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TRIALITY GROUPS ASSOCIATED WITH TRIPLE
SYSTEMS AND THEIR HOMOTOPE ALGEBRAS

Noriaki Kamiya

Abstract. We introduce the notion of an (α, β, γ) triple system, which gener-
alizes the familiar generalized Jordan triple system related to a construction of
simple Lie algebras. We then discuss its realization by considering some bilin-
ear algebras and vice versa. Next, as a new concept, we study triality relations
(a triality group and a triality derivation) associated with these triple systems;
the relations are a generalization of the automorphisms and derivations of the
triple systems. Also, we provide examples of several involutive triple systems
with a tripotent element.

1. Prelude

First, we start from a triple system equipped with a triple product (or
a ternary product). The triple system V is a vector space over a field F
whose characteristic is not two with a trilinear map V ⊗ V ⊗ V → V. We
denote the trilinear product by the juxtaposition x y z ∈ V for x, y, z ∈ V . A
well-studied example is an (ε, δ) Freudenthal–Kantor triple system (hereafter
referred to an (ε, δ) FKTS) with ε and δ being either +1 or −1 ([4, 9]). See
also the references in [5, 11, 14, 19] for many earlier studies on the subject,
in particular, for nonassociative algebras, refer to [18, 21]. The (ε, δ) FKTS is
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introduced by the relations

(i) uv(xyz) = (uvx)yz + εx(vuy)z + xy(uvz),(1)

(ii) L(x, y),K(x, y) ∈ EndV defined by

L(x, y)z := xyz and K(x, y)z := xzy − δyzx,(2)

which satisfy

K(K(x, y)u, v)− L(v, u)K(x, y) + εL(u, v)K(x, y) = 0(3)

for u, v, x, y, z ∈ V .
The special case of ε = −1 for Eq. (1) without assuming Eq. (3) defines a

generalized Jordan triple system (GJTS) ([14]). Also, an (ε, δ) FKTS is called
balanced ([4]) if there exists a nonzero bilinear form (.|.) : V ⊗ V → F such
that

K(x, y) = (x|y)1V ,

for any x, y ∈ V with 1V being the identity map in EndV .
Note that if the (ε, δ) FKTS is balanced, then in view of Eq. (3) we have

K(x, y) = L(x, y)− εL(y, x) = (x|y)1V for any x, y ∈ V .
For these triple systems, it is wellknown that there is a construction of

several Lie (super)algebras associated with the triple systems and the con-
struction is a representation without using systems of roots (for example,
[4, 19]).

Second, one interesting problem for triple systems is their classification
and realizations. If the underlying field F is of characteristic 0, then such a
classification has been given in [4] for a finite-dimensional simple (ε, δ) FKTS
defined by bilinear forms. In the case of F being an algebraically closed field
of characteristic zero, Meyberg ([17]) classified another triple system that is
essentially equivalent to a simple balanced (1, 1) FKTS by a simple transfor-
mation ([4]).

Next, the realization of a triple system in terms of some bilinear algebras
becomes quite easy for some classes of triple systems when we also assume the
existence of a privileged element e ∈ V , which behaves as an analogue of the
identity element for bilinear algebras. In fact, essentially only one realization
can often exist for such systems. To illustrate this, let us consider the case of
the Jordan triple system J where we have

(i) uv(xyz) = (uvx)yz − x(vuy)z + uv(xyz),(a)

(ii) xyz = zyx,(b)
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which is a special case of ε = −1 and δ = +1 with K(x, y) = 0 in Eqs. (1) and
(2). Such a system, of course, possesses many different realizations. However,
suppose that we impose an extra ansatz of Eq. (c),

(iii) i.e., there exists a privileged element e ∈ J satisfying

(c) exe = x for any x ∈ J.

In this case, Loos ([16]) has proved the following.

Proposition 1.1. Let J be a Jordan triple system (for short, JTS) over
a field F whose characteristic is not two and three, which satisfies the extra
ansatz of Eq. (c). Then, the homotope algebra J (e) (= A) with the bilinear
product defined by

(d) x · y := xey

is a unital Jordan algebra with e being the unit element of A. Moreover, for
any x, y, z ∈ J , we have

(e) xyz := x · (y · z)− y · (x · z) + (x · y) · z.

Conversely, if A is a unital Jordan algebra with the unit element e, then the
triple product xyz given by Eq. (e) defines a Jordan triple system satisfying
the extra condition Eq. (c).

The element e satisfying Eq. (c) call a tripotent of a triple system, because
eee = e (i.e., e · e = e).

In [7] we have also proved the following proposition, which essentially
generalizes the previous one.

Proposition 1.2. Let J be a generalized Jordan triple system (for short,
GJTS) over a field F whose characteristic is not two and three possessing a
privileged element e ∈ J satisfying

(4) eex = xee = x,

for any x ∈ J . Then, the resulting homotope algebra A(≡ J (e)) defined in the
vector space J with the multiplication given by x · y = xey and with the linear
map x→ x = exe is a unital involutive noncommutative Jordan algebra (i.e.,
a flexible Jordan-admissible algebra, for a definition of the algebra, see [18])
satisfying the following additional property: Dx,y ∈ EndA, defined by

(5) Dx,y := (x, y, ·)− (y, x, ·) = (·, x, y)− (·, y, x),
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is a derivation of A, where (x, y, ·) denotes the associator (x, y, z) = (x · y) ·
z − x · (y · z). Moreover, the original triple product is expressed as

(6) xyz = x · (y · z)− y · (x · z) + (y · x) · z,

in terms of the bilinear product of A for any x , y, z ∈ A. Conversely, let
(A, ·, )̄ be a unital involutive noncommutative Jordan algebra over a field F
of characteristic not 2 satisfying the condition that Dx,y defined by Eq. (5)
is a derivation of A. Then, the triple product xyz given by Eq. (6) defines a
generalized Jordan triple system satisfying the extra relation Eq. (4).

