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SANDWICH TYPE RESULTS
FOR m-CONVEX REAL FUNCTIONS

Teodoro Lara , Edgar Rosales

Abstract. We establish necessary and sufficient conditions allowing separa-
tion of pair of real functions by an m-convex and by an m-affine function.
Some examples and a geometric interpretation of m-convexity of a function is
exhibited, as well as a Jensen’s inequality for this kind of function.

1. Introduction and preliminaries

Since apparition of sandwich type theorems of separation for real convex
functions in 1994 ([1, Theorem 1]), a quite number of researchers have obtained
similar results for different kinds of convexity around. It is well-known that,
basically, the idea consists of establishing necessary and sufficient conditions
for a couple of given functions, under which the existence of a third function,
between them, with the kind of convexity considered. Nowadays, we have at
our disposal results in this context, strong convexity ([13, Theorem 2]); h-
convexity ([16, Theorem 3]); in the case of convexity for set-valued functions
([18, Theorem 1]); and more recent, in the context of harmonically convex
functions, and reciprocally strongly convex functions ([2, Theorem 2.4, The-
orem 3.1]), as well as versions for the case of convexity and strong convexity
of functions defined on time scales ([8, Theorem 2.10], [9, Theorem 13]).
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For the case ofm-convex functions for functions defined on the positive real
line a separation result has been established in [12]; for set-valued functions
a separation result is given in [7, Theorem 2.28]; and in [4, Theorem 4.2]
there is a result of a sandwich type as well, involving m-convexity of sets
and convexity of functions. In our present research we establish necessary and
sufficient conditions to separate a pair of real functions by a real m-convex
function defined on a convex subset D of a linear space X; at the same time we
set and prove a similar result for the case of m-affine functions. We begin by
recalling some known concepts and results; next we set our results, illustrate
with examples, and perform a geometric interpretation of m-convexity of real
functions.

Definition 1.1 ([5, 19, 20]). Let X be a real linear space and m ∈ [0, 1].
A nonempty set D ⊆ X is called m-convex if for any x, y ∈ D and t ∈ [0, 1]
the point tx+m(1− t)y ∈ D.

In [5], the incoming results are established and used afterward to prove
several statements.

Lemma 1.2 ([5, Lemma 3.3]). A set D ⊆ X is m-convex if and only if D
coincides with the set of all m-convex combinations of elements of D (denoted
by D?

m); these combinations are of the form
∑n
i=1m

1−δi1tixi, m ∈ (0, 1),
n any natural number, δij is the known Delta of Kronecker function, and the
real numbers ti are nonnegative (i = 1, . . . , n) with 0 <

∑n
i=1 ti ≤ 1.

Remark 1.3 ([5, Remark 3.5]). The m-convex hull of a set D ⊆ X, de-
noted by Convm(D), satisfies among others, the following statements:
(1) D ⊆ Convm(D).
(2) Convm(D) is an m-convex set of X.

Theorem 1.4 ([5, Theorem 3.6]). If ∅ 6= D ⊆ X, then Convm(D) = D?
m.

Theorem 1.5 ([5, Theorem 3.11]). Let X be a linear space of dimension
n and D be any nonempty set of X. For all x ∈ Convm(D) there exists a set
Dx ⊆ D such that #(Dx) ≤ n+ 1 and x ∈ Convm(Dx).

Definition 1.6 ([4, 6, 11]). Let D be an m-convex subset of a real linear
spaceX, andm ∈ [0, 1]. A function f : D → R is calledm-convex (respectively
m-concave, m-affine) if for any x, y ∈ D and t ∈ [0, 1], it verifies

f(tx+m(1− t)y) ≤ tf(x) +m(1− t)f(y),

(respectively, if converse inequality or equality holds).
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Remark 1.7. It is not difficult to check that if f is an m-convex func-
tion (m 6= 1), then f(0) ≤ 0 ([11, Remark 3]), and this fact in turn implies
f(tx) ≤ tf(x) for all x ∈ D and t ∈ [0, 1].

