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SOME EXISTENCE RESULTS FOR SYSTEMS OF
IMPULSIVE STOCHASTIC DIFFERENTIAL EQUATIONS

Sliman Mekki, Tayeb Blouhi, Juan J. Nieto, Abdelghani Ouahab

Abstract. In this paper we study a class of impulsive systems of stochastic
differential equations with infinite Brownian motions. Sufficient conditions for
the existence and uniqueness of solutions are established by mean of some fixed
point theorems in vector Banach spaces. An example is provided to illustrate
the theory.

1. Introduction

Differential equations with impulses were considered for the first time by
Milman and Myshkis ([29]) and then followed by a period of active research
which culminated with the monograph by Halanay and Wexler ([19]). Many
phenomena and evolution processes in physics, chemical technology, popula-
tion dynamics, and natural sciences may change state abruptly or be subject
to short-term perturbations. These perturbations may be seen as impulses.
Impulsive problems arise also in various applications in communications, me-
chanics (jump discontinuities in velocity), electrical engineering, medicine and
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biology. A comprehensive introduction to the basic theory is well developed
in the monographs by Benchohra et al. ([2]), Graef et al. ([15]), Laskshmikan-
tham et al. ([23]), Samoilenko and Perestyuk ([39]).

Random differential and integral equations play an important role in char-
acterizing many social, physical, biological and engineering problems; see
for instance the monographs of Da Prato and Zabczyk ([10]), Gard ([13]),
Gikhman and Skorokhod ([14]), Sobczyk ([40]) and Tsokos and Padgett ([41]).
For example, a stochastic model for drug distribution in a biological system
was described by Tsokos and Padgett ([41]) to a closed system with a sim-
plified heat, one organ or capillary bed, and re-circulation of blood with a
constant rate of flow, where the heart is considered as a mixing chamber of
constant volume. For the basic theory concerning stochastic differential equa-
tions see the monographs of Bharucha-Reid ([4]), Tsokos and Padgett ([41]),
Sobczyk ([40]) and Da Prato and Zabczyk ([10]).

By using classical fixed point theory, in [9, 12, 18, 21, 24, 25, 26, 38],
the authors studied the existence and asymptotic stability and exponential
stability for impulsive stochastic differential equations.

In [1], the authors studied the following system of impulsive random semi-
linear differential equations without Brownian motion,

x′(t, ω) = A1(ω)x(t, ω) + f1(t, x(t, ω), y(t, ω), ω), t ∈ J = [0, b],

y′(t, ω) = A2(ω)y(t, ω) + f2(t, x(t, ω), y(t, ω), ω), t ∈ J = [0, b],

x(t+k , ω)− x(t−k , ω) = Ik(x(t−k , ω), y(t−k , ω)), k = 1, 2, . . . ,m,

y(t+k , ω)− y(t−k , ω) = Ik(x(t−k , ω), y(t−k , ω)), k = 1, 2, . . . ,m,

x(ω, 0) = ϕ1(ω), ω ∈ Ω,

y(ω, 0) = ϕ2(ω), ω ∈ Ω,

whereX is a Banach space and Ai : Ω×X → X, i = 1, 2 are random operators.
They obtained the existence and uniqueness of solutions using fixed point
theory in vector Banach spaces.

Recently in [6], the authors used the idea of fixed point theory in gen-
eralized Banach spaces to prove the existence of mild solutions of impulsive
coupled systems of stochastic differential equations with fractional Brownian
motion.
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In this paper, we are interested in the questions of existence and uniqueness
of solutions of the following system of problems:

(1.1)



dx(t) =

∞∑
l=1

f1l (t, x(t), y(t))dW l(t) + g1(t, x(t), y(t))dt, t ∈ J, t 6= tk,

dy(t) =

∞∑
l=1

f2l (t, x(t), y(t))dW l(t) + g2(t, x(t), y(t))dt, t ∈ J, t 6= tk,

∆x(t) = Ik(x(tk)), ∆y(t) = Ik(y(tk)), t = tk, k = 1, 2, . . . ,m,

x(0) = x0 ∈ R, y(0) = y0 ∈ R,

where 0 = t0 < t1 < . . . < tm < tm+1 = T, J := [0, T ], f1, f2, g1, g2 : J ×
R2 → R are Carathéodory functions,W l is an infinite sequence of independent
standard Brownian motions (l = 1, 2, . . .), Ik, Ik ∈ C(R,R) (k = 1, . . . ,m),
and ∆x|t=tk = x(t+k )−x(t−k ),∆y|t=tk = y(t+k )−y(t−k ). The notations y(t+k ) =

lim
h→0+

y(tk + h) and y(t−k ) = lim
h→0+

y(tk − h) stand for the right and the left

limits of the function y at t = tk, respectively. Set
f i(·, x, y) = (f i1(·, x, y), f i2(·, x, y), . . .),

