# OPERATOR SUBADDITIVITY OF THE D-LOGARITHMIC INTEGRAL TRANSFORM FOR POSITIVE OPERATORS IN HILBERT SPACES 

Silvestru Sever Dragomir ©


#### Abstract

For a continuous and positive function $w(\lambda), \lambda>0$ and $\mu$ a positive measure on $[0, \infty)$ we consider the following $\mathcal{D}$-logarithmic integral transform


$$
\mathcal{D} \mathcal{L} \operatorname{og}(w, \mu)(T):=\int_{0}^{\infty} w(\lambda) \ln \left(\frac{\lambda+T}{\lambda}\right) d \mu(\lambda)
$$

where the integral is assumed to exist for $T$ a positive operator on a complex Hilbert space $H$.

We show among others that, if $A, B>0$ with $B A+A B \geq 0$, then

$$
\mathcal{D} \mathcal{L} o g(w, \mu)(A)+\mathcal{D} \mathcal{L} \text { og }(w, \mu)(B) \geq \mathcal{D} \mathcal{L} \text { og }(w, \mu)(A+B)
$$

In particular we have

$$
\frac{1}{6} \pi^{2}+\operatorname{dilog}(A+B) \geq \operatorname{dilog}(A)+\operatorname{dilog}(B)
$$

where the dilogarithmic function dilog : $[0, \infty) \rightarrow \mathbb{R}$ is defined by

$$
\operatorname{dilog}(t):=\int_{1}^{t} \frac{\ln s}{1-s} d s, \quad t \geq 0
$$

Some examples for integral transform $\mathcal{D} \mathcal{L}$ og $(\cdot, \cdot)$ related to the operator monotone functions are also provided.

Received: 24.10.2020. Accepted: 07.04.2021. Published online: 26.05.2021.
(2020) Mathematics Subject Classification: 47A63, 47A60.

Key words and phrases: operator monotone functions, operator inequalities, logarithmic operator inequalities, power inequalities.

## 1. Introduction

Consider a complex Hilbert space $(H,\langle\cdot, \cdot\rangle)$. An operator $T$ is said to be positive (denoted by $T \geq 0$ ) if $\langle T x, x\rangle \geq 0$ for all $x \in H$ and also an operator $T$ is said to be strictly positive (denoted by $T>0$ ) if $T$ is positive and invertible. A real valued continuous function $f$ on $(0, \infty)$ is said to be operator monotone if $f(A) \geq f(B)$ holds for any $A \geq B>0$.

We have the following representation of operator monotone functions (7], [6]), see for instance [1, p. 144-145]:

Theorem 1. A function $f:[0, \infty) \rightarrow \mathbb{R}$ is operator monotone in $[0, \infty)$ if and only if it has the representation

$$
\begin{equation*}
f(t)=f(0)+b t+\int_{0}^{\infty} \frac{t \lambda}{t+\lambda} d \mu(\lambda) \tag{1.1}
\end{equation*}
$$

where $b \geq 0$ and a positive measure $\mu$ on $(0, \infty)$ such that

$$
\int_{0}^{\infty} \frac{\lambda}{1+\lambda} d \mu(\lambda)<\infty
$$

For some examples of operator monotone functions see [3- [5] , 8]- [9] and the references therein.

We have the following integral representation for the power function when $s>0, r \in(0,1]$, see for instance [1, p. 145]:

$$
\begin{equation*}
s^{r-1}=\frac{\sin (r \pi)}{\pi} \int_{0}^{\infty} \frac{\lambda^{r-1}}{\lambda+s} d \lambda \tag{1.2}
\end{equation*}
$$

Observe that for $s>0, s \neq 1$, we have

$$
\int_{0}^{u} \frac{d \lambda}{(\lambda+s)(\lambda+1)}=\frac{\ln s}{s-1}+\frac{1}{1-s} \ln \left(\frac{u+s}{u+1}\right)
$$

for all $u>0$. By taking the limit over $u \rightarrow \infty$ in this equality, we derive

$$
\begin{equation*}
\frac{\ln s}{s-1}=\int_{0}^{\infty} \frac{d \lambda}{(\lambda+s)(\lambda+1)} \tag{1.3}
\end{equation*}
$$

which gives the representation for the logarithm

$$
\begin{equation*}
\ln s=(s-1) \int_{0}^{\infty} \frac{d \lambda}{(\lambda+1)(\lambda+s)} \tag{1.4}
\end{equation*}
$$

