SANDWICH TYPE RESULTS FOR m-CONVEX REAL FUNCTIONS

Teodoro Lara (D), Edgar Rosales

Abstract

We establish necessary and sufficient conditions allowing separation of pair of real functions by an m-convex and by an m-affine function. Some examples and a geometric interpretation of m-convexity of a function is exhibited, as well as a Jensen's inequality for this kind of function.

1. Introduction and preliminaries

Since apparition of sandwich type theorems of separation for real convex functions in 1994 ([1, Theorem 1]), a quite number of researchers have obtained similar results for different kinds of convexity around. It is well-known that, basically, the idea consists of establishing necessary and sufficient conditions for a couple of given functions, under which the existence of a third function, between them, with the kind of convexity considered. Nowadays, we have at our disposal results in this context, strong convexity ([13, Theorem 2]); h convexity ([16, Theorem 3]); in the case of convexity for set-valued functions ([18, Theorem 1]); and more recent, in the context of harmonically convex functions, and reciprocally strongly convex functions ([2, Theorem 2.4, Theorem 3.1]), as well as versions for the case of convexity and strong convexity of functions defined on time scales ([8, Theorem 2.10], [9, Theorem 13]).

[^0]For the case of m-convex functions for functions defined on the positive real line a separation result has been established in [12]; for set-valued functions a separation result is given in [7, Theorem 2.28]; and in [4, Theorem 4.2] there is a result of a sandwich type as well, involving m-convexity of sets and convexity of functions. In our present research we establish necessary and sufficient conditions to separate a pair of real functions by a real m-convex function defined on a convex subset D of a linear space X; at the same time we set and prove a similar result for the case of m-affine functions. We begin by recalling some known concepts and results; next we set our results, illustrate with examples, and perform a geometric interpretation of m-convexity of real functions.

Definition 1.1 ([5, [19, 20]). Let X be a real linear space and $m \in[0,1]$. A nonempty set $D \subseteq X$ is called m-convex if for any $x, y \in D$ and $t \in[0,1]$ the point $t x+m(1-t) y \in D$.

In [5], the incoming results are established and used afterward to prove several statements.

Lemma 1.2 ([5, Lemma 3.3]). A set $D \subseteq X$ is m-convex if and only if D coincides with the set of all m-convex combinations of elements of D (denoted by $\left.D_{m}^{\star}\right)$; these combinations are of the form $\sum_{i=1}^{n} m^{1-\delta_{i 1}} t_{i} x_{i}, m \in(0,1)$, n any natural number, $\delta_{i j}$ is the known Delta of Kronecker function, and the real numbers t_{i} are nonnegative $(i=1, \ldots, n)$ with $0<\sum_{i=1}^{n} t_{i} \leq 1$.

Remark 1.3 ([5, Remark 3.5]). The m-convex hull of a set $D \subseteq X$, denoted by $\operatorname{Conv}_{m}(D)$, satisfies among others, the following statements:
(1) $D \subseteq \operatorname{Conv}_{m}(D)$.
(2) $\operatorname{Conv}_{m}(D)$ is an m-convex set of X.

Theorem 1.4 ([5, Theorem 3.6]). If $\emptyset \neq D \subseteq X$, then $\operatorname{Conv}_{m}(D)=D_{m}^{\star}$.
Theorem 1.5 ([5] Theorem 3.11]). Let X be a linear space of dimension n and D be any nonempty set of X. For all $x \in \operatorname{Conv}_{m}(D)$ there exists a set $D_{x} \subseteq D$ such that $\#\left(D_{x}\right) \leq n+1$ and $x \in \operatorname{Conv}_{m}\left(D_{x}\right)$.

Definition 1.6 ([4, 6, 11]). Let D be an m-convex subset of a real linear space X, and $m \in[0,1]$. A function $f: D \rightarrow \mathbb{R}$ is called m-convex (respectively m-concave, m-affine) if for any $x, y \in D$ and $t \in[0,1]$, it verifies

$$
f(t x+m(1-t) y) \leq t f(x)+m(1-t) f(y)
$$

(respectively, if converse inequality or equality holds).

REMARK 1.7. It is not difficult to check that if f is an m-convex function $(m \neq 1)$, then $f(0) \leq 0([11$, Remark 3]), and this fact in turn implies $f(t x) \leq t f(x)$ for all $x \in D$ and $t \in[0,1]$.