‖f i(·, x, y)‖ =
( ∞∑
l=1

(f il )
2(·, x, y)

) 1
2

,

where i = 1, 2, f i(·, x, y) ∈ l2 for all x ∈ R.
In recent years, in the absence of random effect and stochastic analysis

many authors studied the existence of solutions for systems of differential and
difference equations with and without impulses by using the vector version of
the fixed point theorem (see [5, 3, 20, 17, 22, 31, 32, 35, 30], the monograph
of Graef et al. [15], and the references therein).

This paper is organized as follows. In Sections 2, 3, we introduce all the
background material used in this paper such as stochastic calculus and some
properties of generalized Banach spaces. In Section 4, we state some results
for fixed point theorems in generalized Banach spaces. Finally, an application
of Schaefer’s and Perov fixed point theorems in generalized Banach spaces are
used to prove the existence of solutions to problem (1.1).
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2. Preliminaries

Let (Ω,F ,P) be a complete probability space with a filtration (F = Ft)t≥0
satisfying the usual conditions (i.e. right continuity and F0 containing all
P-null sets). Assume W (t) is an infinite sequence of independent standard
Brownian motions, defined on (Ω,F ,P) that is, W (t) = (W 1(t),W 2(t), . . .)T .
An R-valued random variable is an F-measurable function x(t) : Ω→ R and
the collection of random variables

S = {x(t, ω) : Ω→ R| t ∈ J}

is called a stochastic process.
The following result is one of the elementary properties of square-integrable

stochastic processes ([27]).

Lemma 2.1 (Itô Isometry for Elementary Processes). Let (Xl)l∈N be a
sequence of elementary processes. Assume that

∫ T

0

E|X(s)|2ds <∞, |X| =

( ∞∑
l=1

X2
l

) 1
2

.

Then

E

( ∞∑
l=1

∫ T

0

Xl(s)dW
l(s)

)2

= E

( ∞∑
l=1

∫ T

0

X2
l (s)ds

)
.

The next result is known as the Burkholder–Davis–Gundy inequalities. It
was first proved for discrete martingales and p > 0 by Burkholder ([7]) in
1966. In 1968, Millar ([28]) extended the result to continuous martingales. In
1970, Davis ([11]) extended the result for discrete martingales to p = 1. The
extension to p > 0 was obtained independently by Burkholder and Gundy ([8])
in 1970 and Novikov ([33]) in 1971.

Theorem 2.1 ([36]). For each p > 0 there exist constants cp, Cp ∈ (0,∞),
such that for any progressive process x with the property that for some
t ∈ [0,∞),

∫ t
0
X2
sds <∞ a.s., we have

(2.1) cpE
(∫ t

0

X2
sds

) p
2

≤ E

(
sup
s∈[0,t]

∫ t

0

X2
sdW (s)

)p
≤ CpE

(∫ t

0

X2
sds

) p
2

.
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3. Generalized metric and Banach spaces

In this section we define vector metric spaces and generalized Banach
spaces and prove some properties. If x, y ∈ Rn, x = (x1, . . . , xn), y =
(y1, . . . , yn), by x ≤ y we mean xi ≤ yi for all i = 1, . . . , n. Also |x| =
(|x1|, . . . , |xn|) and max(x, y) = max(max(x1, y1), . . . ,max(xn, yn)). If c ∈ R,
then x ≤ c means xi ≤ c for each i = 1, . . . , n. For x ∈ Rn, (x)i = xi, i =
1, . . . , n.

Definition 3.1. Let X be a nonempty set. By a vector-valued metric
on X we mean a map d : X ×X → Rn with he following properties:
(i) d(u, v) ≥ 0 for all u, v ∈ X; d(u, v) = 0 if and only if u = v.
(ii) d(u, v) = d(v, u) for all u, v ∈ X.
(iii) d(u, v) ≤ d(u,w) + d(w, v) for all u, v, w ∈ X.
Note that for any i ∈ {1, . . . , n} (d(u, v))i = di(u, v) is a metric space in X.