If we integrate 1.2 over $s$ from 0 to $t>0$, we get by Fubini's theorem

$$
\begin{aligned}
\frac{t^{r}}{r} & =\frac{\sin (r \pi)}{\pi} \int_{0}^{\infty}\left(\int_{0}^{t}\left(\frac{1}{\lambda+s}\right) d s\right) \lambda^{r-1} d \lambda \\
& =\frac{\sin (r \pi)}{\pi} \int_{0}^{\infty} \lambda^{r-1} \ln \left(\frac{t+\lambda}{\lambda}\right) d \lambda
\end{aligned}
$$

giving the identity of interest

$$
t^{r}=\frac{r \sin (r \pi)}{\pi} \int_{0}^{\infty} \lambda^{r-1} \ln \left(\frac{t+\lambda}{\lambda}\right) d \lambda, \quad t>0 \text { and } r \in(0,1]
$$

Recall the dilogarithmic function dilog: $[0, \infty) \rightarrow \mathbb{R}$ defined by

$$
\operatorname{dilog}(t):=\int_{1}^{t} \frac{\ln s}{1-s} d s, \quad t \geq 0
$$

Some particular values of interest are

$$
\operatorname{dilog}(1)=0, \quad \operatorname{dilog}(0)=\int_{1}^{0} \frac{\ln s}{1-s} d s=\int_{0}^{1} \frac{\ln s}{s-1} d s=\frac{1}{6} \pi^{2}
$$

and

$$
\operatorname{dilog}\left(\frac{1}{2}\right)=\frac{1}{12} \pi^{2}-\frac{1}{2}(\ln 2)^{2}
$$

If we integrate the identity $\sqrt{1.3}$ ) over $s$ from 0 to $t>0$, we get by Fubini's theorem

$$
\int_{0}^{t} \frac{\ln s}{s-1} d s=\int_{0}^{\infty}\left(\int_{0}^{t} \frac{1}{\lambda+s} d s\right) \frac{1}{(\lambda+1)} d \lambda=\int_{0}^{\infty} \frac{1}{(\lambda+1)} \ln \left(\frac{t+\lambda}{\lambda}\right) d \lambda
$$

and since

$$
\begin{aligned}
\int_{0}^{t} \frac{\ln s}{s-1} d s & =\int_{0}^{1} \frac{\ln s}{s-1} d s+\int_{1}^{t} \frac{\ln s}{s-1} d s=\frac{1}{6} \pi^{2}-\int_{1}^{t} \frac{\ln s}{1-s} d s \\
& =\frac{1}{6} \pi^{2}-\operatorname{dilog}(t)
\end{aligned}
$$

then we get the identity of interest

$$
\frac{1}{6} \pi^{2}-\operatorname{dilog}(t)=\int_{0}^{\infty} \frac{1}{(\lambda+1)} \ln \left(\frac{t+\lambda}{\lambda}\right) d \lambda, \quad t>0
$$

Motivated by the above representations, we define the $\mathcal{D}$-logarithmic transform for a continuous and positive function $w(\lambda), \lambda>0$ by

$$
\begin{equation*}
\mathcal{D} \mathcal{L} \operatorname{og}(w, \mu)(t):=\int_{0}^{\infty} w(\lambda) \ln \left(\frac{\lambda+t}{\lambda}\right) d \mu(\lambda) \tag{1.5}
\end{equation*}
$$

where $\mu$ is a positive measure on $(0, \infty)$ and the integral (1.5) exists for all $t>0$. Also, when $\mu$ is the usual Lebesgue measure, then

$$
\mathcal{D} \mathcal{L} \operatorname{og}(w)(t):=\int_{0}^{\infty} w(\lambda) \ln \left(\frac{\lambda+t}{\lambda}\right) d \lambda
$$

