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RESULTS IN STRONGLY MINIHEDRAL CONE
AND SCALAR WEIGHTED CONE METRIC SPACES

AND APPLICATIONS

Anita Tomar , Meena Joshi

Abstract. The convergence of sequences and non-unique fixed points are es-
tablished in M-orbitally complete cone metric spaces over the strongly mini-
hedral cone, and scalar weighted cone assuming the cone to be strongly mini-
hedral. Appropriate examples and applications validate the established theory.
Further, we provide one more answer to the question of the existence of the
contractive condition in Cone metric spaces so that the fixed point is at the
point of discontinuity of a map. Also, we provide a negative answer to a natural
question of whether the contractive conditions in the obtained results can be
replaced by its metric versions.

1. Introduction

K-metric and K-normed spaces were familiarized ([1], [5], [13]) using an
ordered Banach space as the range of a metric, in place of the set of real
numbers. Bogdan Rzepecki ([11]), familiarized a generalized metric dE : U ×
U → S, where, S is a normal cone in a Banach space E with a partial order �.
Later on, Shy-Der Lin ([8]) studied d : U×U → K by substituting real numbers
in the metric function with cone K. Huang and Zhang ([3]) re-initiated it as
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cone metric spaces and defined convergence and Cauchy sequences in terms
of the interior points of the cone under consideration.

In this manuscript, the convergence of sequences and non-unique fixed
points are established in an M-orbitally complete strongly minihedral cone
metric space and scalar weighted cone metric space. The established results
and illustrative examples show that the cone metric space is a real general-
ization of a metric space. The solution of equations that are significant in
engineering and sciences, integral equations, and a boundary value problem
illustrates its usefulness. Our results generalize and extend many earlier ob-
tained results. In the sequel, we provide novel answers in cone metric spaces
to the open question posed by Rhoades ([10]) regarding the existence of a
contractive map having the discontinuity at a fixed point. Also, we provide
a negative answer to a natural question of whether the contractive condi-
tions can be replaced by its metric versions. It is worth mentioning here that
Khamsi ([7]) claimed that the majority of the cone fixed point results are
identical to the classical results and consequently, extensions of known fixed
point theorems to cone metric spaces are superfluous.

2. Preliminaries

Let E := (E , ‖·‖) be a real Banach space and P := PE , a closed non-empty
subset of E . P is a cone if au + bv ∈ P, u, v ∈ P, P ∩ (−P) = {0}, P 6= {0}
and a, b are non-negative real numbers. A partial ordering with respect to P
is defined by u � v if and only if v − u ∈ P. u ≺ v shows that u � v and
u 6= v, and u ≺≺ v means v − u ∈ intP, the interior of P. We assume that
intP 6= φ. The cone P is normal if there is a least positive number K ≥ 1
(normal constant) for which θ � u � v implies that ‖u‖ ≤ K ‖v‖, u, v ∈ E ,
and θ is the zero element of cone P in a normed linear space E . The cone P
is regular if for any sequence {un}n≥1 such that u1 � u2 · · · � v, v ∈ E , there
exists u ∈ E such that limn→∞ ‖un − u‖ = 0.

Lemma 2.1 ([9]).
(i) Every regular cone is normal.
(ii) For each k > 1, there is a normal cone with a normal constant K > k.
(iii) The cone P is regular if every decreasing sequence which is bounded from

below is convergent.

Definition 2.2 ([3]). Let U be a non-empty set. Suppose that the map
d : U × U → E satisfies:
(i) θ � d(u, v) and d(u, v) = θ if and only if u = v;
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(ii) d(u, v) = d(v, u);
(iii) d(u, v) � d(u, z) + d(z, v).

Then, the pair (U , d) is called a cone metric space.

Example 2.3 ([6]). Let E = R3, P = {(u, v, z) ∈ E : u, v, z ≥ 0}, and U =
R. Define d : U × U → E by d(u, û) = (a |u− û| ,b |u− û| , c |u− û|), where,
a,b, c are positive constants. Then, (U , d) is a cone metric space. However,
it is not a usual metric space. Note that the cone P is normal with K = 1.
Clearly, the cone is strongly minihedral.

Definition 2.4 ([6]). Let u ∈ U and {un}n≥1 be a sequence in a cone
metric space (U , d). Then,
(i) {un}n≥1 converges to u whenever for every c ∈ E with θ ≺≺ c, there

is a natural number N satisfying d(un, u) ≺≺ c, n ≥ N. We write
limn→∞ un = u.

(ii) {un}n≥1 is a Cauchy sequence whenever for every c ∈ E with θ ≺≺ c

there is a natural number N such that d(un, um) ≺≺ c, n,m ≥ N.
(iii) (U , d) is a complete cone metric space if every Cauchy sequence is con-

vergent.

Definition 2.5 ([2]). P is called a minihedral cone if sup {u, v} exists,
u, v ∈ E , and a strongly minihedral cone if every subset of E which is bounded
from above has a supremum.

Lemma 2.6 ([6]).
(i) Every strongly minihedral normal (not necessarily closed) cone is regular.
(ii) Every strongly minihedral (closed) cone is normal.

Example 2.7 ([6]). Let E = C[0, 1] with the supremum norm and P =
{f ∈ E : f � θ}. Then, P is a cone with a normal constant K = 1 which
is not regular, since the sequence {xn} is monotonically decreasing, but not
uniformly convergent to θ. This cone is not strongly minihedral.

Definition 2.8 ([6]). A mapM on a cone metric space (U , d) is orbitally
continuous if limj→∞Mnju = z implies that limj→∞M(Mnju) = Mz.
A cone metric space (U , d) isM-orbitally complete if every Cauchy sequence
of the form {Mnju}∞n=1 , u ∈ U converges in (U , d).

Remark 2.9. Orbital continuity ofM implies orbital continuity ofMm,
m ∈ N.

Definition 2.10 ([6]). The scalar weight of the cone metric d is given as
ds(u, v) = ‖d(u, v)‖ .
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Noticeably, the scalar weight of the cone metric ds acts like a metric on U
for normal cone P (K = 1).

3. Main results

First, we demonstrate that the iterated sequence converges to a fixed point
of an orbitally continuous self-map in an orbitally complete cone metric space
(U , d).

Theorem 3.1. Let M be an orbitally continuous self-map on an M-
orbitally complete cone metric space (U , d) over a strongly minihedral normal
cone P such that there exists a real number η satisfying:

θ � min {d(u,Mu), d(v,Mv), d(Mu,Mv)}(3.1)

+ ηmin {d(u,Mv), d(v,Mu)}

� αmax {d(u, v),min {d(u,Mu), d(v,Mv)}}+ βd(u, v),

u, v ∈ U , where θ is the zero element of the cone P in a normed linear space E,
α+β < 1, α and β are non-negative real numbers. Then, the iterated sequence
{Mnu}, u ∈ U converges to a fixed point ofM.

Proof. Fix u0 ∈ U and set u1 = Mu0. Repeatedly, un+1 = Mun =
Mn+1u0, n ≥ 1. Evidently, the sequence {un} is Cauchy, when un+1 = un,
for some n ∈ N.

Let un+1 6= un, n ∈ N. Taking u = un−1 and v = un in inequality (3.1) we
get

θ � min {d(un−1,Mun−1), d(un,Mun), d(Mun−1,Mun)}

+ ηmin {d(un−1,Mun), d(un,Mun−1)}

� αmax {d(un−1, un),min {d(un−1,Mun−1), d(un,Mun)}}+ βd(un−1, un),

that is,

θ � min {d(un−1, un), d(un, un+1), d(un, un+1)}

+ ηmin {d(un−1, un+1), d(un, un)}

� αmax {d(un−1, un),min {d(un−1, un), d(un, un+1)}}+ βd(un−1, un).
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Two cases arise: either d(un−1, un)≺ d(un, un+1) or d(un, un+1)≺ d(un−1, un).

Case (i) If d(un−1, un) ≺ d(un, un+1), then

θ � d(un−1, un) + η · θ � αd(un−1, un) + βd(un−1, un)

= (α+ β)d(un−1, un)

≺ d(un−1, un), a contradiction.

Case (ii) If d(un, un+1) ≺ d(un−1, un), then

θ � d(un, un+1) + η · θ � αd(un−1, un) + βd(un−1, un)

= (α+ β)d(un−1, un)

≺ d(un−1, un).

Repeatedly, d(un, un+1) ≺ d(un−1, un) ≺ d(un−2, un−1) ≺ · · · ≺ d(u0, u1).
So, {d(un, un+1)}n≥0 is a decreasing sequence bounded below by θ and con-
sequently, converges to some real number θ � t. Since

t � d(un, un+1) � (α+ β)d(un−1, un)

� (α+ β)2d(un−2, un−1)

�
...

� (α+ β)nd(u0, u1)→ θ, as n→∞,

then limn→∞ d(un, un+1) = θ. Now, for n > m

d(um, un) ≺ d(um, um+1) + d(um+1, um+2) + · · ·+ d(un−1, un)

�
(
(α+ β)m + (α+ β)m+1 + · · ·+ (α+ β)n

)
d(u0, u1)

� (α+ β)m(1− (α+ β)n−m)

1− α− β
d(u0, u1)→ θ, as n,m→∞.

Hence, {un} is a Cauchy sequence in (U , d). Since, (U , d) isM-orbitally com-
plete, there exists z ∈ U satisfying

lim
n→∞

un = lim
n→∞

Mnu0 = z.

SinceM is orbitally continuous,Mz = limn→∞M(Mnu0) = z, that is, z is
a fixed point ofM. �
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Example 3.2. Let U = {0}∪
{

1
3n : n ∈ N

}
, E = R2, P = {(u, v) : u, v ≥ 0}

and d : U×U → E be defined by d(u, v) = (a |u− v| ,b |u− v|), where a,b ≥ 0.
We define a self map M on U by M0 = 0, M( 1

3n ) = 1
3n+1 , n ≥ 1. Here,

O(13) =
{

1
3n : n ∈ N

}
. Clearly, (U , d) is M-orbitally complete cone metric

space over a strongly minihedral normal cone P andM is orbitally continuous
at 0.M satisfies inequality (3.1) for u, v ∈ U , α = 1

2 , β = 1
3 , and η ∈ (−∞, 0].

Thus, all the assumptions of Theorem 3.1 are verified andM has a fixed point
at u = 0, which is a point of discontinuity of a map M. Also, there exists
an iterated sequence {Mnu} =

{
1
3n

}
converging to a fixed point 0 of M.

Noticeably, (U , d) is not a usual metric space.

Next, we establish a fixed point of an orbitally continuous self-map.

Theorem 3.3. If in Theorem 3.1, the sequence {Mnu0} has a cluster
point z ∈ U , for some u0 ∈ U , then z is a fixed point ofM.

Proof. LetMmu0=Mm−1u0, for some m ∈ N. So,Mnu0=Mmu0= z,
n ≥ m. Evidently, z is a required point. Let Mmu0 6= Mm−1u0, for all
m ∈ N. Since {Mnu0} has a cluster point z ∈ U , limi→∞Mniu0 = z. On
taking u =Mn−1u0 and v =Mnu0 in inequality (3.1), we get

(3.2) θ � min
{
d(Mn−1u0,Mnu0), d(Mnu0,Mn+1u0), d(Mnu0,Mn+1u0)

}
+ ηmin

{
d(Mn−1u0,Mn+1u0), d(Mnu0,Mnu0)

}
� αmax{d(Mn−1u0,Mnu0),min

{
d(Mn−1u0,Mnu0), d(Mnu0,Mn+1u0)

}
}

+ βd(Mn−1u0,Mnu0).

There are two cases: d(Mn−1u0,Mnu0) � d(Mnu0,Mn+1u0) or d(Mnu0,
Mn+1u0) � d(Mn−1u0,Mnu0).

Case (i) If d(Mn−1u0,Mnu0) � d(Mnu0,Mn+1u0), inequality (3.2) gives

θ � d(Mn−1u0,Mnu0) + η · θ

≺ αd(Mn−1u0,Mnu0) + βd(Mn−1u0,Mnu0)

= (α+ β)d(Mn−1u0,Mnu0)

≺ d(Mn−1u0,Mnu0), a contradiction.
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Case (ii) If d(Mnu0,Mn+1u0) � d(Mn−1u0,Mnu0), inequality (3.2) gives

θ � d(Mnu0,Mn+1u0) + η · θ ≺ αd(Mn−1u0,Mnu0) + βd(Mn−1u0,Mnu0)

= (α+ β)d(Mn−1u0,Mnu0)

≺ d(Mn−1u0,Mnu0).

So, the sequence
{
d(Mnu0,Mn+1u0)

}
n≥0 is decreasing. Since the cone P

is strongly minihedral, it follows from Lemma 2.1(iii) and 2.6(i) that the se-
quence

{
d(Mnu0,Mn+1u0)

}
n≥0 is convergent. Also, byM-orbital continuity

limi→∞ d(Mniu0,Mni+1u0) = d(z,Mz). But
{
d(Mniu0,Mni+1u0)

}
n≥0 ⊆{

d(Mnu0,Mn+1u0)
}
n≥0. So, limn→∞ d(Mnu0,Mn+1u0) = d(z,Mz). Note

that limi→∞Mni+1u0 = Mz, limi→∞Mni+2u0 = M2z and
{
d(Mni+1u0,

Mni+2)
}
n≥0 ⊆

{
d(Mnu0,Mn+1u0)

}
n≥0, therefore d(Mz,M2z) = d(z,Mz).

Suppose thatMz 6= z, that is, θ ≺ d(z,Mz). Taking u = z and v =Mz
in inequality (3.1), we get

θ � min{d(z,Mz), d(Mz,M2z), d(Mz,M2z)}

+ ηmin{d(z,M2z), d(Mz,Mz)}

� αmax{d(z,Mz),min{d(z,Mz), d(Mz,M2z)}}+ βd(z,Mz),

that is,

θ � d(z,Mz) + η · θ � αd(z,Mz) + βd(z,Mz)

= (α+ β)d(z,Mz)

≺ d(z,Mz), a contradiction.

Hence,Mz = z. �

Next, we demonstrate that the iterated sequence converges to a fixed point
on scalar weighted cone metric spaces with no restriction on a normal con-
stant K. It is interesting to see that assumption of strongly minihedral is not
required.

Theorem 3.4. Let M be an orbitally continuous self-map on an M-
orbitally complete scalar weighted cone metric space (U , ds) over a normal
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cone P with a normal constant K such that there exists a real number η sat-
isfying:

0 ≤ min {ds(u,Mu), ds(Mu,Mv), ds(v,Mv)}(3.3)
+ ηmin {ds(u,Mv), ds(v,Mu)}
≤ αmax {ds(u, v),min {ds(u,Mu), ds(v,Mv)}}+ βds(u, v),

u, v ∈ U , α+β < 1, α and β are non-negative real numbers. Then the iterated
sequence {Mnu} converges to a fixed point ofM, for each u ∈ U .

Proof. Let u0 ∈ U . Set u1 =Mu0. Repeatedly, un+1 =Mun =Mn+1u0,
n ≥ 1. Evidently, the sequence {un} is a Cauchy sequence when un+1 = un,
for some n ∈ N. So, let un+1 6= un, for all n ∈ N. On taking u = un−1 and
v = un, in inequality (3.3), we get

0 ≤ min {ds(un−1,Mun−1), ds(Mun−1,Mun), ds(un,Mun)}

+ ηmin{ds(un−1,Mun), ds(un,Mun−1)}

≤ αmax {ds(un−1, un),min {ds(un−1,Mun−1), ds(un,Mun)}}

+ βds(un−1, un),

that is,

0 ≤ min {ds(un−1, un), ds(un, un+1), ds(un, un+1)}

+ ηmin {ds(un−1, un+1), ds(un, un)}

≤ αmax {ds(un−1, un),min {ds(un−1, un), ds(un, un+1)}}+ βds(un−1, un).

There are two cases:

ds(un, un+1) ≤ ds(un−1, un) or ds(un−1, un) ≤ ds(un, un+1).

Case (i) If ds(un−1, un) ≤ ds(un, un+1), we have

0 ≤ ds(un−1, un) + η · 0

≤ αmax {ds(un−1, un), ds(un−1, un)}+ βds(un−1, un)

= (α+ β)ds(un−1, un)

< ds(un−1, un), a contradiction.
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Case (ii) If ds(un, un+1) ≤ ds(un−1, un), we have

0 ≤ ds(un, un+1) + η · 0

≤ αmax {ds(un−1, un), ds(un, un+1)}+ βds(un−1, un)

= (α+ β)ds(un−1, un)

< ds(un−1, un).

This implies that {ds(un, un+1)}n≥0 is a decreasing sequence of positive real
numbers and consequently converges to t ≥ 0. We assert that t = 0. Because
if t > 0, on making n → ∞, ds(un, un+1) ≤ (α + β)ds(un−1, un), yields
t ≤ (α + β)t < t, a contradiction. Hence, t = 0. By using similar arguments,
we may prove that {un} is a Cauchy sequence in (U , ds). Since (U , ds) isM-
orbitally complete, limn→∞ un = limn→∞Mnu0 = z, for some z ∈ U . By the
orbital continuity of M, Mz = limn→∞Mn+1u0 = z, that is, z is a fixed
point ofM and for u ∈ U , the iterated sequence {Mnu} converges to a fixed
point ofM. �

Example 3.5. Let U = {1} ∪
{
1 + 1

3n−1 : n ∈ N
}
∪
{
2− 1

4n−1 : n ∈ N
}
∪

{2}, E = R2, P = {(u, v) : u, v ≥ 0} and d : U ×U → E be defined as d(u, v) =
(a |u− v| ,b |u− v|), where, a,b ≥ 0.We define a self mapM on U as:M1 =
1, M(1 + 1

3n ) = 1 + 1
3n+1 , n ≥ 1, M(2 − 1

4n ) = 2 − 1
4n+1 , n ≥ 1, M2 = 2.

Here, O(1+ 1
3) =

{
1 + 1

3n : n ∈ N
}
and O(2− 1

4) =
{
2− 1

4n : n ∈ N
}
. Clearly,

(U , d) is M-orbitally complete scalar weighted cone metric space and M is
orbitally continuous at 1 and 2.M satisfies inequality (3.3) for u, v ∈ U and
α = 1

3 , β = 1
4 , η ∈ (−∞, 0]. Thus, all the assumptions of Theorem 3.4 are

verified andM has two fixed points u = 1 and u = 2, which are also points of
discontinuity ofM. Also, there exist iterated sequences: {Mnu} =

{
1 + 1

3n

}
converging to a fixed point 1, and {Mnu} =

{
2− 1

4n

}
converging to a fixed

point 2 ofM. Noticeably, (U , d) is not a usual metric space.

Now, we establish a fixed point of an orbitally continuous self-map on a
scalar weighted cone metric space.

Theorem 3.6. If in Theorem 3.4, the sequence {Mnu0} has a cluster
point z ∈ U , for some u0 ∈ U , then z is a fixed point ofM.

Proof. The proof of Theorem 3.6 is similar to Theorem 3.3 except the
fact that we may conclude the decreasing sequence to be convergent without
the supposition of strongly minihedrality of the cone P since we are using the
scalar weight of a cone metric in Theorem 3.6 . �
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Theorem 3.7. Theorem 3.4 remains true even if inequality (3.3) is re-
placed by

(3.4) 0 ≤ min
{
(ds(u,Mu))2, ds(u, v)ds(Mu,Mv), (ds(v,Mv))2

}
+ ηmin{ds(u,Mv)ds(Mu, v), ds(v,Mv)ds(u,Mu)}

≤ αmax{(ds(u, v))2,min{ds(u,Mu)ds(v,Mv), ds(v,Mu)ds(u,Mv)}}

+ β(ds(u, v))
2.

Proof. On taking v =Mu in inequality (3.4), we get

0 ≤ min
{
(ds(u,Mu))2, ds(u,Mu)ds(Mu,M2u), (ds(Mu,M2u))2

}
+ ηmin{ds(u,M2u)ds(Mu,Mu), ds(Mu,M2u)ds(u,Mu)}

≤ αmax{(ds(u,Mu))2,min{ds(u,Mu)ds(Mu,M2u),

ds(Mu,Mu)ds(u,M2u)}}+ β(ds(u,Mu))2,

that is,

0 ≤ min
{
(ds(u,Mu))2, ds(u,Mu)ds(Mu,M2u), (ds(Mu,M2u))2

}
≤ αds(u,Mu))2 + β(ds(u,Mu))2.

There are two cases:

ds(u,Mu) ≤ ds(Mu,M2u) or ds(Mu,M2u) ≤ ds(u,Mu).

Case (i) If ds(u,Mu) ≤ ds(Mu,M2u), then

0 ≤ (ds(u,Mu))2 ≤ α(ds(u,Mu))2 + β(ds(u,Mu))2

= (α+ β)(ds(u,Mu))2

< (ds(u,Mu))2, a contradiction.

Case (ii) If ds(Mu,M2u) ≤ ds(u,Mu), then

0 ≤ (ds(Mu,M2u))2 ≤ α(ds(u,Mu))2 + β(ds(u,Mu))2

= (α+ β)(ds(u,Mu))2

< (ds(u,Mu))2,
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that is, ds(Mu,M2u) ≤
√

(α+ β)(ds(u,Mu)) ≤ ds(u,Mu). Repeatedly, we
get ds(M2u,M3u) ≤ ds(Mu,M2u) ≤ ds(u,Mu). Continuing like this,

(3.5) ds(Mnu,Mn+1u) ≤ ds(Mn−1u,Mnu) ≤ · · · ≤ ds(u,Mu).

Following Theorem 3.4, let u0 ∈ U and u1 = Mu0. Repeatedly, un+1 =
Mun =Mn+1u0, n ≥ 1. Evidently, the sequence {un} is Cauchy when un+1 =
un, for some n ∈ N. Let un+1 6= un, for all n ∈ N. Now, using inequality
(3.5) with u = u0, we get ds(un, un+1) ≤ ds(un−1, un) ≤ . . . ds(u0,Mu0). By
routine calculation, we see that {un} is a Cauchy sequence in (U , ds). Since,
(U , ds) is M orbitally complete, there exists z ∈ U satisfying limn→∞ un =
limn→∞Mnu0 = z, that is, z is a fixed point ofM. Consequently, the iterated
sequence {Mnu} converges to a fixed point ofM, for each u ∈ U . �

Our next result is more interesting as two cone metrics are being used to
establish a fixed point.

Theorem 3.8. Let U be a non-empty set equipped with two cone metrics
d, ρ andM be a self map of U . Let
(i) U be an orbitally complete space with respect to ds,
(ii) ds(u, v) ≤ ρs(u, v), u, v ∈ U ,
(iii) M be orbitally continuous with respect to ds,
(iv) M be such that there exists a real number η satisfying:

0 ≤ min
{
(ρs(u,Mu))2, ρs(u, v)ρs(Mu,Mv), (ρs(v,Mv))2

}
(3.6)

+ ηmin{ρs(u,Mv)ρs(Mu, v), ρs(v,Mv)ρs(u,Mu)}

≤ αmax
{
(ρs(u, v))

2,min
{
ρs(u,Mu)ρs(v,Mv),

ρs(v,Mu)ρs(u,Mv)
}}

+ β(ρs(u, v))
2, u, v ∈ U ,

where, α + β < 1, α and β are non-negative real numbers. Then M has a
fixed point in U .

Proof. Following Theorem 3.4, let u0 ∈ U and u1 =Mu0. Repeatedly,
un+1 =Mun, n ≥ 1. Evidently, the sequence {un} is a Cauchy sequence when
un+1 = un, for some n ∈ N. Let un+1 6= un, for all n ∈ N. Taking u = un−1
and v = un in inequality (3.6), and following the steps similar to Theorem
3.7, we get 0 ≤ ρs(un, un+1) < ρs(un−1, un). Repeatedly, we observe that
ρs(un, un+1) < ρs(un−1, un) < · · · < ρs(u0,Mu0).

By routine calculation, we see that {un} is a Cauchy sequence in (U , ρs). In
view of (ii), {un} is also a Cauchy sequence in (U , ds). Since, (U , ds) isM-orbi-
tally complete, there exists z ∈ U satisfying limn→∞un=limn→∞Mnu0=z.
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By the orbital continuity ofM,Mz = limn→∞MMnu0 = limn→∞Mn+1u0 =
z, that is, z is a fixed point ofM. �

Remark 3.9.
(i) Examples 3.2 and 3.5 provide a negative answer to a natural question

of whether the contractive conditions in the statements of Theorems 3.1
and 3.4 can be replaced by its metric versions. M.A. Khamsi ([7]) claimed
that the majority of the cone fixed point theorems are duplications of the
classical results and that any extensions of existing fixed point theorems to
cone metric spaces are superfluous. Further, Banach spaces and the related
cone subsets under consideration are not required. But, cone metric spaces
are different from usual metric spaces due to the fact that here the distance
function is not a positive real number, but elements of a cone are in some
normed spaces ([12]) or topological vector spaces ([4]).

(ii) One may notice that we have not assumed the map to be continuous (not
even at a fixed point) in any of our results (see Examples 3.2 and 3.5). Con-
sequently, we have provided more answers to the question (Rhoades [10])
of the existence of contractive condition admitting fixed point at the point
of discontinuity of the map in anM-orbitally complete cone metric spaces
over the strongly minihedral cone and a scalar weighted cone assuming
the cone to be strongly minihedral.

4. Applications

Now, we utilize our result to the following elementary equations:

(4.1) u = sinh−1 µu, v = µ tan−1 v, 0 < µ < 1,

and to show that it has a solution in R2.

Proof. Let U =
{
0, 1

2n ,
1
3n , . . . , 1

}
×
{
0, 1

2n ,
1
3n , . . . , 1

}
, E = R2, P =

{(u, v) : u, v ≥ 0} and for any u = (u1, u2), v = (v1, v2), d : U × U → E be
defined by d(u, v) = (|u1 − v1| , |u2 − v2|). Then (U , d) is a complete cone
metric space over a Banach algebra. Define a map M : U → U by Mu =
M(u1, u2) = (sinh−1 µu1, µ tan

−1 u2). Now, for u, v ∈ U , we have

d(u,Mu) = (
∣∣u1 − sinh−1 µu1

∣∣ , ∣∣u2 − µ tan−1 u2∣∣)
� (u1, u2),
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d(u,Mv) = (
∣∣u1 − sinh−1 µv1

∣∣ , ∣∣u2 − µ tan−1 v2∣∣)
� (|u1 − v1| , |u2 − v2|),

d(Mu,Mv) = (
∣∣sinh−1 µu1 − sinh−1 µv1

∣∣ , ∣∣µ tan−1 u2 − µ tan−1 v2∣∣).
By the Mean Value Theorem, there exist: ξ between u1 and v1, and γ between
u2 and v2 so that

d(Mu,Mv) �
( µ√

(1 + ξ2)
|u1 − v1| ,

µ

1 + γ2
|u2 − v2|

)
� (µ |u1 − v1| , µ |u2 − v2|).

So,

min {d(Mu,Mv), d(u,Mu), d(v,Mv)} = d(Mu,Mv)

� (µ |u1 − v1| , µ |u2 − v2|),

min {d(u,Mu), d(v,Mu)} = d(u,Mu) � (|u1 − v1| , |u1 − v1|),

and max {d(u, v),min {d(u,Mu), d(v,Mu)}} = d(u, v). Now we conclude, for
η = −1

7 , α = 1
2 and β = 1

3 , all the assumptions of Theorem 3.1 are satisfied.
Hence, the iterated sequence {Mnu} converges to a fixed point ofM, for each
u ∈ U . �

Next, we apply our main result to a non-linear integral equation. Let I =
[0, 1] and U = C[I,R] denotes the set of continuous functions on [0, 1]. Define
d : U×U → R+ by d(u, v) = supt∈[0,1] ‖u(t)−v(t)‖. Clearly, (U , d) is a complete
cone metric space.

Theorem 4.1. Consider the following homogeneous integral equation

(4.2) u(t) =

∫ t

0

K(s, t)γ(s, u(s))ds.

Suppose that the following hold:
(i) K : [0, 1]× [0, 1]→ R is integrable with respect to s on I,
(ii) γ : U × [0, 1]→ R is an orbitally continuous function,
(iii) γ(t, u(t)) � supt∈[0,1] u(t),
(iv)

∫ 1

0
K(s, t)dt � 1.

Then, integral equation (4.2) has a solution in U .
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Proof. Consider a mapM : U → U given by

(4.3) Mu(t) =

∫ t

0

K(s, t)γ(s, u(s))ds.

Then, u is a solution of (4.2) if and only if u is a fixed point ofM. Now, for
u, v ∈ U , we have

d(u,Mu) = sup
t∈[0,1]

∥∥∥u(t)− ∫ t

0

K(s, t)γ(s, u(s))ds
∥∥∥

� sup
t∈[0,1]

∥∥∥u(t)− ∫ t

0

γ(s, u(s))ds
∥∥∥

� sup
t∈[0,1]

‖u(t)− u(t)‖ = 0,

d(v,Mu) = sup
t∈[0,1]

∥∥∥v(t)− ∫ t

0

K(s, t)γ(s, u(s))ds
∥∥∥

� sup
t∈[0,1]

∥∥∥v(t)− ∫ t

0

γ(s, u(s))ds
∥∥∥

� sup
t∈[0,1]

‖v(t)− u(t)‖ = d(u, v),

d(v,Mv) = 0,

d(Mu,Mv) = sup
t∈[0,1]

∥∥∥∫ t

0

K(s, t)γ(s, u(s))ds−
∫ t

0

K(s, t)γ(s, v(s))ds
∥∥∥

� sup
t∈[0,1]

∥∥∥∫ t

0

K(s, t)(γ(s, u(s))− γ(s, v(s)))ds
∥∥∥

� sup
t∈[0,1]

‖u(t)− v(t)‖ = d(u, v).

So, min {d(Mu,Mv), d(u,Mu), d(v,Mv)} = 0, min {d(u,Mu), d(v,Mu)} =
supt∈[0,1] ‖u(t)− v(t)‖, and

max {d(u, v),min {d(u,Mu), d(v,Mu)}} = sup
t∈[0,1]

‖u(t)− v(t)‖.

Now, we conclude for η = 1
6 , α = 1

3 and β = 1
2 , all the assumptions of

Theorem 3.1 are satisfied. Hence, the iterated sequence {Mnu} converges
to a fixed point ofM, for each u ∈ U . �
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Further, as an application of main result, we show that a non-linear two
point boundary value problem has a solution. Let U = C[0, 1] be a set of real
continuous functions on [0, 1] and E = R2, then cone metric d : U × U → E is
defined by d(u, v) = (supt∈[0,1] ‖u(t)− v(t)‖, supt∈[0,1] ‖u(t)− v(t)‖). Clearly,
(C[0, 1], d) is a complete cone metric space over a Banach algebra.

Theorem 4.2. Consider a boundary value problem

(4.4)
d2u

dt2
= ζ(t, u(t)), t ∈ [0, 1], u(0) = 0, u(1) = 0,

where ζ : [0, 1]× R+ → R is a continuous function. If there exists $ ∈ [1,∞)
such that

sup
t∈[0,1]

‖ζ(t, u(t))− ζ(t, v(t))‖ � $ sup
t∈[0,1]

‖u(t)− v(t)‖,

then boundary value problem (4.4) has a solution in U .

Proof. The boundary value problem (4.4) is equivalent to

(4.5) u(t) =

∫ 1

0

G(t, ξ)ζ(ξ, u(ξ))dξ, t ∈ [0, 1],

where, G is the Green function given by

G(t, ξ) =

{
(1− t)ξ, 0 6 ξ 6 t 6 1,

(1− ξ)t, 0 6 t 6 ξ 6 1.

Now, u ∈ U is a solution of equation (4.5) if and only if it is the solution of a
boundary value problem (4.4). Define a mapM : U → U by

Mu(t) =

∫ 1

0

G(t, ξ)ζ(ξ, u(ξ))dξ.

If we assume that supt∈[0,1] |u(t)| ≥ supt∈[0,1] |v(t)|, then

d(Mu,Mv) = ( sup
t∈[0,1]

‖Mu(t)−Mv(t)‖, sup
t∈[0,1]

‖Mu(t)−Mv(t)‖)

=
(

sup
t∈[0,1]

∥∥∥∫ 1

0

G(t, ξ)ζ(ξ, u(ξ))dξ −
∫ 1

0

G(t, ξ)ζ(ξ, v(ξ))dξ
∥∥∥,

sup
t∈[0,1]

∥∥∥∫ 1

0

G(t, ξ)ζ(ξ, u(ξ))dξ −
∫ 1

0

G(t, ξ)ζ(ξ, v(ξ))dξ
∥∥∥)
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=
(

sup
t∈[0,1]

∥∥∥∫ 1

0

G(t, ξ)(ζ(ξ, u(ξ))− ζ(ξ, v(ξ)))dξ
∥∥∥,

sup
t∈[0,1]

∥∥∥∫ 1

0

G(t, ξ)(ζ(ξ, u(ξ))− ζ(ξ, v(ξ)))dξ
∥∥∥)

�
(

sup
t∈[0,1]

∫ 1

0

|G(t, ξ)(ζ(ξ, u(ξ))− ζ(ξ, v(ξ)))| dξ,

sup
t∈[0,1]

∫ 1

0

‖G(t, ξ)(ζ(ξ, u(ξ))− ζ(ξ, v(ξ)))‖dξ
)

�
(

sup
t∈[0,1]

‖ζ(t, u(t))− ζ(t, v(t))‖
∫ 1

0

G(t, ξ)dξ,

sup
t∈[0,1]

‖ζ(t, u(t))− ζ(t, v(t))‖
∫ 1

0

G(t, ξ)dξ
)

�
(
$ sup

t∈[0,1]
‖u(t)− v(t)‖

∫ 1

0

G(t, ξ)dξ,$ sup
t∈[0,1]

‖u(t)− v(t)‖
∫ 1

0

G(t, ξ)dξ
)

� $1

8

(
sup

t∈[0,1]
‖u(t)− v(t)‖, sup

t∈[0,1]
‖u(t)− v(t)‖

)
,

that is, d(Mu,Mv) � 1
8$d(u, v) (since

∫ 1

0
G(t, ξ)dξ =

∫ t

0
(1− t)ξdξ +

∫ 1

t
(1−

ξ)tdξ = 1
2 t(1− t) ≤

1
8),

d(u,Mu) =
(
sup

∥∥∥u−∫ 1

0

G(t, ξ)ζ(ξ, u(ξ))dξ
∥∥∥, sup∥∥∥u−∫ 1

0

G(t, ξ)ζ(ξ, u(ξ))dξ
∥∥∥)

�
(
u+

1

8
$u, u+

1

8
$u
)
,

d(v,Mv) �
(
v +

1

8
$v, v +

1

8
$v
)
,

d(u,Mv) =
(
sup

∥∥∥u−∫ 1

0

G(t, ξ)ζ(ξ, v(ξ))dξ
∥∥∥, sup∥∥∥u−∫ 1

0

G(t, ξ)ζ(ξ, v(ξ))dξ
∥∥∥)

�
(
u+

1

8
$v, u+

1

8
$v
)
.

Now, min{d(u,Mu), d(v,Mv), d(Mu,Mv)} = d(Mu,Mv), min{d(u,Mv),
d(v,Mu)} = d(v,Mu), and max{d(u, v),min{d(u,Mu), d(v,Mu)}} =
d(u,Mu). We conclude, for η = 1

7 , α = 1
2 and β = 1

3 , all the assumptions of
Theorem 3.1 are satisfied. Hence, the iterated sequence {Mnu} converges to a
fixed point ofM, for each u ∈ U , which is a solution to the problem (4.4). �
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