At this point we are going to give geometric interpretation of m-convexity of a real function (on the real plane). The geometric meaning of convex functions is well-known. For a similar geometric interpretation of m-convexity of a real function (on the real plane) we consider the m-convex function $f: I \rightarrow \mathbb{R}$, where I is a real interval containing 0 (and therefore an m-convex set of $\mathbb{R}\left(\left[10\right.\right.$, Theorem 2.6])). Let $x_{1}, x_{2} \in I$ such that $x_{1} \neq m x_{2}$. The straight line through the points $\left(x_{1}, f\left(x_{1}\right)\right)$ and $\left(m x_{2}, m f\left(x_{2}\right)\right)$ is given by equation

$$
r(x)=\frac{m f\left(x_{2}\right)-f\left(x_{1}\right)}{m x_{2}-x_{1}}\left(x-x_{1}\right)+f\left(x_{1}\right) .
$$

For any point p in the interval $\left[\min \left\{x_{1}, m x_{2}\right\}, \max \left\{x_{1}, m x_{2}\right\}\right]$, there exists $t \in[0,1]$ such that $p=t x_{1}+m(1-t) x_{2}$. So,

$$
r(p)=\frac{m f\left(x_{2}\right)-f\left(x_{1}\right)}{m x_{2}-x_{1}}\left(t x_{1}+m(1-t) x_{2}-x_{1}\right)+f\left(x_{1}\right)
$$

hence,

$$
r(p)=t f\left(x_{1}\right)+m(1-t) f\left(x_{2}\right) .
$$

By m-convexity of $f, f(p) \leq r(p)$; that is, geometrically, m-convexity of f means that the points on the graph of f, are under the chord (or on the chord) joining the endpoints $\left(x_{1}, f\left(x_{1}\right)\right),\left(m x_{2}, m f\left(x_{2}\right)\right)$ on $\left[\min \left\{x_{1}, m x_{2}\right\}\right.$, $\left.\max \left\{x_{1}, m x_{2}\right\}\right]$.

Example 1.8. In [4, Example 3.5] authors show a function which is m convex but not convex. Another example of such a type of function is as follows.

Let $f:\left[0, \frac{1}{2}\right] \rightarrow \mathbb{R}$ given by $f(x)=-x^{2}-1$. So, for all $x, y \in\left[0, \frac{1}{2}\right]$, $t \in[0,1]$ and $m=\frac{1}{2}$,
$t f(x)+m(1-t) f(y)-f(t x+m(1-t) y)=\frac{(1-t)\left(2-y^{2}-t(2 x-y)^{2}\right)}{4} \geq 0$
if and only if

$$
\begin{equation*}
2-y^{2} \geq t(2 x-y)^{2} \tag{1.1}
\end{equation*}
$$

Figure 1. The graph of a function that is m-convex but not convex
Since $0 \leq x, y \leq \frac{1}{2}$, it follows $2-y^{2} \geq \frac{7}{4}$ and $2 x-y \leq 1 \leq \frac{\sqrt{7}}{2}$. Moreover, if $2 x \geq y$, and since $0 \leq t \leq 1$, (1.1) holds.

On the other hand, if $2 x<y$, then $-\frac{\sqrt{7}}{2}<-\frac{1}{2} \leq 2 x-y<0$, and again (1.1) holds. So, f is $\frac{1}{2}$-convex. Clearly, f is not a convex function. The graph of f together with some of the above-mentioned chords are showed in Figure 1. Specifically, the chord A joining the endpoints $(0,-1)$ and $\left(\frac{1}{2},-\frac{5}{4}\right)$; the chord B joining the endpoints $(0,-1)$ and $\left(\frac{2}{5},-\frac{29}{25}\right)$; the chord C joining the endpoints $\left(\frac{1}{2},-\frac{5}{4}\right)$ and $\left(\frac{3}{10},-\frac{109}{100}\right)$; and the chord D joining the endpoints $\left(\frac{1}{2},-\frac{5}{4}\right)$ and $(0,-1)$.

In [4, Theorem 4.2] it was proved that, for $0<m<1$, if $f:[0,+\infty) \rightarrow \mathbb{R}$ is an m-convex function, then there exists a convex function $h:[0,+\infty) \rightarrow \mathbb{R}$ such that $f(x) \leq h(x) \leq m f\left(\frac{x}{m}\right)$. This fact is a sandwich type theorem. Our main results refer to this kind of properties.