Obviously,

$$
\begin{aligned}
\mathcal{D} \mathcal{L} o g(w, \mu)(t) & =\int_{0}^{\infty} w(\lambda) \ln \left(1+\frac{t}{\lambda}\right) d \mu(\lambda) \\
& =\int_{0}^{\infty} w(\lambda)[\ln (\lambda+t)-\ln (\lambda)] d \mu(\lambda)
\end{aligned}
$$

and one can use either of these representations when is needed.
By utilising the continuous functional calculus for selfadjoint operators, we can define the operator $\mathcal{D}$-logarithmic transform by

$$
\mathcal{D} \mathcal{L} o g(w, \mu)(T)=\int_{0}^{\infty} w(\lambda) \ln \left(1+\frac{1}{\lambda} T\right) d \mu(\lambda)
$$

for $T>0$.
If we use the $\mathcal{D}$-logarithmic transform for the kernel $w_{\ell^{r-1}}(\lambda):=$ $\frac{r \sin (r \pi)}{\pi} \lambda^{r-1}, r \in(0,1]$ we have

$$
\mathcal{D} \mathcal{L} o g\left(w_{\ell^{r-1}}\right)(T)=T^{r}, \quad T \geq 0
$$

while for the kernel $w_{(\ell+1)^{-1}}(\lambda):=\frac{1}{\lambda+1}$ we have

$$
\mathcal{D} \mathcal{L} \operatorname{og}\left(w_{(\ell+1)^{-1}}\right)(T)=\frac{1}{6} \pi^{2}-\operatorname{dilog}(T), \quad T \geq 0
$$

In the recent paper [2] we introduced the following integral transform

$$
\begin{equation*}
\mathcal{D}(w, \mu)(s):=\int_{0}^{\infty} \frac{w(\lambda)}{\lambda+s} d \mu(\lambda), \quad s>0 \tag{1.6}
\end{equation*}
$$

for a continuous and positive function $w(\lambda), \lambda>0$, where $\mu$ is a positive measure on $(0, \infty)$ and the integral (1.6) exists for all $s>0$.

For $\mu$ the Lebesgue usual measure, we put

$$
\mathcal{D}(w)(s):=\int_{0}^{\infty} \frac{w(\lambda)}{\lambda+s} d \lambda, \quad s>0
$$

Several examples of integral transforms $\mathcal{D}(w, \mu)$ have also been given in [2].
If we integrate the identity (1.3) over $s$ from 0 to $t>0$, we get by Fubini's theorem

$$
\begin{aligned}
\int_{0}^{t} \mathcal{D}(w, \mu)(s) d s & :=\int_{0}^{\infty}\left(\int_{0}^{t} \frac{1}{\lambda+s} d s\right) w(\lambda) d \mu(\lambda) \\
& =\int_{0}^{\infty} w(\lambda) \ln \left(\frac{\lambda+t}{\lambda}\right) d \mu(\lambda)
\end{aligned}
$$

for $t>0$, which provides the equality of interest

$$
\mathcal{D} \mathcal{L} \text { og }(w, \mu)(t)=\int_{0}^{t} \mathcal{D}(w, \mu)(s) d s, \quad t>0
$$

provided that the integral on the right side exists for all $t>0$.

## 2. Main results

We have the following identity of interest:
Lemma 1. For all $A, B>0$ and $\lambda>0$ we have

$$
\text { (2.1) } \begin{aligned}
& \ln \left(\frac{A+\lambda}{\lambda}\right)+\ln \left(\frac{B+\lambda}{\lambda}\right)-\ln \left(\frac{A+B+\lambda}{\lambda}\right) \\
= & \ln (A+\lambda)+\ln (B+\lambda)-\ln (A+B+\lambda)-\ln \lambda \\
= & \int_{0}^{\infty} \frac{1}{s+\lambda}(A+B+s+\lambda)^{-1} \\
& \times\left[A(B+s+\lambda)^{-1} B A+B(A+s+\lambda)^{-1} A B\right](A+B+s+\lambda)^{-1} d s \\
& +\int_{0}^{\infty} \frac{1}{s+\lambda}(A+B+s+\lambda)^{-1}(B A+A B)(A+B+s+\lambda)^{-1} d s
\end{aligned}
$$

Proof. We have, by (1.4), that

$$
\begin{aligned}
\ln (T+\lambda) & =\int_{0}^{\infty} \frac{1}{(s+1)}(T+\lambda-1)(s+T+\lambda)^{-1} d s \\
& =\int_{0}^{\infty} \frac{1}{(s+1)}(T+\lambda+s-1-s)(s+T+\lambda)^{-1} d s \\
& =\int_{0}^{\infty} \frac{1}{(s+1)}\left[1-(1+s)(s+T+\lambda)^{-1}\right] d s \\
& =\int_{0}^{\infty}\left[\frac{1}{s+1}-(s+T+\lambda)^{-1}\right] d s
\end{aligned}
$$