At this point we are going to give geometric interpretation of m-convexity
of a real function (on the real plane). The geometric meaning of convex func-
tions is well-known. For a similar geometric interpretation of m-convexity
of a real function (on the real plane) we consider the m-convex function
f : I → R, where I is a real interval containing 0 (and therefore an m-convex
set of R ([10, Theorem 2.6])). Let x1, x2 ∈ I such that x1 6= mx2. The straight
line through the points (x1, f(x1)) and (mx2,mf(x2)) is given by equation

r(x) =
mf(x2)− f(x1)

mx2 − x1
(x− x1) + f(x1).

For any point p in the interval [min{x1,mx2},max{x1,mx2}] , there exists
t ∈ [0, 1] such that p = tx1 +m(1− t)x2. So,

r(p) =
mf(x2)− f(x1)

mx2 − x1
(tx1 +m(1− t)x2 − x1) + f(x1)

hence,

r(p) = tf(x1) +m(1− t)f(x2).

By m-convexity of f, f(p) ≤ r(p); that is, geometrically, m-convexity of f
means that the points on the graph of f, are under the chord (or on the
chord) joining the endpoints (x1, f(x1)), (mx2,mf(x2)) on [min{x1,mx2},
max{x1,mx2}].

Example 1.8. In [4, Example 3.5] authors show a function which is m-
convex but not convex. Another example of such a type of function is as
follows.

Let f :
[
0, 12
]
→ R given by f(x) = −x2 − 1. So, for all x, y ∈

[
0, 12
]
,

t ∈ [0, 1] and m = 1
2 ,

tf(x) +m(1− t)f(y)− f(tx+m(1− t)y) =
(1− t)(2− y2 − t(2x− y)2)

4
≥ 0

if and only if

(1.1) 2− y2 ≥ t(2x− y)2.
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Figure 1. The graph of a function that is m-convex but not convex

Since 0 ≤ x, y ≤ 1
2 , it follows 2 − y2 ≥ 7

4 and 2x − y ≤ 1 ≤
√
7
2 . Moreover, if

2x ≥ y, and since 0 ≤ t ≤ 1, (1.1) holds.
On the other hand, if 2x < y, then −

√
7
2 < −1

2 ≤ 2x − y < 0, and
again (1.1) holds. So, f is 1

2 -convex. Clearly, f is not a convex function. The
graph of f together with some of the above-mentioned chords are showed in
Figure 1. Specifically, the chord A joining the endpoints (0,−1) and

(
1
2 ,−

5
4

)
;

the chord B joining the endpoints (0,−1) and
(
2
5 ,−

29
25

)
; the chord C joining

the endpoints
(
1
2 ,−

5
4

)
and

(
3
10 ,−

109
100

)
; and the chord D joining the endpoints(

1
2 ,−

5
4

)
and (0,−1) .

In [4, Theorem 4.2] it was proved that, for 0 < m < 1, if f : [0,+∞)→ R
is an m-convex function, then there exists a convex function h : [0,+∞)→ R
such that f(x) ≤ h(x) ≤ mf

( x
m

)
. This fact is a sandwich type theorem. Our

main results refer to this kind of properties.

2. Main results

We start up this section with the following inequality involving an m-
convex function, which is a Jensen’s type inequality ([3, 14, 17]) for this kind
of convexity of real functions.

Theorem 2.1. Let m ∈ [0, 1], and let X be a linear space and D ⊆ X
a nonempty m-convex set. If f : D → R is an m-convex function, then for
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all t1, . . . , tn ≥ 0 with
∑n
i=1 ti ∈ (0, 1], and for all x1, . . . , xn ∈ D (n is any

natural number), we have

f

(
n∑
i=1

m1−δi1tixi

)
≤

n∑
i=1

m1−δi1tif(xi).

Proof. From the m-convexity of f , f(t1x1) ≤ t1f(x1) for all x1 ∈ D
and t1 ∈ [0, 1] (Remark 1.7). So, the result holds for m = 0. For m ∈ (0, 1),
we apply to −f (which is an m-concave function) the Jensen type inequality
for m-concave functions ([6, Theorem 3.1]). Thus, for all t1, . . . , tn ≥ 0 with∑n
i=1 ti ∈ (0, 1], and for all x1, . . . , xn ∈ D (n ≥ 2),

(−f)

(
n∑
i=1

m1−δi1tixi

)
≥

n∑
i=1

m1−δi1ti(−f)(xi),

and conclusion follows. �

Now we establish necessary and sufficient conditions under which two real
functions can be separated by an m-convex function.

