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THE COSINE-SINE FUNCTIONAL EQUATION
ON SEMIGROUPS

Bruce Ebanks

Abstract. The primary object of study is the “cosine-sine” functional equa-
tion f(xy) = f(x)g(y)+g(x)f(y)+h(x)h(y) for unknown functions f, g, h : S →
C, where S is a semigroup. The name refers to the fact that it contains both
the sine and cosine addition laws. This equation has been solved on groups
and on semigroups generated by their squares. Here we find the solutions on a
larger class of semigroups and discuss the obstacles to finding a general solu-
tion for all semigroups. Examples are given to illustrate both the results and
the obstacles.

We also discuss the special case f(xy) = f(x)g(y) + g(x)f(y) − g(x)g(y)
separately, since it has an independent direct solution on a general semigroup.

We give the continuous solutions on topological semigroups for both equa-
tions.

1. Introduction

Let S be a semigroup. The cosine-sine functional equation is

(1.1) f(xy) = f(x)g(y) + g(x)f(y) + h(x)h(y), for all x, y ∈ S,

where f, g, h : S → C. This equation generalizes both the sine addition formula
(h = 0) and the cosine addition formula (g = 1

2f). Equation (1.1) was solved
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by Chung, Kannappan, and Ng ([1]) for the case that S is a group. Their
result was extended by the author ([2]) to the case that S is a semigroup
generated by its squares. The main goal of the present work is to extend that
result to a larger class of semigroups. We also discuss the obstacles to finding
the solution on a general semigroup.

We treat separately the special case h = ig of (1.1), namely

(1.2) f(xy) = f(x)g(y) + g(x)f(y)− g(x)g(y), for all x, y ∈ S.

The solutions of (1.2) are described by Stetkær ([6]) in terms of exponentials
and solutions of the sine addition formula. Using the recent solution of the
sine addition formula by the author, we flesh out that description. We arrive
at the solutions of (1.2) by this route rather than as a corollary of our result
about (1.1), for two reasons. The first is because the method in [6] is direct
and elementary, and the second is that (1.2) is solved on a general semigroup
(with no extra conditions).

The functional equations above are of the Levi-Civita type, which includes
all functional equations of the form

f(xy) =

n∑
k=1

gk(x)hk(y), for all x, y ∈ S,

for unknown functions f, gk, hk : S → C and any positive integer n. If S is
an Abelian group and {g1, . . . , gn} and {h1, . . . , hn} are linearly independent,
then it is known (see [7, Theorem 10.4]) that all solutions of such equations are
exponential polynomials. An exponential polynomial is a linear combination
of exponential monomials, which are terms of the form (A1)n1 · · · (Ak)nkχ
with χ exponential, each A` additive, and each n` a nonnegative integer.

The authors of [1] showed that the solutions of (1.1) on any group are
exponential polynomials, whereas in [2] we showed that this is not generally
the case on semigroups. For example, where a solution of (1.1) on a group
contains a term Aχ, with A additive and χ exponential, on a semigroup we
may see instead the term

ϕ(x) =

{
A(x)χ(x) if χ(x) 6= 0,

0 if χ(x) = 0

(or even more complicated, see Proposition 2.1), where A is an additive func-
tion defined on the subsemigroup where χ is nonzero. Such a function ϕ need
not be an exponential polynomial (for more see [4]). So there is an increase
in complexity of solution forms of Levi-Civita equations as we move from the
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world of groups to the larger world of semigroups. To solve (1.1) we will im-
pose certain conditions (introduced just after Lemma 4.1) on S that enable us
to maintain some control over this increased complexity. It should be noted
that every group satisfies the conditions we shall impose on S.

The outline of the paper is as follows. The next section introduces some
notation, terminology, and the solution of the sine addition formula on semi-
groups. In the short section 3 we combine Stetkær’s result about (1.2) with
the general solution of the sine addition formula to get a more complete pic-
ture of the solutions of (1.2). Section 4 contains preparations for our primary
objective, namely the solution of (1.1) on semigroups satisfying certain con-
ditions. The solution is given in Theorem 5.1. The final section contains some
examples applying our results about (1.2) and (1.1), and an example illustrat-
ing the complications that can arise when trying to solve (1.1) on a semigroup
not satisfying the conditions in Theorem 5.1.