In Section 2, for a generalization of above results, we will first discuss
a triple system V over a field F , which we call the (α, β, γ) triple system
(α, β, γ ∈ F ), defined by

(7) uv(xyz) = α(uvx)yz + βx(vuy)z + γxy(uvz),

which possesses the privileged element e ∈ V satisfying Eq. (4). For short,
then it is said to be a unital (α, β, γ) TS (see [7]).

In this paper, triple products are generally denoted by xyz, (xyz), {xyz},
and [xyz], as well as by x · y, x ◦ y, [x, y], and x ∗ y for binary products.

To end this section, we remark that the (α, β, γ) TS is intimately related
to a Lie algebra in the case of γ = 1 but to a Jordan algebra in the case
of γ = −1 for the following reason. Introducing the multiplication operator
L(x, y) given by

L(x, y)z := xyz,

Eq. (7) is rewritten as

(8) L(u, v)L(x, y)− γL(x, y)L(u, v) = αL(uvx, y) + βL(x, vuy) ,

so that the set of L(x, y) ∈ EndV defines a Lie algebra for γ = 1 and
a Jordan algebra for γ = −1 since the set L(V, V ) of all left multiplications
L(x, y) of the triple system V is a subspace of EndV . That is, if γ = 1, by
[L(x, y), L(u, v)] := L(x, y)L(u, v)−L(u, v)L(x, y) = αL(xyu, v)+βL(u, yxz),
the subspace L(V, V ) has the structure of a Lie algebra and also if γ =
−1, by {L(x, y), L(u, v)} := L(x, y)L(u, v) + L(u, v)L(x, y) = αL(uvx, y) +
βL(x, vuy), the subspace L(V, V ) has the structure of a commutative Jordan
algebra.



188 Noriaki Kamiya

Some cases of γ = −1 satisfying xyz = yxz and its super generalization
have been discussed in ([6, 19]) for the construction of some Jordan superal-
gebras. Letting x↔ u and y ↔ v in Eq. (8), it also gives

L(x, y)L(u, v)− γL(u, v)L(x, y) = αL(xyu, v) + βL(u, yxv).

Eliminating L(x, y)L(u, v) from both relations, we obtain

(1− γ2)L(u, v)L(x, y)

= αL(uvx, y) + βL(x, vuy) + αγL(xyu, v) + βγL(u, yxv).

Our triple systems in this paper excluding Section 2 will deal with the case
of γ = ±1, unless otherwise specified.

2. (α, β, γ) triple systems

In this section, we will study some properties of a unital (α, β, γ) TS so
that the triple product satisfies

(i) uv(xyz) = α(uvx)yz + βx(vuy)z + γxy(uvz),

(ii) eex = xee = x.(9)

We introduce a bilinear product x · y and a linear map x→ x by

x · y := xey,

x := exe.

We then obtain the following theorems (for the details, refer to [7]).

Theorem 2.1. Let V be a nonzero (i.e., V 6= 0) unital (α, β, γ) TS with
β 6= 0. We then have
(i) α+ β + γ = 1.
(ii) The homotope algebra A (≡ V (e)) is unital with the unit element e, i.e.,

e · x = x · e = x .

(iii) x = x with e = e.
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(iv) The original triple product in V can be expressed as

xyz =
1

β
{y · (x · z)− α(y · x) · z − γx · (y · z)}

in terms of bilinear product in A.
(v) If the constants α, β, γ satisfy the condition

(1− α)(1− γ) = 0 ,

then x→ x is an involution of A, i.e., we have

x · y = y · x .

(vi) If the constants α, β, γ satisfy

α2 + β2 + γ2 = 1 ,

then x→ x is an automorphism of A, i.e.,

x · y = x · y .

(vii) Suppose that γ 6= 1. Then,

(1− α)(β + 2γ)(y · x− x · y) = 0

holds, and also, the associator defined by

(x, y, z) := (x · y) · z − x · (y · z)

satisfies

(1− α)(x, y, z) = (1− β)(y, x, z) .

Theorem 2.2. Let V be a unital (α, β, γ) triple system such that α 6= 1,
γ2 6= 1, and β + 2γ 6= 0. Then, the associated homotope algebra A is a unital,
involutive, commutative, and associative algebra. Moreover, the triple product
is given by

(10) xyz = (x · y) · z = x · (y · z) .

Conversely, if A is an involutive, commutative, and associative algebra, then
the triple product given by Eq. (10) defines an (α, β, γ) triple system with
α+ β + γ = 1 for any α, β, γ ∈ F .
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Here, in the following theorem, for the notation [x, y] := x·y−y ·x, ∀x, y ∈
A, the relation [A, [A,A]] = 0 implies that [x, [y, z]] = 0, ∀x, y, z ∈ A.

Theorem 2.3. Let V be a unital
(
2
3 ,

2
3 ,−

1
3

)
TS over a field F whose

characteristic is not two and three. Then, the associated homotope algebra A
is a unital associative algebra satisfying [A, [A,A]] = 0 with an automorphism
x→ x of order 2. Moreover, the triple product is determined to be

(11) xyz =
1

2
(x · y + y · x) · z .

Conversely, let A be an associative algebra satisfying [A, [A,A]] = 0 with an
order-two automorphism x → x over a field F of characteristic 6= 2, 6= 3.
Then, the triple product given by Eq. (11) determines a

(
2
3 ,

2
3 ,−

1
3

)
triple

system. Furthermore, if A is unital, then the triple system is also unital (i.e.,
satisfying Eq. (9)).

3. (1, 1,−1) triple systems

Here, we first give the following theorem.

Theorem 3.1. Let V be the unital (1, 1,−1) triple system over a field
F of characteristic not 2. Then, the homotope algebra A (see Theorem 2.1)
is a unital, involutive, and alternative algebra. Moreover, the original triple
product is expressed as

(12) xyz = (x · y) · z

in terms of bilinear product of A. Conversely, if A is a unital, involutive, and
alternative algebra, then the triple product given by Eq. (12) defines a unital
(1, 1,−1) triple system.