We call the pair (X, d) a generalized metric space. For r = (r1, r2, . . . , rn) ∈
Rn+, we will denote by

B(x0, r) = {x ∈ X : d(x0, x) < r}

the open ball centered in x0 with radius r and

B(x0, r) = {x ∈ X : d(x0, x) ≤ r}

the closed ball centered in x0 with radius r.

Definition 3.2. Let E be a vector space on K = R or C. By a vector-
valued norm on E we mean a map ‖·‖ : E → Rn+ with the following properties:
(i) ‖x‖ ≥ 0 for all x ∈ E ; if ‖x‖ = 0 then x = 0,
(ii) ‖λx‖ = |λ|‖x‖ for all x ∈ E and λ ∈ K,
(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ E.

The pair (E, ‖ · ‖) is called a generalized normed space. If the generalized
metric generated by ‖ · ‖ (i.e. d(x, y) = ‖x − y‖) is complete then the space
(E, ‖ · ‖) is called a generalized Banach space, where

‖x− y‖ =

‖x− y‖1...
‖x− y‖n

 .
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Notice that ‖ · ‖ is a generalized Banach space on E if and only if ‖ · ‖i, i =
1, . . . , n are norms on E.

Remark 3.1. In generalized metric space in the sense of Perov’s, the no-
tations of convergence sequence, Cauchy sequence, completeness, open subset
and closed subset are similar to those for usual metric spaces.

Definition 3.3. A square matrix of real numbers is said to be convergent
to zero if and only if its spectral radius ρ(M) is strictly less than 1. In other
words, this means that all the eigenvalues of M are in the open unit disc.

Lemma 3.1 ([37]). Let M be a square matrix of nonnegative numbers. The
following assertions are equivalent:
(i) M is convergent towards zero;
(ii) the matrix I −M is non-singular and

(I −M)−1 = I +M +M2 + . . .+Mk + . . . ;

(iii) ‖λ‖ < 1 for every λ ∈ C with det(M − λI) = 0;
(iv) (I −M) is non-singular and (I −M)−1 has nonnegative elements.

In the next part, we present the versions of Banach, Schauder and Schae-
fer’s fixed point theorems in generalized Banach spaces.

Theorem 3.1 ([34]). Let (X, d) be a complete generalized metric space
and let N : X −→ X be such that

d(N(x), N(y)) ≤Md(x, y)

for all x, y ∈ X and some square matrix M of nonnegative numbers. If the
matrix M is convergent to zero, that is Mk −→ 0 as k −→ ∞, then N has a
unique fixed point x∗ ∈ X,

d(Nk(x0), x∗) ≤Mk(I −M)−1d(N(x0), x0)

for every x0 ∈ X and k ≥ 1.

Theorem 3.2 ([16, 42]). Let E be a generalized Banach space, C ⊂ E be a
nonempty closed convex subset of E and N : C → C be a continuous operator
such that N(C) is relatively compact. Then N has at least fixed point in C.

As a consequence of Schauder fixed point theorem we present the version
of Schaefer’s fixed point theorem in generalized Banach space.
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Theorem 3.3 ([16]). Let (E, ‖ · ‖) be a generalized Banach space and
N : E → E be a continuous compact mapping. Moreover assume that the set

A = {x ∈ E : x = λN(x) for some λ ∈ (0, 1)}

is bounded. Then N has a fixed point.

4. Existence and uniqueness results

Let Jk = (tk, tk+1], k = 1, 2, . . . ,m. In order to define a solution for
Problem (1.1), consider the space of piece-wise continuous functions

PC = {x : Ω× J −→ R, x ∈ C(Jk,R), k = 1, . . . ,m such that

x(t+k , ·) and x(t−k , ·) exist with x(t−k , ·) = x(tk, ·)}

endowed with the norm

‖x‖2PC = sup
t∈J

E|x(t, ·)|2.

PC is a Banach space with norm ‖ · ‖PC .