2. Main results

We start up this section with the following inequality involving an m convex function, which is a Jensen's type inequality ([3, 14, 17]) for this kind of convexity of real functions.

Theorem 2.1. Let $m \in[0,1]$, and let X be a linear space and $D \subseteq X$ a nonempty m-convex set. If $f: D \rightarrow \mathbb{R}$ is an m-convex function, then for
all $t_{1}, \ldots, t_{n} \geq 0$ with $\sum_{i=1}^{n} t_{i} \in(0,1]$, and for all $x_{1}, \ldots, x_{n} \in D$ (n is any natural number), we have

$$
f\left(\sum_{i=1}^{n} m^{1-\delta_{i 1}} t_{i} x_{i}\right) \leq \sum_{i=1}^{n} m^{1-\delta_{i 1}} t_{i} f\left(x_{i}\right)
$$

Proof. From the m-convexity of $f, f\left(t_{1} x_{1}\right) \leq t_{1} f\left(x_{1}\right)$ for all $x_{1} \in D$ and $t_{1} \in[0,1]$ (Remark 1.7). So, the result holds for $m=0$. For $m \in(0,1)$, we apply to $-f$ (which is an m-concave function) the Jensen type inequality for m-concave functions ([6, Theorem 3.1]). Thus, for all $t_{1}, \ldots, t_{n} \geq 0$ with $\sum_{i=1}^{n} t_{i} \in(0,1]$, and for all $x_{1}, \ldots, x_{n} \in D(n \geq 2)$,

$$
(-f)\left(\sum_{i=1}^{n} m^{1-\delta_{i 1}} t_{i} x_{i}\right) \geq \sum_{i=1}^{n} m^{1-\delta_{i 1}} t_{i}(-f)\left(x_{i}\right)
$$

and conclusion follows.
Now we establish necessary and sufficient conditions under which two real functions can be separated by an m-convex function.

Theorem 2.2. Let $m \in[0,1]$, and let X be a real linear space of dimension $n, D \neq \emptyset$ an m-convex subset of X, and $f, g: D \rightarrow \mathbb{R}$. Then, there exists an m-convex function $h: D \rightarrow \mathbb{R}$ such that $f \leq h \leq g$ if and only if

$$
\begin{equation*}
f\left(\sum_{i=1}^{n+2} m^{1-\delta_{i 1}} t_{i} x_{i}\right) \leq \sum_{i=1}^{n+2} m^{1-\delta_{i 1}} t_{i} g\left(x_{i}\right) \tag{2.1}
\end{equation*}
$$

for all $x_{1}, \ldots, x_{n+2} \in D$ and all $t_{1}, \ldots, t_{n+2} \geq 0$ with $\sum_{i=1}^{n+2} t_{i} \in(0,1]$.
Proof. First, we assume that f, g satisfy (2.1), and let A be the m-convex hull of the epigraph of g; that is,

$$
A=\operatorname{Conv}_{m}\{(x, y) \in D \times \mathbb{R}: g(x) \leq y\}
$$

Let $(x, y) \in A$, by Theorem 1.5, there exist at most $n+2$ points in epigraph of g, say $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n+2}, y_{n+2}\right)$, such that

$$
(x, y) \in \operatorname{Conv}_{m}\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n+2}, y_{n+2}\right)\right\}
$$

Now, by Theorem 1.4, $(x, y) \in\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n+2}, y_{n+2}\right)\right\}_{m}^{\star}$; consequently, and accordance with Lemma 1.2 , there exist $t_{1}, \ldots, t_{n+2} \geq 0, \sum_{i=1}^{n+2} t_{i} \in(0,1]$ such that

$$
(x, y)=\sum_{i=1}^{n+2} m^{1-\delta_{i 1}} t_{i}\left(x_{i}, y_{i}\right)
$$

In other words,

$$
y=\sum_{i=1}^{n+2} m^{1-\delta_{i 1}} t_{i} y_{i} \geq \sum_{i=1}^{n+2} m^{1-\delta_{i 1}} t_{i} g\left(x_{i}\right) \geq f\left(\sum_{i=1}^{n+2} m^{1-\delta_{i 1}} t_{i} x_{i}\right)=f(x)
$$