Proposition 3.2. Let A be an involutive alternative algebra over a field
F with the bilinear product x · y and with the involutive map x → x. Then,
the triple product given by Eq. (12) defines a (1, 1,−1) TS. Moreover, if A
is unital with the unit element e, then the triple system is also unital, i.e., it
satisfies Eq. (9).
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Corollary. Let V be a (1, 1,−1) triple system over a field F of character-
istic not 2 with a symmetric, bilinear, and nondegenerate form (.|.) satisfying

(13) xxy = yxx = (x|x)y.

Then, for any element e ∈ V satisfying (e|e) = 1, V becomes a unital
(1, 1,−1) triple system. Moreover, the associated homotope algebra A is a
Hurwitz algebra (i.e., a unital composition algebra) satisfying

(x · y|x · y) = (x|x)(y|y).

Conversely, if A is a Hurwitz algebra with the unit element e, then the
triple product xyz given by Eq. (12) defines a unital (1, 1,−1) triple system
satisfying Eq. (13) .

4. (−1, 1, 1) triple systems

We give the following theorem in this section.

Theorem 4.1. Let V be a unital (−1, 1, 1) TS over a field F of char-
acteristic not 2. Then, its homotope algebra A is a unital, involutive, and
associative algebra. Moreover, it satisfies an additional constraint of

(14) [A, [A,A]] = 0.

The original triple product is now expressed as

(15) xyz = (2y · x− x · y) · z

in terms of bilinear product of A. Conversely, if A is a unital, involutive, and
associative algebra satisfying Eq. (14), then the triple product xyz given by
Eq. (15) defines a unitary (−1, 1, 1) TS.

Proposition 4.2. Let A be an involutive associative algebra. Then, the
triple product xyz given by Eq. (15) satisfies

uv(xyz) + (uvx)yz − x(vuy)z − xy(uvz) = 2[[x, y], w] · z,

with w := 2v · u − u · v. In particular, if we have [[A,A], A] = 0, then xyz
defines a (−1, 1, 1) triple system.
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5. (1,−1, 1) triple systems and structurable algebras

The case of α = γ = 1 and β = −1 is perhaps the most interesting case
since the equations (1 − α)(x, y, z) = (1 − β)(y, x, z) and (1 − α)(β + 2γ)(y ·
x − x · y) = 0 in Section 2 need not be considered so as not to give new
constraints. However, this case has already been treated in Theorem 2.1 since
a (1,−1, 1) TS is equivalent to a generalized Jordan triple system. However,
if we modify the unital condition in the system by some additional ansatz for
a structurable algebra ([1, 7, 8]), we have the following result:

Theorem 5.1. Let V be a (−1, 1) FKTS over a field F whose character-
istic is not two and three. Suppose that V has a privileged element e ∈ V
satisfying modified unital conditions of

(i) eex = x ,(16)

(ii) exe+ 2xee = 3x(17)

for any x ∈ V . We then introduce a linear map x→ x and a bilinear product
x · y in V by

(i) x := 2x− xee ,

(ii) x · y := yex− x ye+ xey .

The resulting bilinear algebra (A, x ·y) is then a unital involutive algebra with
the unit element e and with the involution given by x→ x, i.e., x · y = y · x.
Moreover, the original triple product is expressed as

(18) xyz = (z · y) · x− (z · x) · y + (x · y) · z

in terms of the bilinear product, implying that the algebra A is structurable.
Conversely, if A is a structurable algebra with the unit element e and involu-
tion map x → x, then the triple product given by Eq. (18) defines a (−1, 1)
FKTS satisfying Eqs. (16) and (17).

Here, to make the paper as self-contained as possible, we note that the con-
tents from Section 2 to Section 5 are based on a summary of results appearing
in [4], which are mainly needed in Section 6 and 7.

For an inner structure of alternative or octonion algebras, and for a char-
acterization of structurable algebras, see [1, 7, 8, 18, 21]. On the other hand,
for the structure of a Peirce decomposition of an (ε, δ) FKTS and also for
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the characterization of the triple system as well as the structure of the alge-
bras, refer to, for example, [3, 5, 8, 14]. In a final comment of this section,
note that the balanced (1, 1)-FKTS induced from an exceptional Jordan al-
gebra is closely related to a 56 dimensional meta symplectic geometry due to
H. Freudenthal ([4, 9, 11] and the earlier references therein).

6. Main theorems

This section deals with a triple system’s variation for a triality group and
a triality derivation of nonassociative algebras with involution ([11]). That is,
as a new idea, we consider a triality relation of triple systems with involution.

To consider several triple systems, from now on, instead of (xyz), we will
often use the notations {xyz}, [xyz] with respect to the triple product (ternary
product) of triple systems.

Let (V, {−,−,−}) be a triple system with an element e and an endomor-
phism x→ x̄, equipped with x̄ = M(e, e)x = {exe} satisfying

(19) {eex} = {xee} = x and {e{xey}e} = {{eye}e{exe}}, {e{exe}e} = x

for any x, y ∈ V and also equipped with an endomorphism Dj satisfying

(20) [Dj , R(x, y)] = R(Dj+1x, y) +R(x,Dj+1y).

Hence, the element e is said to be a unit element of V , because it satisfies
{eee} = e. Here, indices j are defined by modulo 3, i.e., we denote j =
j±3 (j = 0, 1, 2) andR(x, y)z = {zxy}. Also, forDj ∈ EndV, Dj is denoted by

Dj(x) = Dj(x).

Moreover, suppose that the exponential map is well-defined, i.e., we mean that

(21a) ξj(t) = exp(t Dj) = Id + t Dj +
t2

2
(Dj)

2 + · · · ,

where t is an indeterminate variable, and t ∈ F , is well-defined to satisfy
Stone’s theorem;

(21b)
d

dt
ξj(t) = Djξj(t) = ξj(t)Dj .
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Of course, we have ξj(−t) = (ξj(t))
−1, since ξj(t)ξj(−t) = Id.

