof. Given ε > 0, let’s choose x ∈ X, for δ = ε − φ(ε) such that
d (x, f(x)) ≤ δ. We show that f maps the closed ballD = {y ∈ X : d(y, x) ≤ ε}
into itself: for if z ∈ D, then

d (f(z), x) ≤ d (f(z), f(x))+d (f(x), x) ≤ φ (d(z, x))+δ ≤ φ(ε)+ε−φ(ε) = ε,

so f(z) ∈ D. Let us consider a sequence of sets Dn = fn(D). First we have
D2 ⊂ D1 from f2(D) ⊂ f(D) ⊂ D. Now suppose that fk(D) ⊂ fk−1(D),
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k > 2, then fk+1(D) = f
(
fk(D)

)
⊂ fk(D), hence Dk+1 = fk+1(D) ⊂

fk(D) = Dk. Therefore we have a descending sequence of closed sets D ⊃
D1 ⊃ D2 ⊃ . . .

We shall show that diam(Dn)→ 0. For this purpose, observe first that

diam(D1) = diam
(
f(D)

)
= diam (f(D)) ≤ φ (diam(D)) = φ(2ε)

and, by induction diam(Dn) ≤ φn(2ε) for each n ∈ N.
Because φn(2ε)→ 0 (n→∞), so diam(Dn)→ 0. Also

f
( ⋂

n>1

Dn

)
= f

( ⋂
n>1

fn(Dn)
)
⊂
⋂
n>1

f
(
fn(D)

)
⊂
⋂
n>1

f(Dn) ⊂
⋂
n>1

Dn.

Consequently, using Cantor’s Theorem we deduce that
⋂

n>1Dn consists of
a unique point u = f(u). Because from this equality we have u = fn(u) for
every n ∈ N, so

(∗) d (fn(y), u) ≤ φ
(
d
(
fn−1(y), fn−1(u)

))
≤ . . . ≤ φn (d(y, u))

for any y ∈ X and for any n ∈ N, and hence fn(y)→ u, when n→∞. �

Note that the above theorem can be proved in another way by considering,
instead of Matkowski’s contraction f , its second iteration f2 = f ◦ f , which is
the Browder contraction (see [6]). Based on Browder’s fixed point theorem (see
[4, Theorem 6.10, p. 18]) f2 has a unique fixed point u, so u is the only fixed
point for f . Indeed, since u = f2(u), then from the equality f(u) = f2 (f(u))
we get the fixed point f(u), so f(u) = u. It is easy to show that u is the only
fixed point of f (by f2(v) = v for another point v = f(v)).

Theorem 1 has a useful local version:

Corollary 1. Let (X, d) be a complete metric space and D = D(x0, r)
be the set {x ∈ X : d(x, x0) ≤ r}. If D → X is the contraction of Matkowski
such that

(∗∗) d(x0, f(x0)) ≤ r − φ(r),

then f has a unique fixed point u, and fn(x)→ u for each x ∈ D.
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Proof. For any x ∈ D we have

d (f(x), x0) ≤ d (f(x), f(x0)) + d (f(x0), x0)) ≤ φ (d(x, x0)) + r − φ(r)

≤ φ(r) + r − φ(r) = r.

Therefore f : D → D. Since D is complete, the conclusion follows from Theo-
rem 1. �

Remark 1. Let φ(t) = λt, t ∈ 〈0,∞) , λ < 1. On this assumption f : X →
X in Theorem 1 is the Banach contraction, and Theorem 1 is the Banach
Contraction Principle. The assumption (∗∗) in Corollary 1 takes the form

d(x0, f(x0)) ≤ (1− λ)r.

Example 1 (Application of Theorem 1 to study the convergence of the
quotient of neighboring terms of the Lucas sequence). Let us recall that Lucas
numbers are:

1, 3, 4, 7, 11, 18, 29, 47, . . .

They are terms of the sequence (ln) starting with l1 = 1, l2 = 3, whose
successive terms satisfy the relationship ln = ln−1 + ln−2 for n > 2. The
mapping f :

〈
4
3 , 3
〉
→
〈
4
3 , 3
〉
, f(x) = 1+ 1

x is a contraction with the constant
λ = 9

16 . Indeed for x, x′ ∈
〈
4
3 , 3
〉
we have

|f(x)− f(x′)| = |x− x
′|

xx′
≤
(
3

4

)2

|x− x′|.

Therefore, based on Banach Contraction Principle the sequence (xn), xn =

f(xn−1), n > 1, x0 = 4
3 = l3

l2
converges to the fixed point u = ϕ = 1+

√
5

2 ,
which is the solution of the equation x = 1+ 1

x in
〈
4
3 , 3
〉
. Also for x0 = 3 = l2

l1
we have xn = fn(x0)→ ϕ. Therefore we finally have

lim
n→∞

fn
(
l2
l1

)
= lim

n→∞
fn
(
l3
l2

)
= ϕ.

