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A NOTE ON TWO FUNDAMENTAL
RECURSIVE SEQUENCES

REZA FARHADIAN®'| RAFAEL JAKIMCZUK

Abstract. In this note, we establish some general results for two fundamental
recursive sequences that are the basis of many well-known recursive sequences,
as the Fibonacci sequence, Lucas sequence, Pell sequence, Pell-Lucas sequence,
etc. We establish some general limit formulas, where the product of the first n
terms of these sequences appears. Furthermore, we prove some general limits
that connect these sequences to the number e(~ 2.71828...).

1. Introduction

In mathematics, a recursive sequence is a sequence in which terms are
defined using one or more previous terms which are given. There are many
recursive sequences and the most well-known of them are the following two
fundamental and primordial sequences:

0 if n=0,
(1.1) U,=<1 ifn=1, m € R,
mU,_1 + U,_o otherwise,
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and

2 if n=0,
(1.2) Vo=<(m ifn=1, m € R.
mV,_1+ V,_o otherwise,

Furthermore, sequences (1.1)) and (1.2) can be defined by the following
closed-form solutions (known as Binet style formulas), respectively:

a™ — Bn
1. n= T,
(13) U=
and
(1.4) Vo =a"+ 3",

where A = vm2 +4, a = 22 and g = 252,

Two typical examples of sequences in forms and (correspond-
ing to m = 1) are the Fibonacci and Lucas sequences, respectively. Thus,
if {F,}n>0 and {L,,}n>0 denote the Fibonacci and Lucas sequences, respec-

tively, then

0 if n =0, 2 if n=0,
F,=<1 ifn=1, L,=<1 ifn=1,
F,_ 1+ F,_o otherwise, L,_1+ L,_o otherwise.

The Binet forms for F,, and L,, are

o <”¥5>"¢—S<1-¥5>”, L <1+2¢5>”+ (1—2¢5>",

Further examples of sequences in recursive forms and are the
Pell and Pell-Lucas sequences that the first is of the recursive form and
the second is of the recursive form . These sequences are defined as follows
(for n > 0), respectively:

Pn+2:2Pn+1+Pn, PO:O’ P1:1>
Qni2 =2Qni1 +Qn, Qo =2, Q1=2.
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Thus, the following closed-form solutions (according to ([1.3|) and (1.4))) exist
for the Pell and Pell-Lucas numbers, respectively:

(1+v2)"—(1-v2)"
2V/2 ’
= (1+v2)" +(1-v2)"

P, =

For more information about the above sequences see [I]-[6].

The aim of this note is to establish some general results for fundamental
recursive sequences and . We prove some general limit formulas,
where the product of the first n terms of sequences ( and appears.
We also prove some limit formulas that connect sequences and - to
the number e(~ 2.71828...).

2. Preliminaries

In this section we present some preliminary results. Note that throughout
this paper, the symbol ~ means asymptotic equivalence.

LEMMA 2.1. If {U,}n>0 is a sequence in recursive form (1.1)) correspond-
ing to m > 0, then

an

2.1 L~
(2.1 U~ 5

(n — o),

and if {V,}n>o0 is a sequence in recursive form (1.2)), then
Vi ~a” (n — ).

PROOF. Use identities (|1.3)), (1.4), and also consider the fact that if m > 0,

m+vm2+4
2

then o = > 1. The lemma is proved. O

LEMMA 2.2. For a>1 and s > 1, the series
_ )z 41
> s (14 5

is absolutely convergent.
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PRrROOF. By simple calculations we have the following inequalities:

(2.2) log(l14+2) <=z (x >0),

(2.3) —log(l —z) < 1# 0<z<1).
We have also the following well-known geometric power series:

= 1
2.4 k=1 2= < 1.
(2.4) S +z+2%+ - |z]

1 —
k=0
Inequality (2.2]) and identity (2.4) give

1 > 1 1\ 1
Zlog<1+a2is)<2a2p<2az Z<a> =1-

1
i odd i odd = =0 o}

Therefore the series of positive terms », .. log (1 —|— 21 ), where the sum
runs over all odd numbers i, converges. Inequality (2.3 gives

1 oo 1 oo oo
Z —log<1—ams><2—log<l—ai><zl_ Zal

i even =1 =1

where the series >~ 13 . —7—7 converges, since if 7 is sufficiently large we have

1 1 (1)
, <——_=2(=) .
at—1 al_% leY

. oy 1
Therefore the series of positive terms » , _,.,, —log (1 — W)’ where the sum
runs over all even numbers i, also converges. Now, we have

05 S (14 L)

= Z —log<1—a;5)+Zlog<1+aiﬁ),

i even i odd

where the two series in the right hand side of (| we have proved are con-

vergent. Therefore the series >~ log (1 + &= 1) 5+1) is absolutely convergent.