Furthermore, for these R(x, y), Dj , and ξj(t), assuming

(21c)

{
d
dtR(ξj(t)x, y) = R(Djξj(t)x, y),

d
dtR(x, ξj(t)y) = R(x,Djξj(t)y)

}
,

then we have the following theorems.

Theorem 6.1. Under the above assumptions, that is, if Dj satisfies Eq.
(20) and ξj satisfies Eqs. (21), then ξj(t) satisfies

(22) ξj(t)R(x, y)ξj(t)
−1 = R(ξj+1(t)x, ξj+1(t)y) (global triality),

where ξj(t) is induced from exp(t Dj).
Conversely, the validity of Eq. (22) with Eqs. (21) implies that of the local

triality relation Eq. (20), i.e., we have the correspondence of local triality for
Dj ↔ global triality for ξj. This means that

ξj = exp Dj =

∞∑
k=0

(Dj)
k

k!
.

Proof. Set G(t) = ξj(−t)R(ξj+1(t)x, ξj+1(t)y)ξj(t). In view of Eqs. (21),
we have

d

dt
(G(t)) = ξj(−t)(−DjR(ξj+1(t)x, ξj+1(t)y)ξj(t)

+ ξj(−t)(R(Dj+1ξj+1(t)x, ξj+1(t)y)ξj(t)

+ ξj(−t)(R(ξj+1(t)x,Dj+1ξj+1(t)y)ξj(t)

+ ξj(−t)(R(ξj+1(t)x, ξj+1(t)y)Djξj(t)

= ξj(−t){−DjR(ξj+1(t)x, ξj+1(t)y) +R(Dj+1ξj+1(t)x, ξj+1(t)y

+R(ξj+1(t)x,Dj+1ξj+1(t)y) +R(ξj+1(t)x, ξj+1(t)y)Dj}ξj(t).

By changing ξj+1(t)x→ x and ξj+1(t)y → y, we obtain

ξ(−t){−DjR(x, y) +R(Dj+1x, y) +R(x,Dj+1y) +R(x, y)Dj}ξj(t) = 0

through the assumption of Eq. (20).
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From the fact that F (t) is independent for the value of t, we have

G(t) = G(0) = R(x, y).

By using ξj(t)ξj(−t) = Id, we obtain

ξj(t)R(x, y)ξj(−t) = R(ξj+1(t)x, ξj+1(t)y).

Conversely, if ξj(t)R(x, y)ξj(−t) = R(ξj+1(t)x, ξj+1(t)y) holds, then we
have

G(t) = ξj(−t)R(ξj+1(t)x, ξj+1(t)y)ξj(t) = R(x, y).

Therefore, we get

d

dt
G(t) = 0.

From this and the fact that

ξj(t)(
d

dt
G(t))ξj(−t) = −[Dj , R(x, y)] +R(Dj+1x, y) +R(x,Dj+1y),

we obtain Eq. (20), i.e.,

[Dj , R(x, y)] = R(Dj+1x, y) +R(x,Dj+1y).

This completes the proof. �

Note that if a binary product ∗ in V is defined by x ∗ y = {xey}, then
Eq. (19) implies the validity of x ∗ y = y∗x, x = x (i.e., involution). Also, from
now on, we want to use the product ∗ instead of the product · for convenience
and to use ∗ with respect to the standard product of algebras in future work.

Theorem 6.2. Under the assumption in Theorem 6.1, we have the validity

(23)
d

dt
[(exp tDj)R(x, y)(exp tDj)

−1]t=0

= [Dj , R(x, y)] (= DjR(x, y)−R(x, y)Dj).

Proof. By straightforward calculations, we can verify Eq. (23) and we
omit the proof. Note that (exp tDj)

−1 = exp(−tDj). �
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Remark. The well-definedness of the exponential map is verified if V is
a finite dimensional triple system over the real or complex number field F ,
since

exp tDj =

∞∑
n=0

1

n!
(tDj)

n

is convergent in some suitably chosen topology.
Note that ξj (resp. Dj) may be regarded as a generalization of the au-

tomorphism (resp. derivation) in triple systems and ξj is a global relation
(resp. Dj is a local relation). This ξj (resp. Dj) is said to be an element of a
triality group (resp. a triality derivation) of V .

Remark. Let A∗ with the product ∗ be an associative or alternative alge-
bra equipped with involution. Here, we denote the product by ∗ instead of · in
Section 1. We note that if the triple products are defined by {xyz} = (x∗y)∗z
as in Theorem 2.2 and Theorem 3.1, then these triple systems are (α, β, γ)
triple systems, that is, for (α, β, γ) triple systems induced from algebras with
involution, we have the following correspondence between triple systems and
the homotope algebras:

(α, β, γ) triple system (with an assumption)←→ associative algebra,

(1, 1,−1) triple system←→ alternative algebra.

Furthermore, we note the following.

Remark. Let A∗ be a commutative Jordan algebra with the product x∗y.
Then, it is well known that (A∗, (xyz)) is a Jordan triple system with respect
to the triple product

(xyz) = (x ∗ y) ∗ z + (z ∗ y) ∗ x− (z ∗ x) ∗ y.

That is, it is a (1,−1, 1) triple system with (xyz) = (zyx) (i.e., K(x, y) ≡ 0).

Remark. As we have obtained Theorem 6.1 and Theorem 6.2 for triple
systems in this paper, we may apply the Theorems 6.1 and 6.2 in this section
to (α, β, γ) triple systems and the homotope algebras with involution. For
the structurable algebra described in Section 5, we will discuss the details
of a triality relation in the future paper, but we will briefly consider such a
relation in Section 7. On the other hand, we have studied the triality relations
on nonassociative algebras with involution (for example, [8, 10, 11]).
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Hence, from these results we may obtain the concept of triality group for
a triple system as follow.

Let (V, {xyz}) be a triple system. If there exists a privileged element e ∈ V
satisfying

{eee} = e, {e{exe}e} = x

and

{e{xey}e} = {{eye}e{exe}}

for any x, y ∈ V , then the triple system V is said to be involutive. Now, we
denote x by x = M(x, y)e = {exe}.