Definition 4.1. An R-valued stochastic process u = (x, y) ∈ PC×PC is
said to be a solution of (1.1) with respect to the probability space (Ω,F ,P),
if:
1) u(t) is Ft-adapted for all t ∈ Jk = (tk, tk+1], k = 1, 2, . . . ,m;
2) u(t) is right continuous and has limit on the left;
3) u(t) satisfies that

x(t) = x0 +
∞∑
l=1

∫ t

0

f1l (s, x(s), y(s))dW l(s)

+

∫ t

0

g1(s, x(s), y(s))ds+
∑

0≤tk≤t

Ik(x(tk)), ∈ J,

y(t) = y0 +

∞∑
l=1

∫ t

0

f2l (s, x(s), y(s))dW l(s)

+

∫ t

0

g2(s, x(s), y(s))ds+
∑

0≤tk≤t

Ik(y(tk)), t ∈ J.
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Let us introduce the following hypothesis:
(H1) There exist nonnegative numbers ai and bi, i = 1, 2 such that for all x,

y, x, y ∈ R, t ∈ J we have

E(|f i(t, x, y)− f i(t, x, y)|2) ≤ aiE(|x− x|2) + biE(|y − y|2).

(H2) There exist positive constants αi and βi, i = 1, 2 such that for all x, y,
x, y ∈ R, t ∈ J we have

E(|gi(t, x, y)− gi(t, x, y)|2) ≤ αiE(|x− x|)2 + βiE(|y − y|2).

(H3) There exist constants dk ≥ 0 and dk ≥ 0, k = 1, . . . ,m such that for all
x, y, x, y ∈ R

E(|Ik(x)− Ik(x)|2) ≤ dkE(|x− x|)2, E(|Ik(y)− Ik(y)|2) ≤ dkE(|y − y|2).

Our first main result in this section is based on Perov’s fixed point theorem.

Theorem 4.1. Assume that (H1)–(H3) are satisfied and the matrix M is
given by

M =
√

3

( √
C2a1 + α1T + l1

√
C2b1 + β1T√

C2a2 + α2T
√
C2b2 + β2T + l2

)
,

l1 =

m∑
k=1

dk, l2 =

m∑
k=1

dk,

where C2 ≥ 0 is defined in Theorem 2.1. If M converges to zero, then the
problem (1.1) has unique solution.

Proof. Let X = PC×PC. Consider the operator N : X → X defined by

N(x, y) = (N1(x, y), N2(x, y)), (x, y) ∈ PC × PC

where

N1(x(t), y(t)) = x0 +

∞∑
l=1

∫ t

0

f1l (s, x(s), y(s))dW l(s)

+

∫ t

0

g1(s, x(s), y(s))ds+
∑

0<tk≤t

Ik(x(tk)),
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and

N2(x(t), y(t)) = y0 +

∞∑
l=1

∫ t

0

f2l (s, x(s), y(s))dW l(s)

+

∫ t

0

g2(s, x(s), y(s))ds+
∑

0<tk≤t

Ik(y(tk)).

Fixed points of operator N are solutions of problem (1.1).
We shall use Theorem 3.1 to prove that N has a fixed point. Indeed, let

(x, y), (x, y) ∈ X. Then we have for each t ∈ J

|N1(x(t), y(t))−N1(x(t), y(t))|2

≤ 3

∣∣∣∣∣
∞∑
l=1

∫ t

0

(f1l (s, x(s), y(s))− f1l (s, x(s), y(s)))dW l(s)

∣∣∣∣∣
2

+ 3

∣∣∣∣∫ t

0

(g1(s, x(s), y(s)− g1(s, x(s), y(s))ds

∣∣∣∣2

+ 3

m∑
k=1

|Ik(x(tk))− Ik(x(tk))|2.

By Theorem 2.1, we get

E|N1(x(t), y(t))−N1(x(t), y(t))|2

≤ 3C2

∫ t

0

E|f1(s, x(s), y(s))− f1(s, x(s), y(s))|2ds

+ 3t

∫ t

0

E|g1(s, x(s), y(s))− g1(s, x(s), y(s))|2ds

+ 3

m∑
k=1

E|Ik(x(tk))− Ik(x(tk))|2.

Therefore,

sup
t∈J

E|N1(x(t), y(t))−N1(x(t), y(t))|2 ≤ 3(C2a1 + α1T + l1)‖x− x‖2PC

+ 3(C2b1 + β1T )‖y − y‖2PC .
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Similarly we have

‖N2(x, y)−N2(x, y)‖2PC ≤ 3(C2a2 + α2T )‖x− x‖2PC

+ (C2b2 + β2T + l2)‖y − y‖2PC .