Then, the set $\{y \in \mathbb{R}:(x, y) \in A\}$ is bounded from below, and we are able to define a function $h: D \rightarrow \mathbb{R}$ as

$$
h(x)=\inf \{y \in \mathbb{R}:(x, y) \in A\}
$$

hence $f(x) \leq h(x)$ for all $x \in D$. Furthermore, because $(x, g(x)) \in A$ (Remark $1.3(1)), h(x) \leq g(x)$ for all $x \in D$. To show that h is an m-convex function, we let $x_{1}, x_{2} \in D$ and $t \in[0,1]$. So, for any couple of real numbers y_{1}, y_{2} with $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in A$ (which is m-convex (Remark 1.3 (2)), $t\left(x_{1}, y_{1}\right)+m(1-t)\left(x_{2}, y_{2}\right) \in A$, or further, $\left(t x_{1}+m(1-t) x_{2}, t y_{1}+m(1-\right.$ t) $\left.y_{2}\right) \in A$ and therefore,

$$
h\left(t x_{1}+m(1-t) x_{2}\right) \leq t y_{1}+m(1-t) y_{2} .
$$

Passing now to infimum we obtain $h\left(t x_{1}+m(1-t) x_{2}\right) \leq t h\left(x_{1}\right)+m(1-t) h\left(x_{2}\right)$.
For the converse, we set $x_{1}, \ldots, x_{n+2} \in D$ and $t_{1}, \ldots, t_{n+2} \geq 0$ with $\sum_{i=1}^{n+2} t_{i} \in(0,1]$. Then, by Theorem 2.1 (applied to $\left.h\right)$,

$$
f\left(\sum_{i=1}^{n+2} m^{1-\delta_{i 1}} t_{i} x_{i}\right) \leq h\left(\sum_{i=1}^{n+2} m^{1-\delta_{i 1}} t_{i} x_{i}\right) \leq \sum_{i=1}^{n+2} m^{1-\delta_{i 1}} t_{i} h\left(x_{i}\right)
$$

Consequently,

$$
f\left(\sum_{i=1}^{n+2} m^{1-\delta_{i 1}} t_{i} x_{i}\right) \leq \sum_{i=1}^{n+2} m^{1-\delta_{i 1}} t_{i} g\left(x_{i}\right)
$$

The above result implies a Hyers-Ulam stability result, actually we have the following

Corollary 2.3. Let $f: D \rightarrow \mathbb{R}$ be a function satisfying

$$
f\left(\sum_{i=1}^{n+2} m^{1-\delta_{i 1}} t_{i} x_{i}\right) \leq \sum_{i=1}^{n+2} m^{1-\delta_{i 1}} t_{i} f\left(x_{i}\right)+\epsilon
$$

with t_{i}, x_{i} as in Theorem 9. Then there exists an m-convex function $h: D \rightarrow \mathbb{R}$ such that

$$
f(x) \leq h(x) \leq f(x)+\epsilon
$$

for all $x \in D$.
This is readily obtained by considering $g=f+\epsilon$ in 2.1). This foregoing inequality also can be rewritten as

$$
|f(x)-h(x)|<\epsilon
$$

since the function $h-\frac{1}{2}$ is also m-convex.
Remark 2.4. If $X=\mathbb{R}$ and D is a real interval containing 0 , then condition (2.1) becomes

$$
\begin{equation*}
f\left(t_{1} x_{1}+m t_{2} x_{2}+m t_{3} x_{3}\right) \leq t_{1} g\left(x_{1}\right)+m t_{2} g\left(x_{2}\right)+m t_{3} g\left(x_{3}\right) \tag{2.2}
\end{equation*}
$$

for all $x_{1}, x_{2}, x_{3} \in D$ and all $t_{1}, t_{2}, t_{3} \geq 0$, with $0<t_{1}+t_{2}+t_{3} \leq 1$.
Example 2.5. If $f, g:\left[0, \frac{1}{2}\right] \rightarrow \mathbb{R}$ are given by $f(x)=-2$ and $g(x)=x$ respectively, it is clear that 2.2 holds for all $x_{1}, x_{2}, x_{3} \in\left[0, \frac{1}{2}\right]$ and arbitrary $t_{1}, t_{2}, t_{3} \geq 0$. But then, there exists a real m-convex function (defined in $\left[0, \frac{1}{2}\right]$) between f and g. Note that the given function in Example 1.8 is one of such functions.