Theorem 6.3. Let V be an involutive triple system. If we introduce a
bilinear product x ∗ y and a transformation gj ∈ EndV (j = 0, 1, 2) satisfying

x ∗ y = {xey} and gjR(e, y) = R(e, gj+1y)gj+2,

then we have

gj(x ∗ y) = (gj+2x) ∗ (gj+1y).

This implies that

gj(x · y) = (gj+1x) · (gj+2y)

with respect to the product x · y = x ∗ y, that is, gj is a triality group of the
algebra (A, ·), which we denote by A = V (e) (this is said to be a homotope
algebra induced from the triple system V ).

Proof. From the relation

gjR(e, y)x = R(e, gj+1y)gj+2x,

it follows that

gj{xey} = {gj+2xegj+1y},

and so

gj(x ∗ y) = gj+2(x) ∗ gj+1(y).

Thus, using x · y = x ∗ y, we obtain

gj(x · y) = (gj+1(x)) · (gj+2(y)). �
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Corollary. Under the assumption in Proposition 1.2 (i.e., J=V is a
GJTS with the condition Eq. (4)), if a transformation gj of J satisfies the
relation

(24) gjR(e, y) = R(e, gj+1y)gj+2,

then we have

gj(x · y) = (gj+1x) · (gj+2y).

This Corollary implies that gj is a triality group of the homotope algebra
A = J (e) (= V (e)) with respect to the product x ·y = x ∗ y. Indeed, this GJTS
J in Proposition 1.2 satisfies the property of involutive triple system, since
x = {exe} and

x ∗ y = y ∗ x = {e{xey}e} = x · y.

Furthermore, note that the homotope algebra A is a noncommutative Jordan
algebra with involution and so this gj is a triality group of the algebra.

Example of Theorem 6.3 (the homotope algebra of a Jordan triple
system). Note that if J is a JTS with an element e of the Eq. (c) in Section 1,
then (J (e), ·) is an involutive commutative Jordan algebra with respect to the
bilinear product x ∗ y defined by {xey} and so the above transformation gj
(satisfying Eq. (24)) is a triality group of the Jordan algebra (i.e., homotope
algebra) A = J (e) induced from the JTS J. In this case, we have

x · y = x ∗ y = x ∗ y = y ∗ x = y · x (commutative property),

because the involution is the identity map.

Case of a field of complex numbers C From the result of Section 3,
by means of the product x ∗ y (x ∗ y is the standard product and x is the
conjugation of C), we note that {xyz} = (x ∗ y) ∗ z is a (1, 1,−1) triple
system, since the complex number is associative (a special case of alternative)
with respect to the standard product ∗. That is, from x · y = x ∗ y, we obtain
{xey} = x ∗ y = x · y, where e denotes the identity element of C. Hence
in the new product x · y, for j = 0, 1, 2, by straightforward calculation (by
gj(e) = gj+1(e) · gj+2(e)), we have the relation

gj(x · y) = (gj+1x) · (gj+2y), such that gj = e
√
−1θj , θ0 + θ1 + θ2 = 0.
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Hence we get Dj =
√
−1θj . That is, these imply that gj is the triality group

and Dj is the triality derivation of C with respect to the new product x · y.
In particular, for endomorphisms g = e

2
3π
√
−1 and D = 2

3π
√
−1 of C, we

can easily see that g(x · y) = g(x) · g(y) (automorphism) and D(x · y) =
D(x) · y + x ·D(y) (derivation) respectively, where the period is 2π.

Case of a matrix algebra For triality relations of matrix algebras, we
note that matrix algebras M(n, F ) (n × n matrix sets) equipped with the
standard product x ∗ y are associative and that Theorem C can be applied by
means of the triple product

{xyz} = (x ∗t y) ∗ z,

where ty denotes the transpose matrix of y ∈M(n, F ).
Since the involution is defined by the transpose matrix, the relation t(x ∗

y) =t y ∗t x holds (i.e., x ∗ y = y ∗ x). Note that x ∗ y = {xIdny}.
More precisely, for aj ∈ O(n, F ) = {aj ∈ M(n, F )| aj ∗t aj = Idn} (j =

0, 1, 2) (orthogonal matrix set), we define an endomorphism gj(a) by

gj(a)x = aj+1 ∗ x ∗t aj+2,

then by straightforward calculation, we have

gj(a)(x ∗ y) = (gj+2(a)x) ∗ (gj+1(a)y).

By the new product x · y = x ∗ y, this relation means that

gj(a)(x · y) = (gj+1(a)x) · (gj+2(a)y)

(triality group of the matrix algebra with respect to the product ·),

where x · y =t (x ∗ y) (new product induced from x ∗ y). This gj(a) (denoted
by gj) satisfies the relation of the triple system;

gjR(x, y) = R(gj+1x, gj+1y)gj .

For the triality relations of matrix algebras with respect to the binary
product ∗, refer to [10, 11], however this case will be discussed also in Section 7,
to the reason of an interesting example of a linear Lie group related to the
triple system and the corresponding Lie algebra.
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Theorem 6.4. Let (V, {xyz}) be involutive and gj be a transformation of
the triple system V satisfying

gjR(x, y) = R(gj+1x, gj+1y)gj (j = 0, 1, 2)

and

(25) gj+2 = R(e, gj+1e)gj

for any x, y ∈ V. (It is said to be a triality group of a triple system.)
If the bilinear product x ∗ y defined by x ∗ y = {xey} satisfies the relation

(x ∗ y) ∗ z = {xyz},

then this gj is a triality group of the homotope algebra A = V (e) with respect
to the product x · y = x ∗ y and with involution, that is,

x = x, x · y = x ∗ y = y ∗ x = y · x.

Proof. From the assumption of

gj{xyz} = {gjxgj+1ygj+1z},

it follows that

gj{xez} = {gjxgj+1egj+1z}

= (gjx ∗ gj+1e) ∗ gj+1z

= gj+2x ∗ gj+1z

in view of the two relations

{xyz} = (x ∗ y) ∗ z and gj+2 = R(e, gj+1e)gj .