For $A, B>0$ and $u \geq 0$, define

$$
K_{u}:=(A+u)^{-1}+(B+u)^{-1}-(A+B+u)^{-1}
$$

and $W_{u}:=1-u K_{u}$.
Therefore

$$
\begin{align*}
& \ln (A+\lambda)+\ln (B+\lambda)-\ln (A+B+\lambda)-\ln \lambda  \tag{2.2}\\
&= \int_{0}^{\infty}\left[\frac{1}{(s+1)}-(s+A+\lambda)^{-1}\right] d s \\
&+\int_{0}^{\infty}\left[\frac{1}{(s+1)}-(s+B+\lambda)^{-1}\right] d s \\
&-\int_{0}^{\infty}\left[\frac{1}{(s+1)}-(s+A+B+\lambda)^{-1}\right] d s \\
&-\int_{0}^{\infty}\left[\frac{1}{(s+1)}-(s+\lambda)^{-1}\right] d s \\
&= \int_{0}^{\infty}\left[(s+A+B+\lambda)^{-1}+(s+\lambda)^{-1}\right. \\
&\left.-(s+A+\lambda)^{-1}-(s+B+\lambda)^{-1}\right] d s \\
&= \int_{0}^{\infty}\left[(s+\lambda)^{-1}-K_{s+\lambda}\right] d s=\int_{0}^{\infty}\left(\frac{1}{s+\lambda}-K_{s+\lambda}\right) d s \\
&= \int_{0}^{\infty} \frac{1}{s+\lambda}\left[1-(s+\lambda) K_{s+\lambda}\right] d s=\int_{0}^{\infty} \frac{1}{s+\lambda} W_{s+\lambda} d s
\end{align*}
$$

We have successively

$$
\begin{aligned}
& (A+B+\lambda) W_{\lambda}(A+B+\lambda) \\
= & (A+B+\lambda)\left(1-\lambda K_{\lambda}\right)(A+B+\lambda) \\
= & (A+B+\lambda)^{2}-\lambda(A+B+\lambda) K_{\lambda}(A+B+\lambda) \\
= & (A+B+\lambda)(A+B+\lambda) \\
& -\lambda\left[B(A+\lambda)^{-1} B+A(B+\lambda)^{-1} A+2(A+B)+\lambda\right] \\
= & A^{2}+B A+\lambda A+A B+B^{2}+\lambda B+\lambda A+\lambda B+\lambda^{2} \\
& -\lambda B(A+\lambda)^{-1} B-\lambda A(B+\lambda)^{-1} A-2 \lambda(A+B)-\lambda^{2} \\
= & A^{2}+B^{2}+B A+A B-\lambda B(A+\lambda)^{-1} B-\lambda A(B+\lambda)^{-1} A \\
= & A(B+\lambda)^{-1}(B+\lambda) A-\lambda A(B+\lambda)^{-1} A \\
& +B(A+\lambda)^{-1}(A+\lambda) B-\lambda B(A+\lambda)^{-1} B+B A+A B \\
= & A(B+\lambda)^{-1} B A+B(A+\lambda)^{-1} A B+B A+A B,
\end{aligned}
$$

therefore

$$
\begin{align*}
W_{\lambda}= & (A+B+\lambda)^{-1}\left[A(B+\lambda)^{-1} B A\right.  \tag{2.3}\\
& \left.+B(A+\lambda)^{-1} A B+B A+A B\right](A+B+\lambda)^{-1}
\end{align*}
$$

From (2.3) we obtain

$$
\begin{align*}
W_{s+\lambda}= & (A+B+s+\lambda)^{-1}\left[A(B+s+\lambda)^{-1} B A\right.  \tag{2.4}\\
& \left.+B(A+s+\lambda)^{-1} A B+B A+A B\right](A+B+s+\lambda)^{-1} \\
= & (A+B+s+\lambda)^{-1}\left[A(B+s+\lambda)^{-1} B A\right. \\
& \left.+B(A+s+\lambda)^{-1} A B\right](A+B+s+\lambda)^{-1} \\
& +(A+B+s+\lambda)^{-1}(B A+A B)(A+B+s+\lambda)^{-1}
\end{align*}
$$

On making use of $(2.2)$ and $(2.4)$ we obtain the desired result (2.1).