Hence

‖N(x, y)−N(x, y)‖X =

(
‖N1((x, y)−N1(x, y)‖PC
‖N2(x, y)−N2(x, y)‖PC

)

≤
√

3

(√
C2a1 + α1T + l1

√
C2b1 + β1T√

C2a2 + α2T
√
C2b2 + β2T + l2

)(
‖x− x‖PC
‖y − y‖PC

)
.

Therefore

‖N(x, y)−N(x, y)‖X ≤M
(
‖x− x‖PC
‖y − y‖PC

)
, for all (x, y), (x, y) ∈ X.

From Perov’s fixed point theorem, the mapping N has a unique fixed (x, y) ∈
PC × PC which is unique solution of problem (1.1). �

We present now the existence result under nonlinearities f i and gi, i = 1, 2
satisfying a Nagumo type growth conditions:
(H4) There exist a function pi ∈ L1(J,R+) and a continuous nondecreasing

function ψi : [0,∞)→ [0,∞) for each i = 1, 2 such that for all x, y ∈ R

E(‖f1(t, x, y)‖2) ≤ p1(t)ψ1(E(|x|2 + |y|2)),

E(‖f2(t, x, y)‖)2 ≤ p2(t)ψ2(E(|x|2 + |y|2)),

with ∫ T

0

m1(s)ds <

∫ ∞
v1

ds

ψ1(s) + ψ2(s)

where m1(t) = max{4C2p1(t), 4Tp2(t)}, v1 = 4E|x0|2 + 4
∑m
k=1 ck.

(H5) There exist a function pi ∈ L1(J,R+) and a continuous nondecreasing
function ψi : [0,∞)→ [0,∞) for each i = 3, 4 such that for all x, y,∈ R
we have

E(|gi(t, x, y)|2) ≤ pi(t)ψ3(E(|x|2 + |y|2)),

with ∫ T

0

m2(s)ds <

∫ ∞
v2

ds

ψ3(s) + ψ4(s)
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where

m2(t) = max{4C2p3(t), 4Tp4(t)}, v2 = 4E|y0|2 +

m∑
k=1

c̃k.

(H6) There exist positive constants ck, c̃k, k = 1, . . . ,m, such that

E(|Ik(x)|)2 ≤ ck, E(|Ik(y)|)2 ≤ c̃k for all (x, y) ∈ R2.

Theorem 4.2. Assume that (H4)–(H6) hold. Then (1.1) has at least one
solution on J.

Proof. Clearly, the fixed points of N are solutions to (1.1), where N is
defined in Theorem 4.1. In order to apply Theorem 3.3, we first show that N
is completely continuous. The proof will be given in several steps.

Step 1. N = (N1, N2) is continuous.
Let (xn, yn) be a sequence such that (xn, yn) → (x, y) ∈ PC × PC as

n→∞. Then

|N1(xn(t), yn(t))−N1(x(t), y(t))|2

≤ 3

∣∣∣∣∣
∞∑
l=1

∫ t

0

(f1l (s, xn(s), yn(s))− f1l (s, x(s), y(s)))dW l(s)

∣∣∣∣∣
2

+ 3

∣∣∣∣∫ t

0

(g1(s, xn(s), yn(s))− g1(s, x(s), y(s)))ds

∣∣∣∣2

+ 3

m∑
k=1

|Ik(xn(tk))− Ik(x(tk))|2 .

From Theorem 2.1, we obtain

E|N1(xn(t), yn(t))−N1(x(t), y(t))|2

≤ 3C2

∫ t

0

E|f1(s, xn(s), yn(s))− f1(s, x(s), y(s))|2ds

+ 3t

∫ t

0

E|g1(s, xn(s), yn(s))− g1(s, x(s), y(s))|2ds

+ 3

m∑
k=1

E|Ik(xn(tk))− Ik(x(tk))|2.
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Since f1, g1 are Carathéodory functions and Ik, Ik are continuous functions,
by Lebesgue dominated convergence theorem, we get

sup
t∈J

E|N1(xn(t), yn(t))−N1(x(t), y(t))|2 ≤ 3C2E‖f1(·, xn, yn)− f1(·, x, y)‖2L2

+ 3TE‖g1(·, xn, yn)− g1(·, x, y)‖2L2

+ 3

m∑
k=1

E|Ik(xn(tk))− Ik(x(tk))|2 → 0 as n→∞.