The lemma is proved. [l
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3. Main results

We start this section with the following theorem.

THEOREM 3.1. Let {U,},>0 be a sequence in recursive form (L.1) corre-
sponding to m > 1. Then for any s € N the following limit holds:

(3.1) lim ""\Uy:Uss ... Uy = “Wav.

n— oo

PROOF. For a sequence in recursive form ([1.1]), we have (see (1.3)))

g (mREEE) (noyprE)

a
ii: pu—
A m? +4

A simple computation shows that

m—\/m2—|—4_ —1

2 e vm € R.
2
Therefore,
o' = (=3)" 1 (DTN ol (=)
Ui= A :A<a+ at >:A<1+ a? >
Hence,
-1 i+1
(3.2) logU; =iloga +log A~ + log <1+ ( g )
67 1
Consequently, for any s € N, we have
__ ;s —1 (_1)2’3—‘,-1

(3.3) logU;s = i°loga + log A™" + log (1 + )

We know that if m > 0, then o = m+Ym=+4 V2m2+4 > 1. Since z°log a (with s € N
and a > 1) is strictly increasing and positive in the interval [1,00), we find
that

(3.4) Zis loga = / z®log a dz + O(n®log o)
i=1 1

(o1 — 1) st
0w~y 5] -
sr1 st Oiloga) =7

log a + o(n**1).
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Hence, (3.3)), (3.4), and Lemma [2.2| give
ns+1 ].
log \/ U]_SUQS ce . Uns = ﬁ <10g Uls + log U25 —|— .. —|— log Uns>
nS

1 [ nstt e (1) +! 541
= ns+1<s+1 log o + nlog A —l—;log <1—|— a2i5> +o(n ))

1
=311 log o + o(1).

This completes the proof. O
REMARK 3.2. By a proof similar to the proof of Theorem it can be

shown that relation (3.1]) holds for a sequence {V,,},>¢ in recursive form (1.2)
corresponding to m > 1.

For the sequence {F),},>¢ of Fibonacci numbers we have (by (L.3)) o =

1+—2\/g. The algebraic number % is called the golden ratio and is usually
denoted by the Greek letter ¢ (phi). It is well-known that the ratio of two
consecutive Fibonacci numbers tends to the golden ratio, i.e.,

. Fn
11m

n—oo n

The golden ratio ¢, can also be expressed exactly by the following infinite
series of continued fractions and that of nested square roots (see, for exam-

ple, [8]):

p=1+
1+
1+

1
1+...

and

@:\/1+\/1+\/1+m.

Moreover, if p(z) denotes the counting function of the Fibonacci numbers,
i.e., the number of F,, not exceeding x, then (see [3])

lim “/p(1) + p(2) + - + p(n) = ¢.

n—oo
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Here, the following example gives a new expansion of the golden ratio (.

ExXAMPLE 3.3. The Fibonacci sequence {F),},>¢ is of the recursive form
(1.1) corresponding to m = 1. Hence, by Theorem the following limit
holds:

lim "\/FieFpe ... Fpe = /g,  VYseN,

n—o0

In particular, if s = 1,2, and 3, we have respectively,

lim FF,... F, =\/p,

n—oo
lim "/ Fy...Fp= Yo,
n—oo

lim /FiFy...Fps= {p.
n—oo

THEOREM 3.4. If {Up}n>0 is a sequence in recursive form (1.1)) corre-
sponding to m > 1, then

(3 5) lim \n/UlUQ...Un _ g
’ n— o0 \/U7n \/ ’

and if {Vy,}n>0 is a sequence in recursive form (1.2) corresponding to m > 1,
then

yWve. ..V,
(3.6) lim L2 T g
n—00 V'V
PROOF. We first prove (3.5)). For a sequence in recursive form (1.1)) we
have (see (3.2))

. (-1
logU; =iloga —log A +log | 1+ ——5— .
o (2

Hence,

n 2 n
(3.7) ZlogUi:wmga—nlogA—i—Zbg <1+

=1 =1

a2t
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By subtracting - loga from both sides of ( . then multiplying by = ~, we
obtain

1 - 1z+1
(3.8) n;logUi—Zl flogoz—logA—i— ZIOg<1+()z)-

=1

Now, we take the exponential of both sides of (3.8) to obtain

(3.9) W:\fuj(”(_;“))

Taking the limit of (3.9) as n — oo we get

. 1
. YO0, U, a = (1) 1\ \ "

n— oo

We know that for any recursive sequence of the form (|1.1)) or (1.2]) correspond-

m++vm2+4
2

ing to m > 0 we have a = > 1, consequently by Lemma the

series
o0 (_1)z‘+1
>otox (14 55
i=1

(1)

converges absolutely, hence, = ZZ 1 log ( + ) tends to zero as n — oo,

consequently

(3.11) (ﬁ( a;j“))*
1

Hence, (3.10)) and (3.11) give
YU Us ... U, \/a

12 1i - =Y
(3.12) A ———== A

Combining the property U,, ~ % (see (2.1])) with (3.12), this completes the
proof of (3.5). For a sequence {V,},>0 in recursive form ([1.2)) the proof of
relation (3.6 is the same as above and easier. The theorem is proved. O
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Next, we prove some limit formulas that connect sequences in recursive

forms (1.1]) and (1.2) to the number e.