Theorem 2. For all $A, B>0$ we have

$$
\begin{array}{rl}
\mathcal{D} & \mathcal{L} o g(w, \mu)(A)+\mathcal{D} \mathcal{L} o g(w, \mu)(B)-\mathcal{D} \mathcal{L} o g(w, \mu)(A+B)  \tag{2.5}\\
= & \int_{0}^{\infty} w(\lambda)\left(\int_{0}^{\infty} \frac{1}{s+\lambda}(A+B+s+\lambda)^{-1}\right. \\
\quad \times\left[A(B+s+\lambda)^{-1} B A+B(A+s+\lambda)^{-1} A B\right] \\
\left.\quad \times(A+B+s+\lambda)^{-1} d s\right) d \mu(\lambda) \\
\quad+\int_{0}^{\infty} w(\lambda)\left(\int_{0}^{\infty} \frac{1}{s+\lambda}(A+B+s+\lambda)^{-1}\right. \\
\left.\quad \times(B A+A B)(A+B+s+\lambda)^{-1} d s\right) d \mu(\lambda) \\
\geq & \int_{0}^{\infty} w(\lambda)\left(\int_{0}^{\infty} \frac{1}{s+\lambda}(A+B+s+\lambda)^{-1}\right. \\
& \left.\times(B A+A B)(A+B+s+\lambda)^{-1} d s\right) d \mu(\lambda)
\end{array}
$$

If $B A+A B \geq 0$, then

$$
\begin{equation*}
\mathcal{D} \mathcal{L} \text { og }(w, \mu)(A)+\mathcal{D} \mathcal{L} \text { og }(w, \mu)(B) \geq \mathcal{D} \mathcal{L} \text { og }(w, \mu)(A+B) \tag{2.6}
\end{equation*}
$$

Proof. The identity (2.5 follows by multiplying the equality (2.1) with $w(\lambda)$ and integrating on $[0, \infty)$ over the measure $d \mu(\lambda)$.

Let $s, \lambda \geq 0$. Since $(B+s+\lambda)^{-1} B>0$ and $(A+s+\lambda)^{-1} A>0$ hence $A(B+s+\lambda)^{-1} B A>0$ and $B(A+s+\lambda)^{-1} A B>0$. Therefore

$$
A(B+s+\lambda)^{-1} B A+B(A+s+\lambda)^{-1} A B>0
$$

and by multiplying both sides by $(A+B+s+\lambda)^{-1}$ we get

$$
\begin{aligned}
& (A+B+s+\lambda)^{-1}\left[A(B+s+\lambda)^{-1} B A+B(A+s+\lambda)^{-1} A B\right] \\
& \times(A+B+s+\lambda)^{-1}>0
\end{aligned}
$$

By multiplying with $\frac{1}{s+\lambda}$ and $w(\lambda)$ and integrating twice, we obtain

$$
\begin{aligned}
& \int_{0}^{\infty} w(\lambda)\left(\int_{0}^{\infty} \frac{1}{s+\lambda}(A+B+s+\lambda)^{-1}\right. \\
& \quad \times\left[A(B+s+\lambda)^{-1} B A+B(A+s+\lambda)^{-1} A B\right] \\
& \left.\quad \times(A+B+s+\lambda)^{-1} d s\right) d \mu(\lambda) \geq 0,
\end{aligned}
$$

which proves the inequality in 2.5 .
If $B A+A B \geq 0$, then by multiplying both sides by $(A+B+s+\lambda)^{-1}$ we get

$$
(A+B+s+\lambda)^{-1}(B A+A B)(A+B+s+\lambda)^{-1} \geq 0
$$

for $s, \lambda \geq 0$ and by integration twice, we derive

$$
\begin{aligned}
& \int_{0}^{\infty} w(\lambda)\left(\int_{0}^{\infty} \frac{1}{s+\lambda}(A+B+s+\lambda)^{-1}\right. \\
& \left.\quad \times(B A+A B)(A+B+s+\lambda)^{-1} d s\right) d \mu(\lambda) \geq 0
\end{aligned}
$$