2. Notation, terminology, and preliminaries

Throughout this paper S denotes a semigroup. If S is a topological semi-
group, C(S) denotes the algebra of continuous functions from S into C. Let
C∗ = C \ {0}.

For any subset T ⊆ S define T 2 := {t1t2 | t1, t2 ∈ T}, so the notation T 2

will not be used to denote the direct product T × T in this article.
A function A : S → C is additive if A(xy) = A(x) +A(y) for all x, y ∈ S.
A function χ : S → C is multiplicative if χ(xy) = χ(x)χ(y) for all x, y ∈ S.

A multiplicative χ 6= 0 is called an exponential on S. Unlike the situation on
groups, an exponential on a semigroup can take the value 0 on a non-empty
proper subset. We define the nullspace of an exponential χ : S → C by

Iχ := {x ∈ S | χ(x) = 0}.

If Iχ 6= ∅ then it is an ideal (two-sided) of S. In fact it is a prime ideal,
meaning that Iχ 6= S and S \ Iχ is a subsemigroup of S. There is an intimate
connection between exponentials and prime ideals. We have already noted that
if χ : S → C is exponential and Iχ 6= ∅ then Iχ is a prime ideal. Conversely, if
I is a prime ideal of S then there exists an exponential χ : S → C such that
Iχ = I, namely let χ(x) = 1 for x ∈ S \ I and χ(x) = 0 for x ∈ I.
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In order to describe some of our solutions on semigroups we partition the
nullspace into the disjoint union Iχ = I2χ ∪ P

(1)
χ ∪ P (1+)

χ , where

P (1)
χ :={p ∈ Iχ \ I2χ | for all w ∈ S \ Iχ we have pw ∈ Iχ \ I2χ},

P (1+)
χ :={p ∈ Iχ \ I2χ | there exists wp ∈ S \ Iχ such that pwp ∈ I2χ}.

(Note that pw ∈ S\Iχ is impossible for p ∈ Iχ since Iχ is an ideal if nonempty.)
A function F : S → C is Abelian if for every n ≥ 2, permutation π on

{1, . . . , n}, and x1, . . . , xn ∈ S we have F (xπ(1) · · ·xπ(n)) = F (x1 · · ·xn). Note
that all additive functions and multiplicative functions are Abelian.

Define the relation ∼ on a semigroup S by x ∼ y if and only if there exist
s1, . . . , sn ∈ S and a permutation π on {1, . . . , n} such that x = s1 · · · sn and
y = sπ(1) · · · sπ(n). It is clear that if x ∼ y then F (x) = F (y) for any Abelian
function F : S → C. We read the statement x ∼ y as “x rearranges to y.”

The following proposition is [3, Theorem 2.1]. The description of h in
part (iii) gives an indication of the additional complexity of solutions of Levi-
Civita functional equations on semigroups as opposed to groups.

Proposition 2.1. Let S be a semigroup, and suppose h, g : S → C satisfy
the sine addition law

(2.1) h(xy) = h(x)g(y) + g(x)h(y), x, y ∈ S,

with h 6= 0. Then h and g are Abelian and there exist multiplicative functions
χ1, χ2 : S → C such that g = χ1+χ2

2 . In addition we have the following.
(i) For χ1 6= χ2 we have h = c(χ1 − χ2) for some constant c ∈ C∗.
(ii) For χ1 = χ2 = 0 = g we have S 6= S2 and

h(x) =

{
h0(x) for x ∈ S \ S2,

0 for x ∈ S2,

where h0 : S \ S2 → C is an arbitrary nonzero function.
(iii) For χ1 = χ2 =: χ 6= 0 we have g = χ, and h has the form

h(x) =


A(x)χ(x) for x ∈ S \ Iχ,

ρ(x) for x ∈ P (1)
χ ,

0 for x ∈ I2χ ∪ P
(1+)
χ ,

where A : S \ Iχ → C is additive, ρ is the restriction of h to P (1)
χ , and

the following two conditions hold.
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(I) If x ∼ pw with p ∈ P (1+)
χ and w ∈ S \ Iχ, then h(x) = 0.