Example 2.6 ([4, Example 4.3]). For the functions $f, g:[0,+\infty) \rightarrow \mathbb{R}$ defined as $f(x)=x+1$ and $g(x)=x+2$ respectively, there is no $\frac{1}{2}$-convex function between them; althoug they satisfy the following condition.

$$
f\left(t x+\frac{1}{2}(1-t) y\right) \leq t g(x)+\frac{1}{2}(1-t) g(y)
$$

for all $x, y \in[0,+\infty)$ and $t \in[0,1]$. This fact tells us that an analogue (regarding the conditions) of the sandwich theorem for convex functions (1$]$) is not true in the class of m-convex functions. Note that (for $m=\frac{1}{2}$), 2.2 is not true when, for instance, $t_{1}=t_{2}=\frac{1}{4}$ and $t_{3}=\frac{1}{5}$.

For the proof of forthcoming result we need the following result, which is a part of [15, Theorem 1], and also a consequence of Helly's theorem ([21]).

Proposition 2.7 ([15]). Let f, g be real functions defined on $[0,+\infty)$. If the inequalities

$$
f(t x+(1-t) y) \leq t g(x)+(1-t) g(y)
$$

and

$$
g(t x+(1-t) y) \geq t f(x)+(1-t) f(y)
$$

hold for all $x, y \in[0,+\infty)$ and $t \in[0,1]$, then there exists an affine function $h:[0,+\infty) \rightarrow \mathbb{R}$ such that $f \leq h \leq g$ on $[0,+\infty)$.

The next result provides conditions to be able to separate a pair of real functions by an m-affine one, and it is inspired on ideas of [15].

Theorem 2.8. Let $0<m<1$ and $f, g:[0,+\infty) \rightarrow \mathbb{R}$ be two functions such that

$$
\begin{equation*}
f(m x)=m f(x) \quad \text { and } \quad g(m x)=m g(x) \tag{2.3}
\end{equation*}
$$

for all $x \in[0,+\infty)$. Then, the following conditions are equivalent.
(1) There exists an m-affine function $h:[0, \infty) \rightarrow \mathbb{R}$ such that $f \leq h \leq g$ on $[0,+\infty)$.
(2) There exist an m-convex function $h_{1}:[0,+\infty) \rightarrow \mathbb{R}$ and an m-concave function $h_{2}:[0,+\infty) \rightarrow \mathbb{R}$ such that $f \leq h_{1} \leq g$ and $f \leq h_{2} \leq g$ on $[0,+\infty)$.
(3) The following inequalities hold

$$
f(t x+m(1-t) y) \leq t g(x)+m(1-t) g(y)
$$

and

$$
g(t x+m(1-t) y) \geq t f(x)+m(1-t) f(y)
$$

for all $x, y \in[0,+\infty)$ and $t \in[0,1]$.
Proof. (1) $\Rightarrow(2)$ is a consequence of the fact that any m-affine function is both m-convex and m-concave.
$(2) \Rightarrow(3)$ follows from the m-convexity of h_{1} and the m-concavity of h_{2}, respectively.
$(3) \Rightarrow(1)$: First of all, notice that (because $m \neq 1$) the condition (2.3) implies that $f(0)=g(0)=0$.

Let $x, y \in[0,+\infty)$, and $t \in[0,1]$. It is clear that there exists $\bar{y} \in[0,+\infty)$ such that $y=m \bar{y}$. So,

$$
\begin{aligned}
f(t x+(1-t) y) & =f(t x+m(1-t) \bar{y}) \\
& \leq t g(x)+m(1-t) g(\bar{y}) \quad \text { (by assuming (3)) } \\
& =t g(x)+(1-t) g(y)(\text { by }
\end{aligned}
$$

In a similar way, we obtain $g(t x+(1-t) y) \geq t f(x)+(1-t) f(y)$. Therefore, by applying Proposition 2.7 , there exists an affine function $h:[0,+\infty) \rightarrow \mathbb{R}$ such that $f \leq h \leq g$ on $[0,+\infty)$. Thus, $h(x)=a x+b$ for some $a, b \in \mathbb{R}$. The fact $f(0)=g(0)=0$ forces to $h(0)=0$; and hence, $h(x)=a x$.