Example 2 (Application of Corollary 1 to study the convergence of the
quotient of neighboring terms of the Fibonacci sequence). Let D = D(ϕ, 12),
thus D =

〈
ϕ− 1

2 , ϕ+ 1
2

〉
. Note that the function f : D → R given by the
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formula f(x) = 1 + 1
x is a contraction with the constant λ = 4

5 , because from
equality ϕ− 1

2 =
√
5
2 we have

|f(x)− f(x′)| = |x− x
′|

xx′
≤ 4

5
|x− x′| for x, x′ ∈ D.

Hence we have

|ϕ− f(ϕ)| = 0 ≤
(
1− 4

5

)
· 1
2
.

Based on Corollary 1 fn(d)→ ϕ for any d ∈ D.
Let d = f3

f2
= 2, then d ∈ D =

〈
ϕ− 1

2 , ϕ+ 1
2

〉
. Therefore fn

(
f3
f2

)
→ ϕ.

Now taking d = f4
f3

= 3
2 ∈ D we get fn

(
f4
f3

)
→ ϕ. We finally have

lim
n→∞

fn
(
f3
f2

)
= ϕ = lim

n→∞
fn
(
f4
f3

)
.

Theorem 2 (compare [4], [5]). Let (X, d) be a complete metric space and
let f : X → X. Suppose that there is a natural number N > 1 such that fN
is the contraction of Matkowski. Then f has a unique fixed point u and the
sequence of iterates fN (x)→ u for each x ∈ X.

Proof. Based on Theorem 1 fN has a unique fixed point u = fN (u).
However fN (f(u)) = f

(
fN (u)

)
= f(u), therefore f(u) is also a fixed point

of fN . Because the fixed point of fN is only one, so f(u) = u. If for another
point v = f(v), then from fn(v) = v, n ∈ N, we have fN (v) = v, so v = u.
Proof of the second part of the thesis is analogous to the last part of the proof
of Theorem 1 (comp. (∗)). �

Example 3 (Application of Theorem 2 to study the convergence of the
quotients Fn+1

Fn
of the Fibonacci type sequence (Fn)). We will justify that

successive quotients Fn+1

Fn
of terms of the Fibonacci type sequence (Fn) ap-

proach the value of ϕ. We will assume that the initial terms F1 and F2 of
this sequence, which are natural numbers, satisfy the inequality F1 ≤ F2.
Since for f(x) = 1 + 1

x : f(1) ≤ 2, f(2) > 1 and f is decreasing we have
f (〈1, 2〉) ⊂ 〈1, 2〉. So f2 (〈1, 2〉) ⊂ 〈1, 2〉. Because f is not a contraction on the
interval 〈1, 2〉 (as |f(x)− f(x′)| = |x−x′|

xx′ ≤ |x− x′| for x, x′ ∈ 〈1, 2〉), we will
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examine whether f2 is a contraction. We have f2(x) = f(1 + 1
x) = 1 + x

x+1

for each x ∈ 〈1, 2〉, hence

|f2(x)− f2(x′)| = |x− x′|
xx′ + x+ x′ + 1

≤ 1

4
|x− x′| for all x, x′ ∈ 〈1, 2〉 .

Therefore f2 is the contraction with constant λ = 1
4 . We can now apply

Theorem 2 assuming φ(t) = 1
4 t, t > 0. By Theorem 2 f has in 〈1, 2〉 a unique

fixed point u, and the sequence of iterates fn(y0) → u for each y0 ∈ 〈1, 2〉.
Let x0 = F2

F1
, then yo = f(x0) = 1+ F1

F2
and y0 ∈ 〈1, 2〉. Because y0 = 1+ F1

F2
=

F2+F1

F2
= F3

F2
, so fn

(
F3

F2

)
→ u = ϕ (u = ϕ because u = 1 + 1

u).

Remark 2. It is worth adding that, using Banach Contraction Principle
as a conclusion from the fixed point theorem of Matkowski, we can study
the limit behavior of the quotients Gn+1

Gn
of the corresponding terms of the

generalized Fibonacci sequence (Gn) (see [3]).

Let K(X) be a family of non-empty and compact subset of the metric
space (X, d). In the set K(X) we define the metric using the definition: an
epsilon extension of the set A we call the set

Aε = {x ∈ X; d(a, x) ≤ ε for some a ∈ A}.

Aε is also called the ε-envelope of the set A.
It can be shown that the function dH : K(X) ×K(X) → 〈0,∞) given by

the formula

dH(A,B) = inf {ε > 0;A ⊂ Bε ∧B ⊂ Aε}

is a metric. We call it the Hausdorff metric on the set K(X). (K(X), dH) is a
complete metric space, if (X, d) is a complete metric space. Let the mapping
F : K(X) → K(X) be given by the formula F (A) = f1(A) ∪ · · · ∪ fk(A) for
A ∈ K(X), where fi : X → X, i = 1, . . . , k are functions.