Thus, we obtain

gj(x ∗ y) = gj+2x ∗ gj+1y

and so

gj(x · y) = (gj+1x) · (gj+2y)

since x · y = x ∗ y and gjx = gjx. This completes the proof. �

For the Eq. (25), if there is an element e satisfying e ∗ x = x ∗ e = x, for
any x ∈ V , then the condition Eq. (25) does not need.
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Remark. These theorems may be applied to (α, β, γ) triple systems.

Example of Theorem 6.4. Theorem 3.1 can be applied to the triality
group associated with Theorem 6.4.

From Section 1, we recall the notation of a balanced (−1,−1) FKTS as
follows. Such a FKTS is said to be balanced if it satisfies the relationK(x, y) =
(x|y)1V with a symmetric bilinear form (x|y) ∈ F.

An algebra A over a field F is said to be quadratic if it is unital and for
any x ∈ A, 1, x, x · x are linearly dependent.

Applying the concept of these triple systems and algebras, by Theorem
4.4 in [2], we have the following:

Lemma 6.5. Let (V, (xyz)) be a balanced (−1,−1) FKTS over a field F
and let e ∈ V such that (e|e) 6= 0. Define a bilinear product on V by

x · y =
1

(e|e)
(exy)

for any x, y ∈ V , then (V, ·) is a quadratic algebra. Moreover, the original
triple product on V is related to the binary product by

(xyz) = (e|e)((x̄ · y) · z − x̄ · (y · z) + y · (x̄ · z))

for any x, y ∈ V , where x→ x̄ denotes the standard involution of the quadratic
algebra.

Applying Lemma 6.5 in results of these triple system and algebra in this
section, we have the following.

Theorem 6.6. Under the assumption in Lemma 6.5, then (V, {xyz}) is a
generalized Jordan triple system (i.e., a (1,−1, 1) triple system) with respect to
the new product defined by {xyz} = (yxz), and the homotope algebra (V (e), x∗
y) is a noncommutative Jordan algebra with respect to the binary product
x ∗ y = {xey} = 1

(e|e)(exy) = x · y. Furthermore, (V, {xyz}) is an involutive
triple system equipped with x̄ = {exe}.

Proof. In the relations of a balanced (−1,−1) FKTS;

(ab(xyz)) = ((abx)yz)− (x(bay)z) + (xy(abz)), and

(xzy) + (yzx) = (xyz) + (yxz) = (x|y)z,
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changing the notation of triple product by {xyz} = (yxz), we obtain the
relation of GJTS;

{ab{xyz}} = {{abx}yz} − {x{bay}z}+ {xy{abz}}.

Also, by straightforward calculations, for the triple product {xyz}, we obtain
the involutive relations

{e{exe}e} = x and {e{xey}e} = {{eye}e{exe}}.

That is, for the homotope algebra V (e) induced from V , these relations imply
that ¯̄x = x and x ∗ y = ȳ ∗ x̄. �

These results mean that the theory of triality relations in triple systems
may be applied to the balanced (−1,−1) FKTS and the homotope algebra
(i.e., a quadratic algebra).

As a generalization of automorphisms and derivations for involutive triple
systems V , these theorems in this section lead us to the following concept:

(]) (triality group) Trig V := {(g0, g1, g2) ∈ EpiV |

gjR(x, y) = R(gj+1x, gj+1y)gj , ∀x, y ∈ V },

(]]) (triality derivation) Trid V := {(D0, D1, D2) ∈ EpiV |

DjR(x, y) = R(Dj+1x, y) +R(x,Dj+1y) +R(x, y)Dj , ∀x, y ∈ V },

where EpiV denotes the set of epimorphisms of V .
Note that if g0 = g1 = g2 (resp. D0 = D1 = D2), then its concept is an

automorphism (resp. a derivation) of the triple system.
Of course, for the simplest case of V = F (a field), we have TrigF ' K4

(Klein’s four group). Indeed, from (Id,−Id,−Id), (−Id, Id,−Id), (−Id,−Id,
Id), (Id, Id, Id) ∈ TrigF , it follows that (Id)(x · y) = ((−Id)x) · ((−Id)y),
where the product is denoted by · and the conjugation by the identity map.

As in nonassociative algebras with involution ([11]), in view of straightfor-
ward calculation, if the triple system is involutive, then we obtain the follow-
ing.

(]]]) S4 (symmetric group of order 4) is an invariant group of Trig V .
Indeed, we can show that Trig V is invariant under actions of the alterna-

tive group A4 as follows. Let φ ∈ End(Trig(V )) be given by

φ : g1 → g2 → g3 → g1,
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which satisfies φ3 = Id and leaves (]) invariant. Thus, Trig V is invariant
under actions of the cyclic group Z3 generated by φ. We next introduce τµ ∈
End(Trig(V )) for µ = 1, 2, 3 by

τ1 : g1 → g1, g2 → −g2, g3 → −g3

τ2 : g1 → −g1, g2 → g2, g3 → −g3

τ3 : g1 → −g1, g2 → −g2, g3 → g3,

which leaves (]) invariant. The group generated by < φ, τµ >gen is the alter-
native group A4 (alternative group of order 4).

Moreover, the endomorphism θ ∈ End(Trig(V )) defined by

θ : g1 → g2, g2 → g1, g3 → g3

also yields an invariant operation of Trig V and so leaves (]) invariant.
Therefore, the group generated by < φ, τµ, θ >gen gives the symmetric

group S4. This shows that S4 is an invariant group of Trig V . That is, (]]]) is
verified.

7. Miscellaneous examples

In this section, to consider triality relations of algebras associated with
triple systems, we give several examples of a structurable algebra and a non-
commutative Jordan algebra.