3. Conclusion

We have presented some result of separation of two functions by means of an m-convex one, defined on m-convex subset of a real linear space X. Examples were given. More can be done in this direction, for example separation by means of strongly m-convex functions.

References

[1] K. Baron, J. Matkowski, and K. Nikodem, A sandwich with convexity, Math. Pannon. 5 (1994), no. 1, 139-144.
[2] M. Bracamonte, J. Giménez, and J. Medina, Sandwich theorem for reciprocally strongly convex functions, Rev. Colombiana Mat. 52 (2018), no. 2, 171-184.
[3] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Inequality, Second edition, Birkhäuser Verlag, Basel, 2009.
[4] T. Lara, J. Matkowski, N. Merentes, R. Quintero, and M. Wróbel, A generalization of m-convexity and a sandwich theorem, Ann. Math. Sil. 31 (2017), 107-126.
[5] T. Lara, N. Merentes, Z. Páles, R. Quintero, and E. Rosales, On m-convexity on real linear spaces, UPI Journal of Mathematics and Biostatistics 1 (2018), no. 2, JMB8, 16 pp.
[6] T. Lara, N. Merentes, R. Quintero, and E. Rosales, On m-concave functions on real linear spaces, Bol. Asoc. Mat. Venez. 23 (2016), no. 2, 131-137.
[7] T. Lara, N. Merentes, R. Quintero, and E. Rosales, On m-convexity of set-valued functions, Adv. Oper. Theory 4 (2019), no. 4, 767-783.
[8] T. Lara, N. Merentes, E. Rosales, and A. Tineo, Properties and characterizations of convex functions on time scales, Ann. Math. Sil. 32 (2018), 237-245.
[9] T. Lara and E. Rosales, Strongly convex functions on time scales, UPI Journal of Mathematics and Biostatistics 1 (2018), no. 2, JMB9, 10 pp.
[10] T. Lara and E. Rosales, Log m-convex functions, Moroc. J. of Pure and Appl. Anal. (MJPAA) 5 (2019), no. 2, 117-124.
[11] T. Lara, E. Rosales, and J.L. Sánchez, New properties of m-convex functions, Int. J. Math. Anal. (Ruse) 9 (2015), no. 15, 735-742.
[12] J. Matkowski and M. Wróbel, Sandwich theorem for m-convex functions, J. Math. Anal. Appl. 451 (2017), no. 2, 924-930.
[13] N. Merentes and K. Nikodem, Remarks on strongly convex functions, Aequationes. Math. 80 (2010), no. 1-2, 193-199.
[14] C.P. Niculescu and L.-E. Persson, Convex Functions and Their Applications. A Contemporary Approach, CMS Books in Mathematics, 23, Springer, New York, 2006.
[15] K. Nikodem and S. Wąsowicz, A sandwich theorem and Hyers-Ulam stability of affine functions, Aequationes Math. 49 (1995), no. 1-2, 160-164.
[16] A. Olbryś, On separation by h-convex functions, Tatra Mt. Math. Publ. 62 (2015), 105-111.
[17] A.W. Roberts and D.E. Varberg, Convex Functions, Pure and Applied Mathematics, 57, Academic Press, New York, 1973.
[18] E. Sadowska, A sandwich with convexity for set-valued functions, Math. Pannon. 7 (1996), no. 1, 163-169.
[19] G. Toader, Some generalizations of the convexity, in: I. Muruşciac and W.W. Breckner (eds.), Proceedings of the Colloquium on Approximation and Optimization, Univ. ClujNapoca, Cluj-Napoca, 1985, pp. 329-338.
[20] G. Toader, On a generalization of the convexity, Mathematica (Cluj) 30(53) (1988), no. 1, 83-87.
[21] F.A. Valentine, Convex Sets, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York, 1964.

```
Departamento de Física y Matemáticas
Universidad de los Andes
Núcleo "Rafael Rangel"
Trujillo
Venezuela
e-mail: tlara@ula.ve
e-mail: edgarr@ula.ve
```


[^0]: Received: 04.10.2020. Accepted: 14.04.2021. Published online: 26.05.2021.
 (2020) Mathematics Subject Classification: 26A51, 26B25, 39B62.

 Key words and phrases: m-convex function, m-affine function, Jensen type inequality, sandwich theorem.