Theorem 3. If all functions fi : X → X, i ∈ {1, . . . , k} are Matkowski
contractions for the same non-decreasing function φ : 〈0,∞) → 〈0,∞), then
the mapping F : K(X) → K(X) is the Matkowski contraction with the func-
tion φ (also the same).
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Proof. Since every function fi is the Matkowski contraction with φ, so
for any p, q ∈ X and i = 1, . . . , k we have d (fi(p), fi(q)) ≤ φ (d(p, q)). Let
A,B ∈ K(X) and let δ = dH(A,B). Then for every p ∈ A there exists such
q ∈ B that d(p, q) ≤ δ. Therefore for each i we have d (fi(p), fi(q)) ≤ φ(δ).
It follows that fi(A) is a set contained in the epsilon extension fi(B) for
ε = φ(δ).

So we have F (A) =
⋃k

i=1 fi(A) ⊂
⋃k

i=1 (fi(B))ε = (F (B))ε. Similarly we
prove that F (B) ⊂ (F (A))ε. Therefore

dH (F (A), f(B)) ≤ ε = φ(δ) = φ (dH(A,B)) . �

We will now present one of the extensions of Huchinson’s theorem on the
fixed point of mapping F which concerned the Banach contraction system
{f1, . . . , fk}.

Theorem 4. If the space (X, d) is complete and the mapping F : K(X)→
K(X) is defined by the formula F (A) = f1(A) ∪ · · · ∪ fk(A) for A ∈ K(X),
where each function fi (i = 1, . . . , k) is the Matkowski contraction with the
same non-decreasing function φ : 〈0,∞) → 〈0,∞), then there exists exactly
one set A∗ ∈ K(X) such that

(∗∗∗) A∗ = F (A∗) = f1(A∗) ∪ · · · ∪ fk(A∗).

Moreover, for any K0 ∈ K(X) the iteration sequence (Fn(K0)) converges to
A∗ relative to the Hausdorff metric.

Sets A∗ ∈ K(X) satisfying the condition (∗∗∗) are called self-similar (rel-
ative to f1, . . . , fk) or fractals.

Proof. It is enough to recall that:
(i) (K(X), dH) is a complete space,
(ii) F : K(X)→ K(X) is the Matkowski contraction

and refer to Theorem 1. �

Remark 3. If X is the Euclidean space (Rn, d) and F is the Matkowski
contraction with the function φ of the form φ(t) = λt, λ < 1, t > 0, then
we can obtain, among others, the Cantor set. Namely let S be the family of
all closed nonempty subsets of the unit interval 〈0, 1〉. Let f : S → S be a
transformation that assigns to each set A ∈ S the set F (A) = 1

3A∪
(
2
3 + 1

3A
)
.

Let’s put D0 = 〈0, 1〉. Finding successive iterations of the transformation F
of set D0 we get:

D1 = F (D0) =

〈
0,

1

3

〉
∪
〈
2

3
, 1

〉
,
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D2 = F 2 (D0) = F (D1) =

〈
0,

1

9

〉
∪
〈
2

5
,
1

3

〉
∪
〈
2

3
,
7

9

〉
∪
〈
8

9
, 1

〉
.

In the same way we construct the next sets D3, D4, . . . The set C =
⋂

n>0Dn

which is a unique fixed point of the transformation F is a self-similar set and
is known as the Cantor set.

References

[1] E. Barcz, Some fixed points theorems for multi-valued mappings, Demonstratio Math.
16 (1983), no. 3, 735–744.

[2] E. Barcz, On the golden number and Fibonacci type sequences, Ann. Univ. Paedag.
Crac., Stud. Didac. Math. Pertin. 11 (2019), 25–35.

[3] E. Barcz, Application of Banach Contraction Principle to approximate the golden num-
ber, Ann. Univ. Paedag. Crac., Stud. Didac. Math. Pertin. To appear.

[4] J. Dugundji and A. Granas, Fixed Point Theory, Monografie Matematyczne, 61, PWN,
Warszawa, 1982.

[5] K. Goebel, Twierdzenia o punktach stałych, UMCS, Lublin, 2005.
[6] J. Jachymski and I. Jóźwik, Nonlinear contractive conditions: A comparison and related

problems, in: J. Jachymski and S. Reich (eds.), Fixed Point Theory and its Applications,
Banach Center Publ., 77, 2007, Polish Acad. Sci. Inst. Math., Warsaw, 2007, pp. 123–
146.

[7] J. Matkowski, Integrable solutions of functional equations, Dissertationes Math.
(Rozprawy Mat.) 127 (1975), 68 pp.

University of Warmia and Mazury
Faculty of Mathematics and Computer Science
Chair of Complex Analysis
Słoneczna 54 Street
10-710 Olsztyn
Poland
e-mail: ebarcz@matman.uwm.edu.pl


	1. Introduction
	2. Fixed point theorems of the Matkowski type generalized contractions and their applications
	References