and the subadditivity property 2.6 is proved.
REmARK 1. If we write the inequality (2.6) for the transform $\mathcal{D} \mathcal{L} \operatorname{og}\left(w_{\ell^{r-1}}\right)$ we get

$$
\begin{equation*}
A^{r}+B^{r} \geq(A+B)^{r}, r \in(0,1] \tag{2.7}
\end{equation*}
$$

provided $A, B>0$ with $B A+A B \geq 0$.
If we write the inequality 2.6 for the transform $\mathcal{D} \mathcal{L} \operatorname{og}\left(w_{(\ell+1)^{-1}}\right)$ we get

$$
\frac{1}{6} \pi^{2}+\operatorname{dilog}(A+B) \geq \operatorname{dilog}(A)+\operatorname{dilog}(B)
$$

provided $A, B>0$ with $B A+A B \geq 0$.

We define the function

$$
\begin{equation*}
G_{w, \mu}(t):=\int_{0}^{\infty} w(\lambda)\left(\int_{0}^{\infty} \frac{d s}{(s+\lambda)(s+t+\lambda)^{2}}\right) d \mu(\lambda), \quad t>0 \tag{2.8}
\end{equation*}
$$

Observe that for $a, b>0$ we have

$$
\int_{0}^{\infty} \frac{d s}{(s+a)(s+b)^{2}}=\frac{\ln b-\ln a}{(b-a)^{2}}-\frac{1}{b(b-a)}
$$

This gives that

$$
\int_{0}^{\infty} \frac{d s}{(s+\lambda)(s+t+\lambda)^{2}}=\frac{\ln (t+\lambda)-\ln \lambda}{t^{2}}-\frac{1}{t(t+\lambda)}, \quad t>0
$$

Therefore

$$
\begin{align*}
G_{w, \mu}(t) & =\int_{0}^{\infty} w(\lambda)\left(\int_{0}^{\infty} \frac{1}{(s+\lambda)(s+t+\lambda)^{2}} d s\right) d \mu(\lambda)  \tag{2.9}\\
& =\int_{0}^{\infty} w(\lambda)\left(\frac{\ln (t+\lambda)-\ln \lambda}{t^{2}}-\frac{1}{t(t+\lambda)}\right) d \mu(\lambda) \\
& =\frac{1}{t^{2}} \int_{0}^{\infty} w(\lambda) \ln \left(\frac{t+\lambda}{\lambda}\right) d \mu(\lambda)-\frac{1}{t} \int_{0}^{\infty} \frac{w(\lambda)}{t+\lambda} d \mu(\lambda) \\
& =\frac{1}{t^{2}} \mathcal{D} \mathcal{L} o g(w, \mu)(t)-\frac{1}{t} \mathcal{D}(w)(t) \geq 0
\end{align*}
$$

for all $t>0$.
Corollary 1. If $A, B>0$ with $B A+A B \geq k$, where $k$ is a real number, then

$$
\begin{align*}
& \mathcal{D} \operatorname{L} o g(w, \mu)(A)+\mathcal{D} \mathcal{L} \text { og }(w, \mu)(B)-\mathcal{D} \operatorname{L} o g(w, \mu)(A+B)  \tag{2.10}\\
& \geq k(\mathcal{D} \mathcal{L} \text { og }(w, \mu)(A+B)-(A+B) \mathcal{D}(w)(t))(A+B)^{-2}
\end{align*}
$$

Proof. If $B A+A B \geq k$, then by multiplying both sides by $(A+B+s+\lambda)^{-1}$, we get

$$
\begin{aligned}
& (A+B+s+\lambda)^{-1}(B A+A B)(A+B+s+\lambda)^{-1} \\
& \geq k(A+B+s+\lambda)^{-2}
\end{aligned}
$$

for $s, \lambda \geq 0$, which by integration gives that

$$
\begin{aligned}
& \int_{0}^{\infty} w(\lambda)\left(\int_{0}^{\infty} \frac{1}{s+\lambda}(A+B+s+\lambda)^{-1}\right. \\
& \left.\quad \times(B A+A B)(A+B+s+\lambda)^{-1} d s\right) d \mu(\lambda) \\
& \geq k \int_{0}^{\infty} w(\lambda)\left(\int_{0}^{\infty} \frac{1}{s+\lambda}(A+B+s+\lambda)^{-2}\right) d \mu(\lambda)
\end{aligned}
$$