Similarly

sup
t∈J

E|N2(xn(t), yn(t))−N1(x(t), y(t))|2 ≤ 3C2E‖f2(·, xn, yn)− f2(·, x, y)‖2L2

+ 3TE‖g2(·, xn, yn)− g2(·, x, y)‖L2

+ 3

m∑
k=1

E|Ik(yn(tk))− Ik(y(tk))|2 → 0 as n→∞.

Thus N is continuous.
Step 2. N maps bounded sets into bounded sets in PC × PC.
Indeed, it is enough to show that for any q > 0 there exists a positive

constant l such that for each (x, y) ∈ Bq = {(x, y) ∈ PC × PC : ‖x‖PC ≤
q, ‖y‖ ≤ q}, we have

‖N(x, y)‖PC ≤ l = (l1, l2).

For each t ∈ J, we get

|N1(x(t), y(t))|2 ≤ 4|x0|2 + 4|
∞∑
l=1

∫ t

0

f1l (s, x(s), y(s))dW l(s)|2

+ 4|
∫ t

0

g1(s, x(s), y(s))ds|2 + 4|
m∑
k=1

Ik(x(tk))|2.

Using the inequality (2.1), we also get

E|N1(x(t), y(t))|2 ≤ 4E|x0|2 + 4C2‖p1‖L1ψ1(2q)

+ 4T‖p3‖L1ψ2(2q)ds+ 4

m∑
k=1

ck.
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Therefore

‖N1(x, y)‖PC ≤ 4E|x0|2 + 4C2‖p1‖L1ψ1(2q)

+ 4‖p2‖L1ψ2(2q)ds+ 4

m∑
k=1

ck := l1.

Similarly, we have

‖N2(x, y)‖PC ≤ 4E|x0|2 + 4C2‖p3‖L1ψ2(q) + 4‖p4‖L1ψ4(q)ds+ 4

m∑
k=1

c̃k := l2.

Step 3. N maps bounded sets into equicontinuous sets of PC × PC.
Let Bq be a bounded set in PC × PC as in Step 2. Let r1, r2 ∈ J, r1 < r2

and u ∈ Bq. Then we have

|N1(x(r2), y(r2))−N1(x(r1), y(r1))|2 ≤ 3

∣∣∣∣∣
∞∑
l=1

∫ r2

r1

f1l (s, x(s), y(s))dW l(s)

∣∣∣∣∣
2

+ 3

∣∣∣∣∫ r2

r1

g1(s, x(s), y(s))ds

∣∣∣∣2 + 3
∑

r1≤tk≤r2

|Ik(x(tk))|2.

Hence

E|N1(x(r2), y(r2))−N1(x(r1), y(r1))|2 ≤ 3C2ψ1(q)

∫ r2

r1

p1(s)ds

+ Tψ2(q)

∫ r2

r1

p2(s)ds+ 3
∑

r1≤tk≤t2

ck.

The right-hand term tends to zero as |r2 − r1| → 0. As a consequence of
Steps 1 to 3 together with the Arzelà-Ascoli, we conclude that N maps Bq
into a precompact set in PC × PC.

Step 4. It remains to show that

A = {(x, y) ∈ PC × PC : (x, y) = λN(x, y), λ ∈ (0, 1)}

is bounded.
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Let (x, y) ∈ A. Then x = λN1(x, y) and y = λN2(x, y) for some 0 < λ < 1.
Thus, for t ∈ J , we have

E|x(t)|2 ≤ 4E|x0|2 + 4C2

∫ t

0

p1(s)ψ1(E|x(s)|2 + E|y(s)|2)ds

+ 4T

∫ t

0

p2(s)ψ2(E|x(s)|2 + E|y(s)|2)ds+ 4

m∑
k=1

ck.

Hence

E|x(t)|2 ≤ 4E|x0|2 + 4C2

∫ t

0

p1(s)ψ1(E|x(s)|2 + E|y(s)|2)ds

+ 4T

∫ t

0

p2(s)ψ2(E|x(s)|2 + E|y(s)|2)ds+ 4

m∑
k=1

ck

and

E|y(t)|2 ≤ 4E|x0|2 + 4C2

∫ t

0

p3(s)ψ2(E|x(s)|2 + E|y(s)|2)ds

+ 4T

∫ t

0

p4(s)ψ3(E|x(s)|2 + E|y(s)|2)ds+ 4

m∑
k=1

c̃k.