(II) If x = pw with p ∈ P
(1)
χ and w ∈ S \ Iχ, then x ∈ P

(1)
χ and

ρ(x) = ρ(p)χ(w).
Note the possibility that some values of ρ may be chosen arbitrarily.
The converse statements are also true if h 6= 0 in part (iii).
Furthermore, if S is a topological semigroup and h ∈ C(S), then g, χ1, χ2, χ ∈

C(S), A ∈ C(S \ Iχ), and ρ ∈ C(P
(1)
χ ).

The function ρ in part (iii) can take arbitrary values at some, none, or all
points of P (1)

χ , as demonstrated by examples in [3].

Notation 2.2. Let ΦA,χ,ρ : S → C denote a function having the form of h
in part (iii) of Proposition 2.1, where χ : S → C is an exponential, A : S\Iχ →
C is additive, ρ is the restriction of h to P (1)

χ , and conditions (I) and (II) hold.

Note that if S has no prime ideals (for instance if S is a group) then
ΦA,χ,ρ = Aχ.

3. The solution of (1.2)

We treat equation (1.2) first, since the solution is found directly (i.e. with-
out reference to (1.1)) on a general semigroup. The next result is [6, Theo-
rem 5.1], modified slightly to eliminate an overlap between cases (c) and (d).

Proposition 3.1. Let S be a semigroup. The solutions f, g : S → C of
(1.2) are the following pairs of Abelian functions, where χ, χ1, χ2 : S → C are
exponentials such that χ1 6= χ2, φ : S → C is a solution of the (special) sine
addition formula φ(xy) = φ(x)χ(y)+χ(x)φ(y) such that φ 6= 0, α ∈ C\{0, 12},
and β ∈ C \ {0,±1}.
(a) f is any function such that f(S2) = {0}, and g = 0.
(b) f is any nonzero function such that f(S2) = {0}, and g = 2f .
(c)

f =
α2

2α− 1
χ and g = αχ.

(d)

f =
1

2
(χ1 + χ2) +

β2 + 1

4β
(χ1 − χ2) and g =

1

2
(χ1 + χ2) +

β

2
(χ1 − χ2).
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(e) f = φ+ χ and g = χ.

(f)
f =

1

2
φ+ χ and g = φ+ χ.

All of the following except the topological part follows directly from Propo-
sitions 3.1 and 2.1.

Corollary 3.2. Let S be a semigroup. The solutions f, g : S → C of
(1.2) are the following pairs of Abelian functions, where χ, χ1, χ2 : S → C are
exponentials such that χ1 6= χ2, α ∈ C \ {0, 12}, and β ∈ C \ {0,±1}.
(a) f is any function such that f(S2) = {0}, and g = 0.
(b) f is any nonzero function such that f(S2) = {0}, and g = 2f .
(c)

f =
α2

2α− 1
χ and g = αχ.

(d)

f =
1

2
(χ1 + χ2) +

β2 + 1

4β
(χ1 − χ2) and g =

1

2
(χ1 + χ2) +

β

2
(χ1 − χ2).

(e) For some ΦA,χ,ρ 6= 0 we have

f = ΦA,χ,ρ + χ and g = χ.

(f) For some ΦA,χ,ρ 6= 0 we have

f =
1

2
ΦA,χ,ρ + χ and g = ΦA,χ,ρ + χ.

Furthermore, if S is a topological semigroup and f, g ∈ C(S), then χ, χ1, χ2 ∈
C(S), A ∈ C(S \ Iχ), and ρ ∈ C(P

(1)
χ ).

Proof. The only things needing proof are the topological statements for
parts (d), (e) and (f). For part (d) we have

g − f =
β2 − 1

4β
(χ1 − χ2).

Since β2 6= 1 and χ1 6= χ2, the continuity of χ1 and χ2 follows from [5,
Theorem 3.18].
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In part (e) we get immediately that χ and ΦA,χ,ρ are continuous. By
definition this yields that x 7→ Aχ(x) is continuous on S \Iχ and ρ ∈ C(P

(1)
χ ).

Since χ(x) 6= 0 for x ∈ S \ Iχ we have A ∈ C(S \ Iχ).
Finally, in case (f) we see that 2(g − f) = ΦA,χ,ρ is continuous, thus

χ ∈ C(S) and the rest follows as before. �

Some examples are given in the final section.