THEOREM 3.5. Let {U,}n>0 be a sequence in recursive form (L.1) corre-
sponding to m > 0. If v,s € N and r € NU{0} are such that r < s, then

l vN—-+s " v
(3.13) lim log Uvn+s — es—r,
n—oo \ log Uyn+r

PrROOF. We have (see (3.2)))

-1 n+1
logU,, = nloga—i—logA_l + log (1 4 ()>

a2n
_1\yn+1
. R log A~ log (14+ 10 )
Therefore if we put, for sake of simplicity, ¢, = Toz o —c=
-1, ST _yn+1
loigAa (since we have a = w > 1 for m > 0, hence log (1+( ;gn ) —

0 as n — 00), then

_1\vn+s+1 n
(1og Uvn+s>" _ <<vn +5)loga +log A" +log (1 + ”()))

log Upn4r (vn +r)loga +log A=1 + log (1 + %)

( S—rT >n (1+ vi;;i—;> s—r 65 s—r
1+ :

s — e v =€ v
vn + T (1 _|_ Cvn+r)
vn+r

in fact, it is well-known that if the sequence a,, — co, then

1"
lim (1 + ) =e,
n—00 an

£
v

[

hence,
vn+s ﬁ‘%}n{»s
n Cyn+ts
Con+s 1 £
14— = 1+ —— —ev,
(i) ( >
analogously the other limit. This completes the proof. O

REMARK 3.6. By a proof similar to the proof of Theorem [3.5] it can be
shown that relation (3.13]) holds for a sequence {V,,},>0 in recursive form
(1.2) corresponding to m > 0.
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ExXAMPLE 3.7. The Fibonacci sequence {F), },>0 and the Lucas sequence
{Ln}n>0 are of the recursive forms (1.1) and (1.2)) corresponding to m = 1,
respectively. Hence, by Theorem and Remark if v =2,s5s =3, and

r =1, then
. log Fonis\" . log Lants\"
lim T = lim T = e
n—oo \ log Fb, 41 n—oo \ log Loy, 41
Here, we shall recall the well-known prime number theorem (PNT'), which

states that the n-th prime number p, is asymptotically equivalent to nlnn
(i.e., pn ~nlnn). We use the PNT to prove the next theorem.

THEOREM 3.8. Let {U,}n>0 be a sequence in recursive form (L.1)) corre-
sponding to m = 1. Then

(3.14) lim “V/UYUY . Ut =,

n— oo
where ¢, = P, that is, the U,y1-th prime number.
n—+1
PRrROOF. The function Inz is continuous on the interval [U,,, Uy+1] for all

n € N. By the integral mean value theorem, we have fgn"“ Inz dr = (Upy1 —
U,)Inc=U,_1Inc for some ¢ with U,, < ¢ < Uy,4+1. Hence
Upni1
U,-1InU, < / Inhxde <U,-11InU,4.
Un

Since InU,,+1 ~ InU,, (by Lemma, we have

Un
fUn Tz dr  InU, .,

1 1
S UpmU, © WU,
that is,
Upt1
(3.15) Un-1InU, ~ / Inz dr.
Un

Now, let us recall the well-known proposition (see [7, page 332]) that states
for two series of positive terms > .~ a; and > .=, b, if Yoo b; diverges and
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a; ~ b;, then 7" a; ~ > | b;. Using this fact and by use of (3.15)), we have
(use also PNT),

n n Ui+1 Un+1
ZU-laniNZ/ Inx dx:/ Inz dx
i=1 i=1 7 Ui Uy

~Upt1InUpyr ~p, -
n+1

This gives

Z?:l Un—l ln Uz N

Up+1

1.

This completes the proof. ([

REMARK 3.9. By a proof similar to the proof of Theorem [3.8] it can be
shown that relation (3.14]) holds for a sequence {V,,},>0 in recursive form

(1.2) corresponding to m = 1.

EXAMPLE 3.10. The Lucas sequence {L,, },> is of the recursive form (|1.2)
corresponding to m = 1. Hence, by Remark we have

. bn Lo,
lim \/Lfoplr Lyt =e,
n—oo

where ¢, is the L, ;1-th prime number.
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