First, following [9], we recall the notation of a triple system V :

S(x, y)z = (L(x, y) + εL(y, x))z, A(x, y)z = (L(x, y)− εL(y, x))z,

K(x, y)z = (xzy)− δ(yzx),

where ε = ±1, δ = ±1, and x, y, z ∈ V.
Here, for the triple system V satisfying Eq. (1), we remark that S(x, y) is

a derivation of V and A(x, y) is an anti-derivation of V .
For a structurable algebra (V, ∗) defined by L(x, y)z = (xyz) = (x ∗ y) ∗

z + (z ∗ y) ∗ x − (z ∗ x) ∗ y with respect to (w.r.t.) the triple product of Eq.
(18) (where the binary product notation is changed by x ∗ y), if we introduce
the two new triple products

[xyz]+ =
1

2
(S(x, y) +K(x, y))z, [xyz]− =

1

2
((A(x, y) +K(x, y))z),
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then by straightforward calculation, we have several interesting structures as
follows:

L(x, y)z = (xyz) = [xyz]+ + [xyz]−,

[xyz]+ is a Lie triple system,

[xyz]− = (x ∗ ȳ) ∗ z

for any x, y, z ∈ V .
Note that the structurable algebra is a special case of ε = −1 and δ = +1

on the (ε, δ) FKTS by Theorem 5.1 in Section 5.
Furthermore, we use the following notation:
A = {A(x, y)}span, K = {K(x, y)}span, S = {S(x, y)}span for all x, y ∈

V , [X,Y ] = XY − Y X, [XY Z] = [Z, [X,Y ]], {XY Z} = XY Z + ZY X for
all X,Y, Z ∈ EndV.

Hence, we can verify the validity of

[XY Z] = {Y XZ} − {XY Z}.

Under the above notation, for the structurable algebra, we have the follow-
ing ([9]):

A := {A(x, y)}span is a Lie triple system

w.r.t. the triple product [XY Z] ∈ A for any X,Y, Z ∈ A,

K := {K(x, y)}span is a Lie triple system

w.r.t. the triple product [XY Z] ∈ K for any X,Y, Z ∈ K,

and also K is a Jordan triple system

w.r.t. the triple product {XY Z} ∈ K for any X,Y, Z ∈ K,

S := {S(x, y)}span is a Lie triple system

w.r.t. the triple product [XY Z] ∈ S for any X,Y, Z ∈ S.

Remark. The structurable algebra is a (−1, 1) FKTS w.r.t. the triple
product defined by Eq. (18) in Section 5, and there is an unit element e
satisfying e ∗ x = x ∗ e = x for all x ∈ V , but it is not a (1,−1, 1) TS, because
(xee) 6= x.
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Remark. The homotope algebra (K(Id), {X,Y }) induced from the Jordan
triple system (K, {XY Z}) is a Jordan algebra w.r.t. the product {X,Y } =
XY + Y X, X, Y ∈ EndV since {XIdY } = XY + Y X = {X,Y }.

As these subsets A, K, S into EndV have the structure of several triple
systems, it seems that there is a triality relation associated with the triple
systems, however the details will be discussed in a future paper. For the triple
product [xyz]− only, we consider now about the triality relation.

First, for the triple system [xyz]− induced from the structurable algebra,
we have

[xyz]− = (x ∗ y) ∗ z is an involutive triple system.

Indeed, by means of the involution x ∗ y = y ∗ x in the structurable algebra,
we have [exe]− = x and [e[xey]−e]− = [[eye]−e[exe]−]−. Thus, we can apply
Theorem C to this involutive triple system (V, [xyz]−) associated with the
structurable algebra (V, x ∗ y).

Second, let J be a generalized Jordan triple system. Then from Proposition
1.2 in Section 1, we can obtain V = J (e) with the product x ·y (= xey), called
the homotope algebra associated with a generalized Jordan triple system J ,
and so the algebra V is a noncommutative Jordan algebra equipped with unit
element e ∈ V , i.e., e · x = x · e = x for any element x ∈ V .

If we introduce a new binary product defined by

x ◦ y =
1

2
(x · y + y · x),

then (V, x ◦ y) is a commutative Jordan algebra with an identity involution
x̄ = x satisfying

x ◦ y = x ◦ y = ȳ ◦ x̄ = y ◦ x, and ¯̄x = x.

Furthermore, setting

{xyz} = (x ◦ y) ◦ z + x ◦ (y ◦ z)− y ◦ (x ◦ z) and

[xyz]− =
1

2
({xyz}+ {yxz}),

then with respect to the triple product, we have

[xyz]− = (x ◦ y) ◦ z.
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Hence, (V, [xyz]−) is a triple system with [xyz]− = [yxz]−, and putting
l(x, y)z = [xyz]−, then l(x, y) is an anti-derivation of (V, [xyz]−) and also
this product [xyz]− is an involutive triple system with [xey]− = x ◦ y.

On the other hand, the above triple system (V, {xyz}) is a (1,−1, 1) triple
system with {xyz} = {zyx} (that is, a JTS). Moreover it is involutive, because
it is clear that the triple system V inherits the properties, x̄ = {exe} = x and
{e{xey}e} = x ◦ y = x ◦ y = y ◦ x = ȳ ◦ x̄ = {{eye}e{exe}}.

Following [14], next we recall a (−1, 1) Freudenthal–Kantor triple system
(or GJTS of second order) V defined by the triple product

{xyz} = x ∗t y ∗ z + z ∗t y ∗ x− y ∗t x ∗ z, for any x, y, z ∈Mat(n, k;F ),

where tx denotes the transpose of x and the product of right hand is expressed
in terms of the standard matrix product ∗.

Then, by straightforward calculation, this triple system (V, [xyz]−) has the
structure of an involutive triple system with respect to the product

(26) [xyz]− =
1

2
(A(z, y)x+K(z, y)x) = x ∗t y ∗ z,

where A(x, y)z = {xyz}+ {yxz}, and K(x, y)z = {xzy} − {yzx} for the case
of ε = −1, δ = 1.