4. Preparations for the solution of (1.1)

Now we turn toward our primary goal of solving (1.1). The following is
a part of [1, Lemma 4]. It is stated for groups but the same proof works for
semigroups.

Lemma 4.1. If f, h : S → C satisfy

f(xy) = f(x)f(y) + h(x)h(y), x, y ∈ S,

then there exists a constant α ∈ C such that

h(xy) = h(x)f(y) + f(x)h(y) + αh(x)h(y), x, y ∈ S.

For the consideration of (1.1) we shall impose the following conditions on
our semigroup S.

Definition 4.2. Let S be a semigroup. We will say that S is compatible,
if S = S2 and for every prime ideal I ⊂ S the following condition holds.

(4.1) For each q ∈ I there exists wq ∈ S \ I such that qwq ∈ I2.

We say that a topological semigroup S is “topologically compatible”, or t-
compatible, if S = S2 and condition (4.1) holds for every prime ideal I serving
as the null ideal of an exponential in C(S).

Note that S = S2 is satisfied for instance by every monoid (i.e. a semigroup
with identity element). Condition (4.1) is satisfied for example by semigroups
with no prime ideals, and by semigroups in which I = I2 for every prime
ideal I.

The next lemma shows that the solution of (1.1) on compatible semigroups
will generalize the results of [1] and [2].



The cosine-sine functional equation on semigroups 37

Lemma 4.3. The class consisting of groups and semigroups generated by
their squares is a proper subset of the class of compatible semigroups.

Proof. Groups satisfy S = S2 since they have an identity element, and
they trivially satisfy (4.1) since they have no prime ideals. Suppose S is a
semigroup generated by its squares and I ⊂ S is a prime ideal. The proofs
that S = S2 and I = I2 are similar, so we prove only the second one. For any
x ∈ I there exist a positive integer n and y1, . . . , yn ∈ S such that x = y21 · · · y2n,
since S is generated by its squares. Since I is a prime ideal we have yj ∈ I for
some 1 ≤ j ≤ n, therefore x = (y21 · · · y2j−1yj)(yjy2j+1 · · · y2n) ∈ I2. Thus I = I2

and S satisfies (4.1). This proves that groups and semigroups generated by
their squares are compatible semigroups.

On the other hand, the semigroup S = (−1, 1) under multiplication is not
a group and is not generated by its squares. Clearly S = S2. The only prime
ideal of S is I = {0}, and I = I2. Thus S satisfies condition (4.1) and is
therefore compatible. �

By definition, if S is a compatible semigroup then P
(1)
χ = ∅ for every

multiplicative χ : S → C. In such an event the form of h in Proposition 2.1(iii)
simplifies to

(4.2) h(x) =

{
A(x)χ(x) for x ∈ S \ Iχ,
0 for x ∈ Iχ.

Notation 4.4. Let ΦA,χ : S → C denote a function h of the form (4.2),
where χ : S → C is an exponential and A : S \ Iχ → C is additive.

From this point on we will generally state results in their topological ver-
sions. One can get algebraic (non-topological) versions by taking the discrete
topology. We have the following corollary of Proposition 2.1.

Corollary 4.5. Let S be a t-compatible topological semigroup. If h, g ∈
C(S) satisfy the sine addition law (2.1) with h 6= 0, then h, g belong to one of
the following families, where χ1, χ2, χ ∈ C(S) are multiplicative, A ∈ C(S\Iχ)
is a nonzero additive function, and c ∈ C∗.
(i) For χ1 6= χ2 we have

h = c(χ1 − χ2) and g =
χ1 + χ2

2
.

(ii) For g = χ 6= 0 we have h = ΦA,χ as described in Notation 4.4.
The converse statements are also true.
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Proof. Part (i) carries over from Proposition 2.1, but Proposition 2.1(ii)
is nullified by the imposed condition S = S2. Proposition 2.1(iii) carries over
to the current case (ii) since P (1)

χ = ∅. Furthermore A 6= 0 because h 6= 0. The
converse is easily verified. �

Next we consider a system of functional equations arising in the process
of solving (1.1).