Theorem 2.2. Let m ∈ [0, 1], and let X be a real linear space of dimen-
sion n, D 6= ∅ an m-convex subset of X, and f, g : D → R. Then, there exists
an m-convex function h : D → R such that f ≤ h ≤ g if and only if

(2.1) f

(
n+2∑
i=1

m1−δi1tixi

)
≤
n+2∑
i=1

m1−δi1tig(xi)

for all x1, . . . , xn+2 ∈ D and all t1, . . . , tn+2 ≥ 0 with
∑n+2
i=1 ti ∈ (0, 1].

Proof. First, we assume that f , g satisfy (2.1), and let A be them-convex
hull of the epigraph of g; that is,

A = Convm{(x, y) ∈ D × R : g(x) ≤ y}.

Let (x, y) ∈ A, by Theorem 1.5, there exist at most n+ 2 points in epigraph
of g, say (x1, y1), . . . , (xn+2, yn+2), such that

(x, y) ∈ Convm{(x1, y1), . . . , (xn+2, yn+2)}.
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Now, by Theorem 1.4, (x, y) ∈ {(x1, y1), . . . , (xn+2, yn+2)}?m; consequently,
and accordance with Lemma 1.2, there exist t1, . . . , tn+2 ≥ 0,

∑n+2
i=1 ti ∈ (0, 1]

such that

(x, y) =

n+2∑
i=1

m1−δi1ti(xi, yi).

In other words,

y =

n+2∑
i=1

m1−δi1tiyi ≥
n+2∑
i=1

m1−δi1tig(xi) ≥ f

(
n+2∑
i=1

m1−δi1tixi

)
= f(x).

Then, the set {y ∈ R : (x, y) ∈ A} is bounded from below, and we are able to
define a function h : D → R as

h(x) = inf{y ∈ R : (x, y) ∈ A};

hence f(x) ≤ h(x) for all x ∈ D. Furthermore, because (x, g(x)) ∈ A (Re-
mark 1.3 (1)), h(x) ≤ g(x) for all x ∈ D. To show that h is an m-convex
function, we let x1, x2 ∈ D and t ∈ [0, 1]. So, for any couple of real num-
bers y1, y2 with (x1, y1), (x2, y2) ∈ A (which is m-convex (Remark 1.3 (2)),
t(x1, y1) + m(1 − t)(x2, y2) ∈ A, or further, (tx1 + m(1 − t)x2, ty1 + m(1 −
t)y2) ∈ A and therefore,

h(tx1 +m(1− t)x2) ≤ ty1 +m(1− t)y2.

Passing now to infimum we obtain h(tx1+m(1−t)x2) ≤ th(x1)+m(1−t)h(x2).
For the converse, we set x1, . . . , xn+2 ∈ D and t1, . . . , tn+2 ≥ 0 with∑n+2
i=1 ti ∈ (0, 1]. Then, by Theorem 2.1 (applied to h),

f

(
n+2∑
i=1

m1−δi1tixi

)
≤ h

(
n+2∑
i=1

m1−δi1tixi

)
≤
n+2∑
i=1

m1−δi1tih(xi).

Consequently,

f

(
n+2∑
i=1

m1−δi1tixi

)
≤
n+2∑
i=1

m1−δi1tig(xi). �

The above result implies a Hyers–Ulam stability result, actually we have
the following
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Corollary 2.3. Let f : D → R be a function satisfying

f

(
n+2∑
i=1

m1−δi1tixi

)
≤
n+2∑
i=1

m1−δi1tif(xi) + ε

with ti, xi as in Theorem 9. Then there exists an m-convex function h : D → R
such that

f(x) ≤ h(x) ≤ f(x) + ε

for all x ∈ D.

This is readily obtained by considering g = f + ε in (2.1). This foregoing
inequality also can be rewritten as

|f(x)− h(x)| < ε

since the function h− 1
2 is also m-convex.

Remark 2.4. If X = R and D is a real interval containing 0, then condi-
tion (2.1) becomes

(2.2) f(t1x1 +mt2x2 +mt3x3) ≤ t1g(x1) +mt2g(x2) +mt3g(x3)

for all x1, x2, x3 ∈ D and all t1, t2, t3 ≥ 0, with 0 < t1 + t2 + t3 ≤ 1.