Thus, for the matrix algebra M(n, n;F ), M(n, n;F ) (= V (Idn,n)) is an
associative algebra (homotope algebra) induced from Eq. (26) with respect to
the binary product

x ◦ y = [xIdn,ny]− = x(tIdn,n)y = x ∗ y (product of matrix algebra)

equipped with an involution x ∗ y =t (x ∗ y) =t y ∗t x = y ∗ x.
This matrix algebra is the homotope algebra in a special case of (−1, 1)

FKTS, because the involution is the transpose.
These examples mean that there are involutive triple systems in view of

use above deformations from well-known triple systems (for example, the JTS,
the GJTS, the (ε, δ) FKTS, and the structurable algebra).

Remark. Triple systems and algebras given above can be applied to the
theory of triality relations described in Section 6.

Examples of triple systems that are not involutive
a) Let V be a vector space with a bilinear form ( | ). Then, (V, {xyz}) is

not involutive with respect to the triple product {xyz} = (y|z)x, but if
(x|y) = −ε(y|x), where ε = ±1 and K(x, y)z = {xzy} − δ{yzx} (the
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case of δ = ±1), then, it is a (ε, δ) FKTS. Furthermore, if there is an
endomorphism gj satisfying (gjx|gjy) = (x|y) (j = 0, 1, 2), then we have

gj{xyz} = {gjxgj+1ygj+1z}, i.e., gjR(x, y) = R(gj+1x, gj+1y)gj .

For example, if gj ∈ O(n, F ), then the validity of (gjx|gjy) = (x|y) holds.
b) Let V be a Lie algebra with a binary product [x, y] and an involution

x = −x. Then, (V, [xyz]) is a Lie triple system with respect to the triple
pruduct defined by

(27) [xyz] = [z, [x, y]].

Hence, if (g1, g2, g3) ∈ Trig(V, [x, y]), then we have

gjR(x, y) = R(gj+1x, gj+1y)gj , i.e., gj [xyz] = [gjxgj+1ygj+1z],

for all x, y, z ∈ V (j = 0, 1, 2).
Indeed, from the fact that gj [x, y] = [gj+1x, gj+2y] and in view of x =

−x, [x, y] = [y, x], we obtain

gj(x) = gj(x) and

gj([z, [x, y]]) = [gj+1z, gj+2[x, y]] = [gj+1z, [gjx, gj+1y]].

This implies that the triple product defined by Eq. (27) has the validity of

gjR(x, y) = R(gj+1x, gj+1y)gj .

This concept is a triality group of the Lie triple system induced from the
Lie algebra’s triality group with an involution [x, y] = [y, x].
Note that a Lie triple system is a GJTS without the tripotent element

since [xxx] = 0 for any element x.

Case of the matrix algebra (Revised) As a continuation of the triple
system V induced from the matrix algebra (see Section 6), we may provide
some additional comments associated with g = (gj , gj+1, gj+2) ∈ Trig(V, {xyz})
as follows.

For any element x of V = Mat(n, n;F ), if we set gj(a)x = aj+1 ∗ x ∗ a−1j+2,

for any aj ∈ O(n, F ) := {aj | atjaj = Idn,n, j = 0, 1, 2}, then we obtain

gj(x · y) = (gj+1x) · (gj+2y), for any x, y ∈ V (global triality relation),
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where x·y =t (x∗y), tx is the transpose of x, and x∗y is the standard product
of the matrix algebra. Hence, if we set Dj(P )x = Pj+1 ∗ x− x ∗ Pj+2, for any
Pj ∈ Alt(n, F ) := {Pj | tPj = −Pj} (alternative matrix), where Dj(P ) is
denoted by Dj , then we have

Dj(x · y) = (Dj+1x) · y + x · (Dj+2y) (local triality relation).

Indeed, by straightforward calculation, we have gj(x ·y) = aj+1∗x ∗ y∗a−1j+2 =

(gj+1x) ·(gj+2y). By means of the Cayley transformation (assuming that well-
defined), the relation (1− aj) ∗ (1 + aj)

−1 = Pj implies that

aj ∈ O(n, F ) ⇐⇒iff Pj ∈ Alt(n, F ).

Hence, fromDj(x·y) = Pj+1∗(x·y)−(x·y)∗Pj+2 = Pj+1∗(x ∗ y)−(x ∗ y)∗Pj+2

and from the fact that (Dj+1x) ·y+x ·(Dj+2y) = (Pj+2∗x) ·y−(x∗Pj) ·y+x ·
(Pj∗y)−x·(y∗Pj+1) = (Pj+2 ∗ x) ∗ y−x ∗ (y ∗ Pj+1) = Pj+1∗y∗x−y∗x∗Pj+2,
and x =t x, then we obtain the local triality relation;

Dj(x · y) = (Dj+1x) · y + x · (Dj+2y),

as a generalization of the derivation with respect to the new product x · y,
because the transpose of the matrix algebra is the involution in the product
of x · y, by x · y = (x ∗ y) =t (x ∗ y) =t y ∗t x.

8. Conclusion

• An application (toward a Chern-Simon gauge theory and a field theory) to
physics of triple systems is discussed in [12, 13].
• For a Cayley algebra (octonion algebra) and triple systems, refer to the
book [18] on mathematical physics.
• For the correspondence of Hermitian Jordan triple systems with symmetric
domains, see [20]
• For the relationship between a Lie triple system and a symmetric space,
it is useful for the book [15], in particular, for a complex structure and a
Riemannian curvature tensor related to the (ε, δ)-FKTS, see [9].
As the final comment in this section, we here emphasize why one should

study triple systems as follows:
We can construct Lie (super)algebras from triple systems and characterize

a structure of the homotope algebras associated with their triple systems. The
study of triple systems provides an important common ground for various
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branches of mathematics, not only Lie theory and Jordan theory, but also
differential geometry (symmetric and homogeneous spaces) and mathematical
physics.

Briefly summarizing about this paper, it seems that the triality relations
were first appeared in a “principle of triality” of the Lie algebra of type D4

(called to a local triality relation) (see, [21]), hence our results may be regarded
to a variation (generalization) of this principle with respect to the (α, β, γ)
triple systems and the involutive triple systems. That is, by means of terms in
triple systems, it is shown that we can represent several properties on algebras.
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