Therefore

E|x(t)|2 + E|y(t)|2 ≤ γ +

∫ t

0

p(s)φ(E|x(s)|2 + E|y(s)|2)ds,

where

γ = 8E|x0|2 + 4

m∑
k=1

(ck + c̃k), p(t) = m1(t) +m(t), and φ(t) =

m∑
i=1

ψi(t).

By the Gronwall inequality, we have

E|x(t)|2 + E|y(t)|2 ≤ Γ−1

(∫ T

γ

p(s)ds

)
:= K, for each t ∈ J,

where

Γ(z) =

∫ z

γ

du

φ(u)
.
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Consequently

‖x‖PC ≤ K and ‖y‖PC ≤ K.

This shows that A is bounded. As a consequence of Theorem 3.3 we deduce
that N has a fixed point (x, y) which is a solution to the problem (1.1). �

The goal of the second result of this section is to apply Schauder’s fixed
point. For the study of this problem we first introduce the following hypothe-
ses:
(H7) There exist nonnegative numbers ai and bi, ci, i = 1, 2 such that for all

x, y ∈ R, we have

E(|fi(t, x, y)|2) ≤ aiE(|x|)2 + biE(|y|)2 + c1.

(H8) There exist positive constants αi and βi, λi, i = 1, 2 such that for all
x, y ∈ R, we have

E(|gi(t, x, y)|2) ≤ αiE(|x|)2 + βiE(|y|)2 + λ1.

(H9) There exist constants d ≥ 0, d ≥ 0 and ei ≥ 0, i = 1, 2 and k = 1, . . . ,m
such that

m∑
k=1

E|Ik(x)|2 ≤ dE|x|2 + e1,

m∑
k=1

E|Ik(x)|2 ≤ dE|x|2 + e2, for all x ∈ R.

Theorem 4.3. Assume (H7)–(H9) hold and

Ma,b =
√

2

√C2a1 + α1T + d
√
C2b1 + β1T

√
C2a2 + α2T

√
C2b2 + β2T + d


converges to zero. Then problem (1.1) has at least one solution.
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Proof. Let X = PC × PC. Consider the operator N = (N1, N2) : PC ×
×PC −→ PC ××PC defined for x, y ∈ PC by

N1(x(t), y(t)) = x0 +

∞∑
l=1

∫ t

0

f1l (s, x(s), y(s))dW l(s)

+

∫ t

0

g1(s, x(s), y(s))ds+
∑

0<tk<t

Ik(x(tk))

and

N2(x(t), y(t)) = y0 +

∞∑
l=1

∫ t

0

f2l (s, x(s), y(s))dW l(s)

+

∫ t

0

g2(s, x(s), y(s))ds+
∑

0<tk<t

Ik(y(tk)).

Set

D = {(x, y) ∈ PC × PC : ‖x‖PC ≤ R1, ‖y‖PC ≤ R2}.

Obviously, the set D is a bounded closed convex set in space PC × PC.
It is clear that

|N1(x(t), y(t))|2 ≤ 4|x0|2 + 4|
∞∑
l=1

∫ t

0

f1l (s, x(s), y(s))dW l(s)|2

+ 4|
∫ t

0

g1(s, x(s), y(s))ds|2 + |4
m∑
k=1

Ik(x(tk))|2.

From the inequality (2.1), we get

E|N1(x(t), y(t))|2 ≤ 4E|x0|2 + 4C2a1

∫ t

0

E|x(s)|2ds

+ 4b1C2

∫ t

0

E|y(s)|2ds+ 4c1T + 4Tα1

∫ t

0

E|x(s)|2d(s)

+ 4β1T

∫ t

0

E|y(s)|2ds+ 4λ1T + 4dE|x|2 + 4e1,

thus

sup
t∈J

E|N1(x(t), y(t))|2 ≤ 4(C2a1 + α1T + d)‖x‖PC + 4(C2b1 + β1T )‖y‖PC

+ 4E|x0|2 + 4e1 + 4Tc1 + 4Tλ1.(4.1)
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From (4.1) we obtain that

(4.2) ‖N1(x, y))‖PC ≤ ã1‖x‖PC + b̃1‖y‖PC + c̃1,

where

ã1 = 2
√
C2a1 + α1T + d, b̃1 = 2

√
C2b1 + β1T ,

c̃1 = 2
√
E|x0|2 + e1 + Tc1 + Tλ1.

Similarly we have

(4.3) ‖N2(x, y)‖PC ≤ ã2‖x‖PC + b̃2‖y‖PC + c̃2,

where

ã2 = 2
√
C2a2 + 4α2T , b̃2 = 2

√
C2b2 + β2T + d,

and c̃2 = 2
√

E|y0|2 + 4e2 + Tc2 + Tλ2.

Now (4.2), (4.3) can be put together as

‖N(x, y)‖X =

(
‖N1(x, y)‖PC
‖N2(x, y)‖PC

)

≤ 2

√C2a1 + α1T + d
√
C2b1 + β1T

√
C2a2 + α2T

√
C2b2 + β2T + d

(‖x‖PC
‖y‖PC

)
+

(
c̃1
c̃2

)
.

Therefore

‖N(x, y)‖X ≤Ma,b

(
‖x‖PC
‖y‖PC

)
+

(
c̃1
c̃2

)
.

Since Ma,b ∈ Mn×n(R+), N(x, y) converges to zero. Next, we look for two
positive numbers R1, R2 such that if ‖x‖PC ≤ R1, ‖y‖PC ≤ R2 , then
‖N1(x, y)‖PC ≤ R1, ‖N2(x, y)‖PC ≤ R1. To this end it is sufficient that(

R1

R2

)
≤Ma,b

(
R1

R2

)
+

(
c̃1
c̃2

)
whence

(I −Ma,b)

(
R1

R2

)
≤
(
c̃1
c̃2

)
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that is (
R1

R2

)
≤ (I −Ma,b)

−1
(
c̃1
c̃2

)
.

Thus, it is clear that there exist R1, R2 > 0 such that

N(D) ⊆ D,

where

D = {(x, y) ∈ PC × PC : ‖x‖PC ≤ R1, ‖y‖PC ≤ R2}.

Hence, by Theorem 3.1, the operator N has at least one fixed point which is
solution of (1.1). �

5. An example

In this section we consider the following example of stochastic differential
equation:

(5.1)



dx(t) =

∞∑
l=1

(a2l+1 sin k2x+ a2l cos l2y)dW l(t)

+ d1(t+ x(t) + y(t))dt, t ∈ [0, 1], t 6= 1

2

dy(t) =

∞∑
l=1

(b2l+1 sin k2x+ b2l cos l2y)dW l(t)

+ d2(t+ x(t) + y(t))dt, t ∈ [0, 1], t 6= 1

2

∆x(t) = c1
x(t)

1 + |x(t)|
, ∆y(t) = c1

y(t)

1 + |y(t)|
, t =

1

2

x(0) = x0, y(0) = y0,



278 Sliman Mekki, Tayeb Blouhi, Juan J. Nieto, Abdelghani Ouahab

where c1, c2 ∈ R, (al)l∈N, (bl)l∈N ∈ l2, f1, f2 : [0, 1] × R × R → R are defined
by

f1(t, x, y) =

∞∑
k=1

(a2k+1 sin k2x+ a2k cos k2y),

f2(t, x, y) =

∞∑
k=1

(b2k+1 sin k2x+ b2k cos k2y).

We deduce that

‖f1(t, x, y)‖2 ≤ 4

∞∑
k=1

a2k <∞, ‖f2(t, x, y)‖2 ≤ 4

∞∑
k=1

b2k <∞.

Hence

E|f1(t, x, y)|2 ≤ 4

∞∑
k=1

a2k + E(|x|2 + |y|2),

E|f2(t, x, y)|2 ≤ 4

∞∑
k=1

b2k + E(|x|2 + |y|2) for all x, y ∈ R.

Also we have

I1(x) = c1
x(t)

1 + |x(t)|
, I2(y) = c2

y

1 + |y|
⇒ E|I1(x)|2 ≤ c1, E|I2(x)|2 ≤ c2,

and

g1(t, x, y) = d1(t+ x+ y), g2(t, x, y) = d2(t+ x+ y), x, y ∈ R, t ∈ [0, 1].

Hence

E|g1(t, x, y)|2 ≤ 3d21(1+E|x|2+E|y|2), E|g2(t, x, y)|2 ≤ 3d22(1+E|x|2+E|y|2).

Thus all the conditions of Theorem 4.2 hold, and then Problem (5.1) has at
least one solution.
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