Example 2.5. If f, g :
[
0, 12
]
→ R are given by f(x) = −2 and g(x) = x

respectively, it is clear that (2.2) holds for all x1, x2, x3 ∈
[
0, 12
]
and arbitrary

t1, t2, t3 ≥ 0. But then, there exists a realm-convex function (defined in
[
0, 12
]
)

between f and g. Note that the given function in Example 1.8 is one of such
functions.

Example 2.6 ([4, Example 4.3]). For the functions f, g : [0,+∞) → R
defined as f(x) = x + 1 and g(x) = x + 2 respectively, there is no 1

2 -convex
function between them; althoug they satisfy the following condition.

f

(
tx+

1

2
(1− t)y

)
≤ tg(x) +

1

2
(1− t)g(y)

for all x, y ∈ [0,+∞) and t ∈ [0, 1]. This fact tells us that an analogue (re-
garding the conditions) of the sandwich theorem for convex functions ([1]) is
not true in the class of m-convex functions. Note that (for m = 1

2), (2.2) is
not true when, for instance, t1 = t2 = 1

4 and t3 = 1
5 .
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For the proof of forthcoming result we need the following result, which is
a part of [15, Theorem 1], and also a consequence of Helly’s theorem ([21]).

Proposition 2.7 ([15]). Let f, g be real functions defined on [0,+∞). If
the inequalities

f(tx+ (1− t)y) ≤ tg(x) + (1− t)g(y)

and

g(tx+ (1− t)y) ≥ tf(x) + (1− t)f(y)

hold for all x, y ∈ [0,+∞) and t ∈ [0, 1], then there exists an affine function
h : [0,+∞)→ R such that f ≤ h ≤ g on [0,+∞).

The next result provides conditions to be able to separate a pair of real
functions by an m-affine one, and it is inspired on ideas of [15].

Theorem 2.8. Let 0 < m < 1 and f, g : [0,+∞) → R be two functions
such that

(2.3) f(mx) = mf(x) and g(mx) = mg(x)

for all x ∈ [0,+∞). Then, the following conditions are equivalent.
(1) There exists an m-affine function h : [0,∞)→ R such that f ≤ h ≤ g on

[0,+∞).
(2) There exist an m-convex function h1 : [0,+∞) → R and an m-concave

function h2 : [0,+∞) → R such that f ≤ h1 ≤ g and f ≤ h2 ≤ g on
[0,+∞).

(3) The following inequalities hold

f(tx+m(1− t)y) ≤ tg(x) +m(1− t)g(y)

and

g(tx+m(1− t)y) ≥ tf(x) +m(1− t)f(y)

for all x, y ∈ [0,+∞) and t ∈ [0, 1].

Proof. (1) ⇒ (2) is a consequence of the fact that any m-affine function
is both m-convex and m-concave.

(2) ⇒ (3) follows from the m-convexity of h1 and the m-concavity of h2,
respectively.
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(3) ⇒ (1): First of all, notice that (because m 6= 1) the condition (2.3)
implies that f(0) = g(0) = 0.

Let x, y ∈ [0,+∞), and t ∈ [0, 1]. It is clear that there exists ȳ ∈ [0,+∞)
such that y = mȳ. So,

f(tx+ (1− t)y) = f(tx+m(1− t)ȳ)

≤ tg(x) +m(1− t)g(ȳ) (by assuming (3))

= tg(x) + (1− t)g(y) (by (2.3)).

In a similar way, we obtain g(tx+ (1− t)y) ≥ tf(x) + (1− t)f(y). Therefore,
by applying Proposition 2.7, there exists an affine function h : [0,+∞) → R
such that f ≤ h ≤ g on [0,+∞). Thus, h(x) = ax+ b for some a, b ∈ R. The
fact f(0) = g(0) = 0 forces to h(0) = 0; and hence, h(x) = ax. �

3. Conclusion

We have presented some result of separation of two functions by means of
an m-convex one, defined on m-convex subset of a real linear space X. Exam-
ples were given. More can be done in this direction, for example separation
by means of strongly m-convex functions.
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