Observe that, by continuous functional calculus and by (2.8) and (2.9), we get

$$
\begin{aligned}
& \int_{0}^{\infty} w(\lambda)\left(\int_{0}^{\infty} \frac{1}{s+\lambda}(A+B+s+\lambda)^{-2}\right) d \mu(\lambda) \\
& =G_{w, \mu}(A+B) \\
& =(\mathcal{D} \mathcal{L} \operatorname{og}(w, \mu)(A+B)-(A+B) \mathcal{D}(w)(t))(A+B)^{-2}
\end{aligned}
$$

and the inequality 2.10 is proved.
REmARK 2. If $A, B>0$ with $B A+A B \geq k \geq 0$, then we have the following refinement of 2.6 )

$$
\begin{aligned}
& \mathcal{D} \mathcal{L} o g(w, \mu)(A)+\mathcal{D} \mathcal{L} o g(w, \mu)(B)-\mathcal{D} \mathcal{L} o g(w, \mu)(A+B) \\
& \geq k(\mathcal{D} \mathcal{L} o g(w, \mu)(A+B)-(A+B) \mathcal{D}(w)(t))(A+B)^{-2} \geq 0
\end{aligned}
$$

If we write the inequality $(2.10)$ for the transform $\mathcal{D} \mathcal{L} \operatorname{og}\left(w_{\ell^{r-1}}\right)$ we get for $r \in(0,1]$ that

$$
A^{r}+B^{r}-(A+B)^{r} \geq(1-r) k(A+B)^{r-2}
$$

provided $A, B>0$ with $B A+A B \geq k$. If $k \geq 0$, then we obtain the following refinement of 2.7

$$
A^{r}+B^{r}-(A+B)^{r} \geq(1-r) k(A+B)^{r-2} \geq 0
$$

## 3. Some examples via operator monotone functions

We have the following class of examples that are of interest:
Lemma 2. Assume that function $f:[0, \infty) \rightarrow \mathbb{R}$ is operator monotone in $[0, \infty)$ and has the representation (1.1), where $b \geq 0$ and $\mu$ is a positive measure on $[0, \infty)$. Then

$$
\mathcal{D} \mathcal{L} o g(\ell, \mu)(t)=F_{f}(t)-b t
$$

provided the function

$$
F_{f}(t):=\int_{0}^{t} \frac{f(s)-f(0)}{s} d s
$$

is defined for all $t \in(0, \infty)$.
Proof. From (1.1) we have

$$
\frac{f(s)-f(0)}{s}-b=\int_{0}^{\infty} \frac{\lambda}{s+\lambda} d \mu(\lambda)=\mathcal{D}(\ell, \mu)(s)
$$

where $\ell(\lambda)=\lambda, \lambda \geq 0$.
By taking the integral over $s$ on $(0, t)$, we have

$$
F_{f}(t)=\int_{0}^{t} \frac{f(s)-f(0)}{s} d s-b t=\int_{0}^{t} \mathcal{D}(\ell, \mu)(s) d s=\mathcal{D} \operatorname{L} \operatorname{og}(\ell, \mu)(t)
$$

for $t>0$, and the proposition is proved.
REmark 3. If we take $f(t)=\ln (t+a)$, for $a, t>0$, then we have

$$
F_{\ln (t+a)}(t):=\int_{0}^{t} \frac{\ln (s+a)-\ln (a)}{s} d s=\int_{0}^{t} \frac{1}{s} \ln \left(\frac{s}{a}+1\right) d s
$$

If we change the variable $u=\frac{s}{a}$, then we get

$$
\begin{aligned}
\int_{0}^{t} \frac{1}{s} \ln \left(\frac{s}{a}+1\right) d s & =\int_{0}^{t / a} \frac{1}{u a} \ln (u+1) a d u=\int_{0}^{t / a} \frac{1}{u} \ln (u+1) d u \\
& =-\operatorname{dilog}\left(\frac{t}{a}+1\right)
\end{aligned}
$$

which gives

$$
F_{\ln (t+a)}(t)=-\operatorname{dilog}\left(\frac{t}{a}+1\right), \quad t>0
$$

