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A VARIANT OF D’ALEMBERT’S FUNCTIONAL EQUATION
ON SEMIGROUPS WITH ENDOMORPHISMS

Ahmed Akkaoui , Mohamed El Fatini, Brahim Fadli

Abstract. Let S be a semigroup, and let ϕ,ψ : S → S be two endomorphisms
(which are not necessarily involutive). Our main goal in this paper is to solve
the following generalized variant of d’Alembert’s functional equation

f(xϕ(y)) + f(ψ(y)x) = 2f(x)f(y), x, y ∈ S,

where f : S → C is the unknown function by expressing its solutions in terms
of multiplicative functions. Some consequences of this result are presented.

1. Set up and notation

To formulate our results we recall the following notations and notions that
will be used throughout the paper. Let S be a semigroup, i.e., a set equipped
with an associative operation. Let ϕ,ψ : S → S be two endomorphisms, i.e.,
ϕ(xy) = ϕ(x)ϕ(y) and ψ(xy) = ψ(x)ψ(y) for all x, y ∈ S. The function
χ : S → C is said to be multiplicative, if χ(xy) = χ(x)χ(y) for all x, y ∈ S,
and furthemore if χ(x) 6= 0 for all x ∈ S, then χ is said a character. Also if
χ ◦ϕ = χ, then χ is said ϕ-even. The function χ : S → C is said to be central
if χ(xy) = χ(yx) for all x, y ∈ S. If S is a topological semigroup, then we let
C(S) denote the algebra of continuous functions from S into C.
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2. Introduction

The functional equation

(2.1) f(x+ y) + f(x− y) = 2f(x)f(y), x, y ∈ R,

is known in the literature as the d’Alembert functional equation. It has a long
history going back to d’Alembert ([5]). As the name suggests this functional
equation was introduced by d’Alembert in connection with the composition
of forces and plays a central role in determining the sum of two vectors in
Euclidean and non-Euclidean geometries. The continuous solutions of (2.1)
were determined by Cauchy in 1821 (see [3]). The equation (2.1) has been
extended to abelian groups: You just replace the domain of definition R by an
abelian group (G,+). It was resolved in this setting. The functional equation
(2.1) was generalized to a semigroup S by the equation

(2.2) f(xy) + f(τ(y)x) = 2f(x)f(y), x, y ∈ S,

where τ is an involutive automorphism (i.e., τ2 = id), which was introduced
and solved by Stetkær in [14]. In [7], Fadli et al. have solved Eq (2.2) in the case
where τ is an arbitrary endomorphism of S. Also the functional equation (2.1)
was generalized to a semigroup S with two involutive automorphisms by the
following equation

(2.3) f(xσ(y)) + f(τ(y)x) = 2f(x)f(y), x, y ∈ S,

which was solved in [4] by Chahbi et al. (σ, τ are two involutive automor-
phisms). This last equation generalizes Eq (2.2).

Some information, applications and numerous references concerning (2.1)–
(2.3) and their further generalizations can be found e.g. in [1, 4, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15].

Our main objective in the present paper is to solve the following functional
equation

(2.4) f(xϕ(y)) + f(ψ(y)x) = 2f(x)f(y), x, y ∈ S,

where ϕ,ψ are two endomorphisms of S. This equation is a natural gener-
alization of Eqs (2.1)–(2.3). By elementary methods we find all solutions of
(2.4) on semigroups in terms of multiplicative functions.
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If ϕ = ψ = id, the equation (2.4) is the following symmetrized multiplica-
tive Cauchy equation

f(xy) + f(yx) = 2f(x)f(y), x, y ∈ S,

which was introduced and solved by Stetkær in [12].
In section 3, we study also some important special cases of (2.4), exactly

the case when ϕ and/or ψ are surjective, the case when ϕ and ψ are both
surjective and the case when ϕ = ψ.

Our main contribution in this paper is to solve the equation (2.4) without
the conditions ϕ2 = id and ψ2 = id.

Finally, we note that the sine addition law on semigroups given in [6, 13]
is a key ingredient of the proof of our main result (Theorem 3.3).

3. Main result

In this section, we solve the functional equation (2.4) by expressing its
solutions in terms of multiplicative functions. The following lemmas will be
used in the proof of Theorem 3.3.

Lemma 3.1. Let f : S → C be a function such that

(3.1) f(xϕ(y)) = f(x)f(y), for all x, y ∈ S.

Then f is a multiplicative function.

Proof. Let x, y, z ∈ S and let f : S → C be a function satisfying (3.1).
Then

f(z)f(xy) = f(zϕ(xy)) = f(zϕ(x)ϕ(y)) = f(zϕ(x))f(y) = f(z)f(x)f(y).

Hence f is a multiplicative function. �

Lemma 3.2. Let f : S → C be a function. For all x ∈ S, define the function
hx : S → C by

hx(y) := f(xϕ(y))− f(x)f(y), y ∈ S.

If f is a solution of (2.4), then the pair (hx, f) satisfies the sine addition law
for all x ∈ S.
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Proof. Let x, y, z ∈ S and let f : S → C be a solution of (2.4). Making
the substitutions (x, yz), (xϕ(y), z) and (ψ(z)x, y) in (2.4), we get respectively

f(xϕ(yz)) + f(ψ(yz)x) = 2f(x)f(yz),(3.2)

f(xϕ(y)ϕ(z)) + f(ψ(z)xϕ(y)) = 2f(xϕ(y))f(z),(3.3)

f(ψ(z)xϕ(y)) + f(ψ(y)ψ(z)x) = 2f(ψ(z)x)f(y).(3.4)

Subtracting (3.4) from the sum of (3.2) and (3.3), we get that

(3.5) f(xϕ(yz)) = f(x)f(yz) + f(xϕ(y))f(z)− f(ψ(z)x)f(y).

From (2.4), we see that

f(ψ(z)x) = 2f(x)f(z)− f(xϕ(z)).

Then (3.5) becomes after a reduction

f(xϕ(yz))− f(x)f(yz) = [f(xϕ(y))− f(x)f(y)]f(z)

+ [f(xϕ(z))− f(x)f(z)]f(y).

So

hx(yz) = hx(y)f(z) + hx(z)f(y), y, z ∈ S,

i.e., (hx, f) satisfies the sine addition law. �

Now we present our main result.

Theorem 3.3. The solutions f : S → C of (2.4) are the following:
(i) There exists a non-zero multiplicative function χ : S → C satisfying

(χ ◦ ϕ = χ and χ ◦ ψ = 0) or (χ ◦ ψ = χ and χ ◦ ϕ = 0) such that
f = 1

2χ.
(ii) There exists a multiplicative function χ : S → C satisfying

χ ◦ ϕ+ χ ◦ ψ = χ ◦ ϕ2 + χ ◦ ϕ ◦ ψ = χ ◦ ψ2 + χ ◦ ψ ◦ ϕ

such that

f =
χ ◦ ϕ+ χ ◦ ψ

2
.

Furthermore, if S is a topological semigroup and f ∈ C(S) then χ ◦ϕ, χ ◦ψ ∈
C(S).
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Proof. It is easy to check that any function of the form (i) or (ii) stated
in Theorem 3.3 is a solution of (2.4). Conversely assume that the function
f : S → C is a solution of (2.4). From Lemma 3.2, the pair (hx, f), where

hx(y) = f(xϕ(y))− f(x)f(y), y ∈ S,

satisfies the sine addition law for all x ∈ S.
Case 1: Suppose that hx = 0 for all x ∈ S. By the definition of hx we have

f(xϕ(y)) = f(x)f(y) for all x, y ∈ S.

According to Lemma 3.1, we see that f is multiplicative. Then (2.4) gives

2f = f ◦ ϕ+ f ◦ ψ.

From the theory of multiplicative functions, we obtain f = f ◦ ϕ = f ◦ ψ.
Hence f = (f ◦ ϕ+ f ◦ ψ)/2 and

f ◦ ϕ+ f ◦ ψ = f ◦ ϕ2 + f ◦ ϕ ◦ ψ = f ◦ ψ2 + f ◦ ψ ◦ ϕ.

So we are in case (ii) of Theorem 3.3.
Case 2: Suppose that hx 6= 0 for some x ∈ S. From the known solution of

the sine addition law (see for instance [6] or [13, Theorem 4.1]), there exist
two multiplicative functions χ1, χ2 : S → C such that

f =
χ1 + χ2

2
.

If χ1 = χ2, we get that f = χ1 = χ2, which we are in the first case studied.
Suppose that χ1 6= χ2. Substituting f in (2.4), we find after a reduction

that

χ1(x)[χ1 ◦ ϕ(y) + χ1 ◦ ψ(y)− χ1(y)− χ2(y)] + χ2(x)[χ2 ◦ ϕ(y)

+ χ2 ◦ ψ(y)− χ1(y)− χ2(y)] = 0,

for all x, y ∈ S. Since χ1 6= χ2 we get from the theory of multiplicative
functions (see for instance [13, Theorem 3.18]) that both terms are 0, so

(3.6)

{
χ1(x)[χ1 ◦ ϕ(y) + χ1 ◦ ψ(y)− χ1(y)− χ2(y)] = 0,

χ2(x)[χ2 ◦ ϕ(y) + χ2 ◦ ψ(y)− χ1(y)− χ2(y)] = 0,

for all x, y ∈ S. Since χ1 6= χ2 at least one of χ1 and χ2 is not zero.
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Subcase 2.1: Suppose that χ2 = 0. Then χ1 6= 0. From (3.6), we infer that
χ1 = χ1 ◦ ϕ+ χ1 ◦ ψ. Therefore f = 1

2χ1 and (χ1 = χ1 ◦ ϕ and χ1 ◦ ψ = 0) or
(χ1 = χ1 ◦ψ and χ1 ◦ϕ = 0). With χ := χ1 we arrive at solution in case (i) of
Theorem 3.3. The same result we obtain for χ1 = 0 and χ2 6= 0 with χ := χ2.

Subcase 2.2: Suppose that χ1 6= 0 and χ2 6= 0. From (3.6), we have

χ1 + χ2 = χ1 ◦ ϕ+ χ1 ◦ ψ = χ2 ◦ ϕ+ χ2 ◦ ψ.

Then necessarily χ1 ◦ ϕ 6= 0 and χ1 ◦ ψ 6= 0. Now substituting f into (2.4)
again, but in this case by (χ1 ◦ ϕ + χ1 ◦ ψ)/2, we obtain, from the theory of
multiplicative functions, after a reduction

χ1 ◦ ϕ+ χ1 ◦ ψ = χ1 ◦ ϕ2 + χ1 ◦ ϕ ◦ ψ = χ1 ◦ ψ2 + χ1 ◦ ψ ◦ ϕ.

So we are in the solution stated in (ii) of Theorem 3.3 with χ = χ1.
In view of these cases, we have reached the end of the proof.
The continuity statement follows from [13, Theorem 3.18(d)]. �

As immediate consequences of Theorem 3.3, we have the following corol-
laries. The first generalizes the result (Theorem 3.1) studied in [7].

Corollary 3.4. Suppose that ϕ and/or ψ are surjective. The solutions
f : S → C of (2.4) are the following:
(i) There exists a non-zero multiplicative function χ : S → C such that f =

1
2χ with (χ ◦ ϕ = χ and χ ◦ ψ = 0) or (χ ◦ ψ = χ and χ ◦ ϕ = 0).

(ii) There exists a multiplicative function χ : S → C such that

f =
χ ◦ ϕ+ χ ◦ ψ

2

with the conditions:
(1) χ ◦ ϕ+ χ ◦ ψ = χ ◦ ϕ2 + χ ◦ ϕ ◦ ψ,
(2) χ ◦ ϕ ◦ ψ = χ ◦ ψ ◦ ϕ, and
(3) χ ◦ ϕ2 = χ ◦ ψ2.

Furthermore, if S is a topological semigroup and f ∈ C(S), then χ ◦ϕ, χ ◦
ψ ∈ C(S).

Proof. Let f : S → C be a solution of (2.4). From Theorem 3.3, we have
the two following possibilities:
(1) There exists a non-zero multiplicative function χ : S → C such that f =

1
2χ with (χ ◦ϕ = χ and χ ◦ψ = 0) or (χ ◦ψ = χ and χ ◦ϕ = 0), which is
also the first case of Corollary 3.4.
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(2) There exists a multiplicative function χ : S → C such that f = (χ ◦ ϕ +
χ ◦ ψ)/2 with the condition

(3.7) χ ◦ ϕ+ χ ◦ ψ = χ ◦ ϕ2 + χ ◦ ϕ ◦ ψ = χ ◦ ψ2 + χ ◦ ψ ◦ ϕ.

Case: 1 If χ ◦ ϕ = χ ◦ ψ. Then χ ◦ ϕ2 = χ ◦ ψ2 = χ ◦ ϕ ◦ ψ = χ ◦ ψ ◦ ϕ.
Case: 2 If χ◦ϕ 6= χ◦ψ. Then if χ◦ϕ2 = χ◦ψ ◦ϕ and χ◦ψ2 = χ◦ϕ◦ψ,

we get that χ ◦ϕ = χ ◦ψ because ϕ and/or ψ are surjective, which is not
possible with χ ◦ ϕ 6= χ ◦ ψ. So from (3.7), we have χ ◦ ϕ ◦ ψ = χ ◦ ψ ◦ ϕ
and χ ◦ ϕ2 = χ ◦ ψ2. The other direction of the proof is trivial to verify.

The continuity statement follows from [13, Theorem 3.18(d)]. �

The following corollary generalizes the result studied in [4].

Corollary 3.5. Suppose that ϕ and ψ are both surjective. Then the so-
lutions f : S → C of (2.4) are the functions of the form

f =
χ ◦ ϕ+ χ ◦ ψ

2
,

where χ : S → C is a multiplicative function such that
(1) χ ◦ ϕ+ χ ◦ ψ = χ ◦ ϕ2 + χ ◦ ϕ ◦ ψ,
(2) χ ◦ ϕ ◦ ψ = χ ◦ ψ ◦ ϕ, and
(3) χ ◦ ϕ2 = χ ◦ ψ2.

Furthermore, if S is a topological semigroup and f ∈ C(S), then χ◦ϕ, χ◦ψ ∈
C(S).

Proof. The proof follows from the fact that (f ◦ ϕ = 0 ⇒ f = 0) and
(f ◦ ψ = 0 ⇒ f = 0) when ϕ and ψ are both surjective. The option (i) of
Corollary 3.4 does not occur in this case. �

Corollary 3.6. Suppose that ϕ is surjective. The solutions f : S → C of
the functional equation

f(xϕ(y)) + f(ϕ(y)x) = 2f(x)f(y), x, y ∈ S,

are the ϕ-even multiplicative functions.

Proof. The proof follows on putting ϕ = ψ in Corollary 3.5 and the fact
that χ ◦ ϕ = χ ◦ ϕ2 implies that χ = χ ◦ ϕ when ϕ is surjective. �
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The following corollary gives the central solutions of the functional equa-
tion

(3.8) f(xϕ(y)) + f(xψ(y)) = 2f(x)f(y), x, y ∈ S,

which is a natural generalization of d’Alembert functional equation (2.1). With
ϕ = id and ψ is a continuous anti-endomorphism (i.e., ψ(xy) = ψ(y)ψ(x) for
all x, y ∈ S), the equation (3.8) was studied and solved on topological monoid
(i.e., a semigroup with an identity element) in [2].

Corollary 3.7. The central solutions f : S → C of (3.8) are the follow-
ing:
(1) There exists a non-zero multiplicative function χ : S → C satisfying

(χ ◦ ϕ = χ and χ ◦ ψ = 0) or (χ ◦ ψ = χ and χ ◦ ϕ = 0) such that
f = 1

2χ.
(2) There exists a multiplicative function χ : S → C satisfying

χ ◦ ϕ+ χ ◦ ψ = χ ◦ ϕ2 + χ ◦ ϕ ◦ ψ = χ ◦ ψ2 + χ ◦ ψ ◦ ϕ

such that

f =
χ ◦ ϕ+ χ ◦ ψ

2
.

Furthermore, if S is a topological semigroup and f ∈ C(S) then χ ◦ϕ, χ ◦ψ ∈
C(S).

Proof. It suffices to observe that if f is a central function then the equa-
tions (2.4) and (3.8) are equivalent. �

4. Some examples

Example 4.1. Let S = H3 be the Heisenberg group (under matrix multi-
plication) defined by

H3 :=


 1 x z

0 1 y
0 0 1

 | x, y, z ∈ R
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and let us consider the following endomorphisms on S

ϕ

 1 x z
0 1 y
0 0 1

 =

 1 x+ y 0
0 1 0
0 0 1


and

ψ

 1 x z
0 1 y
0 0 1

 =

 1 x− y 0
0 1 0
0 0 1

 .

Note that ϕ,ψ are not involutive automorphisms and are not surjective. We
have ϕ2 = ϕ, ψ2 = ψ, ϕ◦ψ = ψ and ψ ◦ϕ = ϕ. In this example, we determine
the corresponding non-zero continuous solutions of (2.4). According to [13,
Example 3.14], the continuous non-zero multiplicative functions on S are:

χλ :

 1 x z
0 1 y
0 0 1

 7→ eλ1x+λ2y,

where λ = (λ1, λ2) ∈ C2. The function χλ satisfies the condition

χ ◦ ϕ+ χ ◦ ψ = χ ◦ ϕ2 + χ ◦ ϕ ◦ ψ = χ ◦ ψ2 + χ ◦ ψ ◦ ϕ.

Since χλ is a character (because H3 is a group), we have χλ ◦ ϕ 6= 0 and
χλ ◦ ψ 6= 0.

So the option (i) of Theorem 3.3 does not occur here. We have also

χλ ◦ ϕ

 1 x z
0 1 y
0 0 1

 = eλ1(x+y)

and

χλ ◦ ψ

 1 x z
0 1 y
0 0 1

 = eλ1(x−y).



10 Ahmed Akkaoui, Mohamed El Fatini, Brahim Fadli

Consequently, from Theorem 3.3, the corresponding non-zero continuous
solutions of (2.4) are the functions

f :

 1 x z
0 1 y
0 0 1

 7→ eγx cosh(γy),

where cosh(z) :=
ez + e−z

2
for all z ∈ C and γ ranges over C.

Example 4.2. Let S = [0, 1]2 be the square of the closed unit interval
under componentwise multiplication, so xy = (x1, x2)(y1, y2) = (x1y1, x2y2).
Let ϕ,ψ : S → S be two endomorphisms defined by

ϕ(x1, x2) = (x1, 0) and ψ(x1, x2) = (0, x2) for all (x1, x2) ∈ S.

Note that ϕ2 = ϕ, ψ2 = ψ, ϕ ◦ ψ = ψ ◦ ϕ = (0, 0). We determine here
the corresponding continuous solutions of (2.4). We write R(α) for the real
part of the complex number α. For convenience we define here 0α := 0 when
R(α) > 0.

The continuous non-zero multiplicative functions on S are of the following
four types (see for instance [6, Example 5.3]).
(i) There exists (α, β) ∈ C2 with R(α) > 0, R(β) > 0 such that

χα,β(x1, x2) = xα1x
β
2 for (x1, x2) ∈ S.

(ii) There exists α ∈ C with R(α) > 0 such that

χα,0(x1, x2) = xα1 for (x1, x2) ∈ S.

(iii) There exists β ∈ C with R(β) > 0 such that

χ0,β(x1, x2) = xβ2 for (x1, x2) ∈ S.

(iv) χ0,0(x1, x2) = 1 for (x1, x2) ∈ S.
Let χ 6= 0 be an arbitrary continuous multiplicative function on S. Then
(1) If χ has the form stated in case (i), we have χ ◦ ϕ = χ ◦ ψ = 0.
(2) If χ has the form stated in case (ii), we have χ ◦ ϕ = χ and χ ◦ ψ = 0.
(3) If χ has the form stated in case (iii), we have χ ◦ ϕ = 0 and χ ◦ ψ = χ.
(4) If χ has the form stated in case (iv), we have χ ◦ ϕ = χ ◦ ψ = 1.
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In conclusion, using Theorem 3.3 we find that the solutions f ∈ C(S)\{0} of
(2.4), which is

f(x1y1, 0) + f(0, x2y2) = 2f(x1, x2)f(y1, y2), x1, x2, y1, y2 ∈ [0, 1],

are the following:
(1) There exists α ∈ C with R(α) > 0 such that

f(x1, x2) =
1

2
χα,0(x1, x2) =

1

2
xα1 for (x1, x2) ∈ S.

(2) There exists β ∈ C with R(β) > 0 such that

f(x1, x2) =
1

2
χ0,β(x1, x2) =

1

2
xβ2 for (x1, x2) ∈ S.

(3) f(x1, x2) = χ0,0(x1, x2) = 1 for (x1, x2) ∈ S.
Note that the only non-zero continuous solution of case (ii) in Theorem 3.3 is
f = 1.

Example 4.3. Let S = (R,+), let α, β ∈ R \ {0} be two fixed elements
and let ϕ(x) = αx, ψ(x) = βx for all x ∈ R. Then the functional equation
(2.4) is written as follows:

(4.1) f(x+ αy) + f(x+ βy) = 2f(x)f(y), x, y ∈ R.

We note that the equation (4.1) is d’Alembert’s equation (2.1) when α = 1
and β = −1.When α = 1 and β ∈ R\{0, 1} the equation (4.1) was studied by
Fadli et al. in [7]. We are interested to determine the solutions of this equation
when α, β ∈ R \ {−1, 0, 1}. For this we apply Corallary 3.5 to equation (4.1):
there exists a multiplicative function χ : R→ R such that

f(x) =
χ(αx) + χ(βx)

2
, x ∈ R,

with the conditions

χ(αx) + χ(βx) = χ(α2x) + χ(αβx),(4.2)

χ(α2x) = χ(β2x).(4.3)

Suppose that χ 6= 0. Then χ is a character because, (R,+) is a group. So the
identity (4.3) is equivalent to χ((α2 − β2)x) = 1 for all x ∈ R.
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If β 6= ±α, we obtain χ(x) = 1 for all x ∈ R, because the map x 7→
(α2 − β2)x is surjective on R when β 6= ±α. Hence f = 1.

If β = α, then f(x) = χ(αx) for all x ∈ R. From (4.2), χ(αx) = χ(α2x),
that implies χ(α(α− 1)x) = 1 for all x ∈ R. Since α(α− 1) 6= 0, then χ = 1.
Hence f = 1.

If β = −α, then (4.2) becomes χ(αx)− χ(−α2x) = χ(α2x)− χ(−αx) for
all x ∈ R. We have the following equivalences:

χ(αx)− χ(−α2x) = χ(α2x)− χ(−αx)

⇐⇒ [χ(αx+ α2x)− 1]χ(−α2x) = [χ(αx+ α2x)− 1]χ(−αx)

⇐⇒ [χ(αx+ α2x)− 1][χ(−α2x)− χ(−αx)] = 0

⇐⇒ [χ(αx+ α2x)− 1][χ(−α2x+ αx)− 1] = 0.

So χ((α + α2)x) = 1 or χ((α − α2)x) = 1. Since α + α2 6= 0 and α − α2 6= 0
(because α 6= 0 and α 6= ±1), we obtain χ = 1. So f = 1.

Conclusion: If α, β ∈ R \ {−1, 0, 1}, the solutions of (4.1) are f = 0 and
f = 1.

Example 4.4. Let G be the (ax+ b)−group defined by

G :=

{(
a b
0 1

)
|a > 0, b ∈ R

}
and let us consider the following endomorphisms on G

ϕ

(
a b
0 1

)
=

(
a 0
0 1

)
and

ψ

(
a b
0 1

)
=

(
a−1 0
0 1

)
.

Note that ϕ,ψ are not involutive. In this example, we give the corresponding
continuous central solutions of (3.8).

According to [13, Example 3.13], the continuous non-zero multiplicative
functions on G have the form

χλ :

(
a b
0 1

)
7→ aλ,

where λ ∈ C.
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We observe that ϕ2 = ψ2 = ϕ and ϕ ◦ ψ = ψ ◦ ϕ = ψ. Then the non-zero
continuous multiplicative function χ defined above on G satisfies

χ ◦ ϕ+ χ ◦ ψ = χ ◦ ϕ2 + χ ◦ ϕ ◦ ψ = χ ◦ ψ2 + χ ◦ ψ ◦ ϕ.
As a conclusion, from Corollary 3.7 we obtain that the non-zero continuous

central solutions f : G→ C of (3.8) are:

f :

(
a b
0 1

)
7→ aλ + a−λ

2
,

where λ ∈ C.

Acknowledgement. We wish to express our thanks to the referees for
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