Lemma 4.6. Let S be a t-compatible topological semigroup, and suppose
h ∈ C(S) has the form h = ΦA,χ 6= 0 with exponential χ ∈ C(S). If f ∈ C(S)
satisfies

(4.3) f(xy) = f(x)χ(y) + χ(x)f(y) + h(x)h(y), x, y ∈ S,

then

(4.4) f(x) =

{(
A′(x) + 1

2A(x)2
)
χ(x) for x ∈ S \ Iχ,

0 for x ∈ Iχ,

where A′ ∈ C(S \ Iχ) is additive.
Conversely, if f is given by (4.4) with additive A′ : S \ Iχ → C and h =

ΦA,χ, then (4.3) holds.

Proof. Suppose f, h satisfy (4.3) with h = ΦA,χ 6= 0. For x, y ∈ S \ Iχ,
dividing (4.3) by χ(x)χ(y) we get

f

χ
(xy) =

f

χ
(x) +

f

χ
(y) +A(x)A(y), x, y ∈ S \ Iχ.

Thus (f/χ) − 1
2A

2 =: A′ ∈ C(S \ Iχ) is additive, and we have the top case
of (4.4). If Iχ = ∅ then we are done (with the bottom case of (4.4) vacuous).
If Iχ 6= ∅ and x, y ∈ Iχ, then (4.3) yields f(xy) = 0 since χ(x) = χ(y) =
h(x) = 0. Thus f vanishes on I2χ. For any x ∈ Iχ, by t-compatibility there
exists wx ∈ S \ Iχ such that xwx ∈ I2. Thus by (4.3) we get

0 = f(xwx) = f(x)χ(wx) + χ(x)f(wx) + h(x)h(wx) = f(x)χ(wx)

since χ(x) = h(x) = 0. Now χ(wx) 6= 0 implies f(x) = 0 and we have (4.4).
The converse is a simple verification. �

We introduce notation for the solution type of f above.

Notation 4.7. Let ΨA′,A,χ : S → C denote a function f of the form (4.4),
where χ : S → C is multiplicative and A,A′ : S \ Iχ → C are additive.
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Thus Lemma 4.6 shows that the pair (f, h) = (ΨA′,A,χ,ΦA,χ) satisfies (4.3).
Now we gather some linear independence results for typical solution func-

tions.

Lemma 4.8. Let S be a semigroup, and let n ∈ N. Suppose χ, χ′, χ1,
χ2, . . . , χn : S → C are distinct exponentials, A′, A : S \ Iχ → C are additive,
and ΦA,χ,ΨA′,A,χ : S → C are as defined above.
(a) {χ1, χ2, . . . χn} is linearly independent.
(b) If A 6= 0 then {χ,ΦA,χ} is linearly independent.
(c) If A 6= 0 then {χ′, χ,ΦA,χ} is linearly independent.
(d) If A 6= 0 then {χ,ΦA,χ,ΨA′,A,χ} is linearly independent.

Proof. Part (a) is part of [5, Theorem 3.18].
For part (b) suppose

aχ+ bΦA,χ = 0

for some constants a, b ∈ C. Restricting to the subsemigroup S \ Iχ we get

a+ bA(x) = 0, x ∈ S \ Iχ.

Thus a = bA = 0, so b = 0 since A 6= 0.
For part (c) suppose

(4.5) aχ′ + bχ+ cΦA,χ = 0

for some constants a, b, c ∈ C. Then

am(x) + b+ cA(x) = 0, for x ∈ S \ Iχ,(4.6)

where m : S \ Iχ → C defined by m := χ′/χ is multiplicative. Using (4.6)
several times we find that

0 = am(xy) + b+ cA(xy) = am(x)m(y) + b+ cA(x) + cA(y)

= a[m(x)m(y)−m(x)−m(y)]− b

= a[m(x)− 1][m(y)− 1]− (a+ b),

so
a[m(x)− 1][m(y)− 1] = a+ b, for all x, y ∈ S \ Iχ.

If a 6= 0 then m is constant, say m(x) = µ for all x ∈ S \ Iχ. Putting this
into (4.6) we have aµ+ b+ cA = 0, so as before we find that aµ+ b = 0 and
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c = 0. Now (4.5) yields aχ′ + bχ = 0, and by part (a) this is possible only if
a = b = 0, a contradiction. Thus a = 0, and b = c = 0 follows by part (b).