If $f(t)=t^{r}, r \in(0,1]$, then $F_{f}(t):=\frac{t^{r}}{r}, t>0$.
Proposition 1. Assume that function $f:[0, \infty) \rightarrow \mathbb{R}$ is operator monotone in $[0, \infty)$. If $A, B>0$ with $B A+A B \geq 0$, then

$$
\begin{equation*}
F_{f}(A)+F_{f}(B) \geq F_{f}(A+B) \tag{3.1}
\end{equation*}
$$

Proof. By Lemma 2 we have for all $A, B>0$ that

$$
\begin{aligned}
& \mathcal{D} \mathcal{L} o g(\ell, \mu)(A)+\mathcal{D} \mathcal{L} o g(\ell, \mu)(B)-\mathcal{D} \operatorname{L} \operatorname{og}(\ell, \mu)(A+B) \\
& =F_{f}(A)-b A+F_{f}(B)-b B-F_{f}(A+B)+b(A+B) \\
& =F_{f}(A)+F_{f}(B)-F_{f}(A+B)
\end{aligned}
$$

By making use of (2.6) we derive the desired result (3.1).

Proposition 2. If $A, B>0$ with $B A+A B \geq k$, where $k$ is a real number, then

$$
\begin{aligned}
& F_{f}(A)+F_{f}(B)-F_{f}(A+B) \\
& \geq k\left[F_{f}(A+B)-f(A+B)+f(0)\right](A+B)^{-2}
\end{aligned}
$$

If $k \geq 0$, then we have the refinement of (3.1)

$$
\begin{aligned}
& F_{f}(A)+F_{f}(B)-F_{f}(A+B) \\
& \geq k\left[F_{f}(A+B)-f(A+B)+f(0)\right](A+B)^{-2} \geq 0
\end{aligned}
$$

REMARK 4. If we take $f(t)=\ln (t+a)$, for $a, t>0$, then we have

$$
\begin{aligned}
& \operatorname{dilog}\left(\frac{1}{a}(A+B)+1\right)-\operatorname{dilog}\left(\frac{1}{a} A+1\right)-\operatorname{dilog}\left(\frac{1}{a} B+1\right) \\
& \geq k\left[\ln a-\operatorname{dilog}\left(\frac{1}{a}(A+B)+1\right)-\ln (A+B)\right](A+B)^{-2} \geq 0
\end{aligned}
$$

provided $A, B>0$ with $B A+A B \geq k \geq 0$.

Acknowledgments. The author would like to thank the anonymous referee for valuable suggestions that have been implemented in the final version of the paper.

## References

[1] R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics, 169, Springer-Verlag, New York, 1997.
[2] S.S. Dragomir, Operator monotonicity of an integral transform of positive operators in Hilbert spaces with applications, Preprint RGMIA Res. Rep. Coll. 23 (2020), Art. 65. Available at https://rgmia.org/papers/v23/v23a65.pdf.
[3] J.I. Fujii and Y. Seo, On parametrized operator means dominated by power ones, Sci. Math. 1 (1998), no. 3, 301-306.
[4] T. Furuta, Concrete examples of operator monotone functions obtained by an elementary method without appealing to Löwner integral representation, Linear Algebra Appl. 429 (2008), no. 5-6, 972-980.
[5] T. Furuta, Precise lower bound of $f(A)-f(B)$ for $A>B>0$ and non-constant operator monotone function $f$ on $[0, \infty)$, J. Math. Inequal. 9 (2015), no. 1, 47-52.
[6] E. Heinz, Beiträge zur Störungstheorie der Spektralzerlegung, Math. Ann. 123 (1951), 415-438.
[7] K. Löwner, Über monotone Matrixfunktionen, Math. Z. 38 (1934), no. 1, 177-216.
[8] M.S. Moslehian and H. Najafi, An extension of the Löwner-Heinz inequality, Linear Algebra Appl. 437 (2012), no. 9, 2359-2365.
[9] H. Zuo and G. Duan, Some inequalities of operator monotone functions, J. Math. Inequal. 8 (2014), no. 4, 777-781.

Mathematics, College of Engineering \& Science
Victoria University
PO Box 14428
Melbourne City, MC 8001
Australia
AND
DST-NRF Centre of Excellence in the Mathematical and Statistical Sciences
School of Computer Science \& Applied Mathematics
University of the Witwatersrand
Johannesburg
South Africa
e-mail: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir

