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SANDWICH TYPE RESULTS
FOR m-CONVEX REAL FUNCTIONS

TEODORO LARA, EDGAR ROSALES

Abstract. We establish necessary and sufficient conditions allowing separa-
tion of pair of real functions by an m-convex and by an me-affine function.
Some examples and a geometric interpretation of m-convexity of a function is
exhibited, as well as a Jensen’s inequality for this kind of function.

1. Introduction and preliminaries

Since apparition of sandwich type theorems of separation for real convex
functions in 1994 (|I,, Theorem 1]), a quite number of researchers have obtained
similar results for different kinds of convexity around. It is well-known that,
basically, the idea consists of establishing necessary and sufficient conditions
for a couple of given functions, under which the existence of a third function,
between them, with the kind of convexity considered. Nowadays, we have at
our disposal results in this context, strong convexity (I3, Theorem 2|); h-
convexity (|16, Theorem 3|); in the case of convexity for set-valued functions
(I8, Theorem 1]); and more recent, in the context of harmonically convex
functions, and reciprocally strongly convex functions (|2, Theorem 2.4, The-
orem 3.1]), as well as versions for the case of convexity and strong convexity
of functions defined on time scales (|8, Theorem 2.10], [9, Theorem 13]).
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For the case of m-convex functions for functions defined on the positive real
line a separation result has been established in [12]; for set-valued functions
a separation result is given in [7, Theorem 2.28]; and in [4, Theorem 4.2]
there is a result of a sandwich type as well, involving m-convexity of sets
and convexity of functions. In our present research we establish necessary and
sufficient conditions to separate a pair of real functions by a real m-convex
function defined on a convex subset D of a linear space X; at the same time we
set and prove a similar result for the case of m-affine functions. We begin by
recalling some known concepts and results; next we set our results, illustrate
with examples, and perform a geometric interpretation of m-convexity of real
functions.

DEerFINITION 1.1 ([5, 19, 20]). Let X be a real linear space and m € [0, 1].
A nonempty set D C X is called m-convex if for any x,y € D and ¢ € [0, 1]
the point tox +m(1 —t)y € D.

In [5], the incoming results are established and used afterward to prove
several statements.

LEMMA 1.2 (|5, Lemma 3.3]). A set D C X is m-convex if and only if D
coincides with the set of all m-convex combinations of elements of D (denoted
by Dy, ); these combinations are of the form Y i, m'~%it,xz;, m € (0,1),
n any natural number, 6;; is the known Delta of Kronecker function, and the
real numbers t; are nonnegative (i =1,...,n) with0 <Y  t; <1.

REMARK 1.3 (|5, Remark 3.5]). The m-convex hull of a set D C X, de-
noted by Conv,, (D), satisfies among others, the following statements:

(1) D C Convy, (D).
(2) Convy, (D) is an m~convex set of X.

THEOREM 1.4 (|5, Theorem 3.6]). If 0 # D C X, then Conv,,(D) = D},

m*

THEOREM 1.5 (|5, Theorem 3.11]). Let X be a linear space of dimension

n and D be any nonempty set of X. For all x € Conv,,(D) there exists a set
D, C D such that #(D,) <n+1 and x € Conv,,(D,).

DEFINITION 1.6 ([4, 6, 11]). Let D be an m-convex subset of a real linear
space X, and m € [0,1]. A function f: D — R is called m-convex (respectively
m-concave, m-affine) if for any x,y € D and t € [0, 1], it verifies

[tz +m(1—t)y) < tf(x) +m(l—1)f(y),

(respectively, if converse inequality or equality holds).
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REMARK 1.7. It is not difficult to check that if f is an m-convex func-
tion (m # 1), then f(0) < 0 ([II, Remark 3|), and this fact in turn implies
f(tx) <tf(x) for all z € D and t € [0,1].

At this point we are going to give geometric interpretation of m-convexity
of a real function (on the real plane). The geometric meaning of convex func-
tions is well-known. For a similar geometric interpretation of m-convexity
of a real function (on the real plane) we consider the m-convex function
f: I — R, where I is a real interval containing 0 (and therefore an m-convex
set of R ([10, Theorem 2.6])). Let 1,22 € I such that x1 # mas. The straight
line through the points (z1, f(z1)) and (mza, mf(z2)) is given by equation

mf(x2) —f(%‘l)(x_

mxg — X1

r(z) = r1) + f(21).

For any point p in the interval [min{zy, mzs}, max{z,, mas}|, there exists
t € [0,1] such that p = txy +m(1 — t)z2. So,

mf(x2) — f(

mxg — X1

1) (txg +m(l —t)xg — 21) + fl1)

r(p) =
hence,

r(p) = tf(z1) + m(l —t)f(x2).

By m-convexity of f, f(p) < r(p); that is, geometrically, m-convexity of f
means that the points on the graph of f, are under the chord (or on the
chord) joining the endpoints (x1, f(x1)), (mxa, mf(x3)) on [min{xy, mzs},
max{xy, mxs}].

ExampLE 1.8. In [4, Example 3.5| authors show a function which is m-
convex but not convex. Another example of such a type of function is as
follows.

Let f: [O, %} — R given by f(z) = —2? — 1. So, for all z,y € [O, l],
t€0,1] and m = 1,
1-t)(2—y° —t2z—y)?)

>
n >0

tf(x) +m1 =) f(y) — f{tz +m(l —t)y) =
if and only if

(1.1) 2 —y? > t(2x —y)*
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Figure 1. The graph of a function that is m-convex but not convex

Since 0 < z,y < 4, it follows 2 —y?> > T and 22 —y <1 < g Moreover, if

2x >y, and since 0 <t < 1, holds.

On the other hand, if 2z < y, then —g < —% < 2x —y < 0, and
again holds. So, f is %—convex. Clearly, f is not a convex function. The
graph of f together with some of the above-mentioned chords are showed in
Figure (1} Specifically, the chord A joining the endpoints (0, —1) and (%, —g) ;

the chord B joining the endpoints (0, —1) and (g —@) : the chord C joining

507 25
the endpoints (%, —g) and (%, —%) ; and the chord D joining the endpoints
(2,-2) and (0,-1).

In |4, Theorem 4.2] it was proved that, for 0 < m < 1, if f: [0, +00) = R
is an m-convex function, then there exists a convex function h: [0,4+00) — R

such that f(x) < h(z) < mf <£> . This fact is a sandwich type theorem. Our
m

main results refer to this kind of properties.

2. Main results

We start up this section with the following inequality involving an m-
convex function, which is a Jensen’s type inequality (|3, [14, [17]) for this kind
of convexity of real functions.

THEOREM 2.1. Let m € [0,1], and let X be a linear space and D C X
a nonempty m-conver set. If f: D — R is an m-convex function, then for
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all ty,...,t, > 0 with >, t; € (0,1], and for all 1,...,2, € D (n is any
natural number), we have

n n
f (Zml_éﬂtixi> Z 1=0ug, ().
i—1 i—1

PROOF. From the m-convexity of f, f(t1z1) < t1f(x1) for all 2y € D
and ¢1 € [0,1] (Remark [1.7). So, the result holds for m = 0. For m € (0,1),
we apply to —f (which is an m-concave function) the Jensen type inequality
for m-concave functions ([6, Theorem 3.1]). Thus, for all ¢1,...,t, > 0 with
Yo ti€(0,1], and for all zy,...,2, € D (n > 2),

~f) <z": ml_é“ti-’ﬂi> > Zn:ml_é“ti(—f)(ifi),
i—1 i—1

and conclusion follows. O

Now we establish necessary and sufficient conditions under which two real
functions can be separated by an m-convex function.

THEOREM 2.2. Let m € [0,1], and let X be a real linear space of dimen-

sion n, D # () an m-convex subset of X, and f,g: D — R. Then, there exists
an m-convez function h: D — R such that f < h < g if and only if

n+2 n+2
(2.1) f (Z ml“”ltixi> <> m!tig(a)
i=1 i=1
forall xq,...,xn40 € D and all t1,...,t,12 > 0 with Z?+12t € (0,1].

PROOF. First, we assume that f, g satisfy (2.1)), and let A be the m-convex
hull of the epigraph of g; that is,

A = Convy,{(x,y) € D xR: g(z) < y}.

Let (z,y) € A, by Theorem there exist at most n + 2 points in epigraph
of g, say (':Ub y1)7 R (xn+27 yn+2)7 such that

(ﬁ, y) € Convm{(xl) yl)a R (anrZ’ yn+2)}'
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Now, by Theorem [1.4) (z,y) € {(x1,9y1),...,(Tnt2,Ynt2)},; consequently,
and accordance with Lemma there exist t1,...,t,42 > 0, Z?:Jrf t; € (0,1]
such that

n+2

(z,y) = Z m' Ot (i, ).
i=1

In other words,

n+2 n+2 n+2
Yy = Z ml_éiltiyi > Z ml_éiltig(l‘i) > f (Z ml_‘s“tixi> = f((E)
i=1 i=1 i=1

Then, the set {y € R: (z,y) € A} is bounded from below, and we are able to
define a function h: D — R as

h(z) =inf{y e R: (z,y) € A};

hence f(z) < h(x) for all x € D. Furthermore, because (z,g(z)) € A (Re-
mark (1)), h(z) < g(x) for all € D. To show that h is an m-convex
function, we let x1,29 € D and t € [0,1]. So, for any couple of real num-
bers y1,y2 with (x1,y1), (x2,y2) € A (which is m-convex (Remark (2)),
t(x1,y1) + m(l — t)(z2,y2) € A, or further, (tz1 + m(1 — t)za, tys + m(1l —
t)y2) € A and therefore,

h(txy + m(l —t)zs) < tyr + m(1l — t)yso.
Passing now to infimum we obtain h(tzq+m(1—t)ze) < th(x)+m(1—t)h(xs).

For the converse, we set x1,...,Z,42 € D and t,...,t,42 > 0 with
Z?jf t; € (0,1]. Then, by Theorem (applied to h),

n+2 n+2 n+2
f (Z mléilti$i> S h <Z mléilti$i> S Z mlf‘s“tih(a:i).
=1 =1

=1

Consequently,

n+2 n+2
f (Z m”“tio:i> < > omtig(ai). M
=1 =1

The above result implies a Hyers—Ulam stability result, actually we have
the following
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COROLLARY 2.3. Let f: D — R be a function satisfying

n+2 n+2
f (2 mla“tﬂi> < Z m! O f(xi) + €
=1 i=1

with t;, z; as in Theorem 9. Then there exists an m-convex function h: D — R
such that

fx) < h(z) < flx) +e
forallx € D.

This is readily obtained by considering g = f + € in (2.1). This foregoing
inequality also can be rewritten as

|[f(x) = h(z)| <€

since the function h — % is also m-convex.

REMARK 2.4. If X =R and D is a real interval containing 0, then condi-

tion (2.1) becomes
(2.2) f(tizy + mtaxe + mitzws) < tig(x1) + mtag(we) + mtsg(rs)

for all 1,292,253 € D and all tq,ts,t3 > 0, with 0 < t1 +to +t3 < 1.

ExampLE 2.5. If f,g: [0, 11 = R are given by f(z) = —2 and g(z) = z

respectively, it is clear that lb holds for all x1,x9,z3 € [0, %] and arbitrary
t1,ta,t3 > 0. But then, there exists a real m-convex function (defined in [0, %])
between f and g. Note that the given function in Example is one of such
functions.

ExAMPLE 2.6 (|4, Example 4.3]). For the functions f,g: [0,+00) — R
defined as f(z) = 2 + 1 and g(z) = z + 2 respectively, there is no 1-convex
function between them; althoug they satisfy the following condition.

7 (24 30— 00) < to(a) + 30 - 0lo)

for all z,y € [0,400) and ¢t € [0,1]. This fact tells us that an analogue (re-
garding the conditions) of the sandwich theorem for convex functions ([1]) is

not true in the class of m-convex functions. Note that (for m = %), (2.2) is
not true when, for instance, t| =ty = i and t3 = %
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For the proof of forthcoming result we need the following result, which is
a part of [I5, Theorem 1], and also a consequence of Helly’s theorem ([21]).

PRrROPOSITION 2.7 ([I5]). Let f,g be real functions defined on [0, +0o0). If
the inequalities

fltz+ (1 —t)y) <tg(z)+ (1 —1t)g(y)

and

gtz + (1 —t)y) = tf(x) + (1 —1)f(y)

hold for all z,y € [0,+00) and t € [0,1], then there exists an affine function
h:[0,400) = R such that f < h < g on [0, +00).

The next result provides conditions to be able to separate a pair of real
functions by an m-affine one, and it is inspired on ideas of [15].

THEOREM 2.8. Let 0 < m < 1 and f,g: [0,+00) — R be two functions
such that

(2.3) fma) =mf(z) and g(ma) = mg(x)

for all z € [0,+00). Then, the following conditions are equivalent.

(1) There exists an m-affine function h: [0,00) — R such that f < h < g on
[0, 4+00).

(2) There exist an m-convex function hy: [0,4+00) — R and an m-concave
function hy: [0,400) — R such that f < hy < g and f < hy < g on
[0, 4+00).

(3) The following inequalities hold

[tz +m(1 —t)y) < tg(z) +m(l—1t)g(y)

and

glte +m(1 —t)y) > tf(z) + m(l —t)f(y)
for all z,y € [0, +00) and t € [0, 1].

PROOF. (1) = (2) is a consequence of the fact that any m-affine function
is both m-convex and m-concave.

(2) = (3) follows from the m-convexity of hy and the m-concavity of hs,
respectively.
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(3) = (1): First of all, notice that (because m # 1) the condition
implies that f(0) = ¢(0) = 0.

Let x,y € [0,+00), and t € [0,1]. It is clear that there exists § € [0, +00)
such that y = my. So,

flte+ (1 —t)y) = f(tx +m(1 —1)y)
< tg(x) +m(1—)g(g) (by assuming (3))
=tg(z) + (1 —t)g(y) (by 23)).

In a similar way, we obtain g(tz + (1 —t)y) > tf(z) + (1 — t) f(y). Therefore,
by applying Proposition there exists an affine function h: [0, +o00) — R
such that f <h < g on [0,+00). Thus, h(x) = ax + b for some a,b € R. The
fact f(0) = g(0) = 0 forces to h(0) = 0; and hence, h(z) = az. O

3. Conclusion

We have presented some result of separation of two functions by means of
an m-convex one, defined on m-convex subset of a real linear space X. Exam-
ples were given. More can be done in this direction, for example separation
by means of strongly m-convex functions.
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