Finally, for part (d) let

aχ+ bΦA,χ + cΨA′,A,χ = 0

for some constants a, b, c ∈ C. Restricting to the sub-semigroup S \Iχ we have

a+ bA(x) + c[A′(x) +
1

2
A2(x)] = 0, x ∈ S \ Iχ.(4.7)

Since A 6= 0, each of the terms a, bA, cA′ in (4.7) is homogeneous of degree 0
or 1, while the term c

2A
2 is homogeneous of degree 2 if c 6= 0, hence c = 0.

Now (4.7) reduces to a+ bA = 0, and since A 6= 0 we get a = b = 0. �

The following will also play an important role in our solution of (1.1).

Lemma 4.9. Let S be a t-compatible topological semigroup, and let χ ∈
C(S) be multiplicative. If f, h ∈ C(S) satisfy the pair of functional equa-
tions (4.3) and

(4.8) h(xy) = h(x)
(
χ+

δ

2
h
)
(y) +

(
χ+

δ

2
h
)
(x)h(y), x, y ∈ S,

for some δ ∈ C, with f and h linearly independent, then they belong to one
of the following families, where χ′ ∈ C(S) is multiplicative, A,A′ ∈ C(S \ Iχ)
are additive, and c ∈ C∗.
(a) For δ 6= 0 we have h = c(χ− χ′) and f = −ch+ ΦA,χ where χ 6= χ′ and

ΦA,χ 6= 0.
(b) For δ = 0 we have h = ΦA,χ 6= 0 and f = ΨA′,A,χ 6= 0 (so χ is an

exponential).
The converse is also true.

Proof. We start with the “if” part. Since f, h are linearly independent we
have f 6= 0, h 6= 0. Note that (4.8) can be viewed as the sine addition formula
(2.1) with g := χ+ δ

2h. We divide the proof according to the cases (i) and (ii)
of Corollary 4.5 for the solutions h of (4.8).

Case (i): In case (i) of Corollary 4.5 we have h = c(χ1 − χ2) and g =
1
2(χ1 + χ2) for multiplicative χ1, χ2 ∈ C(S) with χ1 6= χ2 and c ∈ C∗. Thus
we get

0 = g − g = (χ+
δ

2
h)− 1

2
(χ1 + χ2) = χ+

cδ − 1

2
χ1 −

cδ + 1

2
χ2.
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By Lemma 4.8(a), this implies that χ is equal to either χ1 or χ2. Without loss
of generality suppose χ1 = χ and δ = −1

c 6= 0. Now (4.3) and (4.8), together
with the independence of f and h, show that

(h− δf)(xy) = (h− δf)(x)χ(y) + χ(x)(h− δf)(y)

with h− δf 6= 0. Applying Corollary 4.5 to the function h− δf , we are in case
(ii), so χ 6= 0 and h − δf = ΦA,χ for additive A ∈ C(S \ Iχ). Since δ 6= 0 we
can solve for f here, and we get solution family (a) after relabeling.

Case (ii): From Corollary 4.5(ii) we get g = χ1 = χ2 =: χ′ 6= 0 and
h = ΦA,χ′ for some exponential χ′ ∈ C(S) and additive A ∈ C(S \ Iχ′) with
A 6= 0. Thus we have 0 = g − g = χ′ − (χ+ δ

2h), so

δ

2
h = χ′ − χ.

Since h = ΦA,χ′ 6= 0, this contradicts Lemma 4.8(c) unless δ = 0 and χ = χ′.
Thus we have h = ΦA,χ. Applying Lemma 4.6 to (4.3) we get that f = ΨA′,A,χ

for some additive A′ ∈ C(S \ Iχ). Thus we have the solution forms in (b).
For the converse, the verifications of (4.3) and (4.8) are straightforward.

The linear independence of f and h is confirmed by Lemma 4.8. �

Next we verify the solution families of (1.1) that will be found in our main
result. The method of proof parallels [1, Lemmas 1, 3, and 6].

Lemma 4.10. Let S be a semigroup, let χj , χ, χ′ : S → C be multiplicative
functions, let A,A′ : S\Iχ → C be additive, and let f, g, h : S → C be a solution
of (1.1) such that f, g, h belong to one of the following linear spaces V .
(a) If V = span{χ1, χ2, χ3}, then there exist aj , bj , cj ∈ C satisfying

(4.9)

a1 b1 c1
a2 b2 c2
a3 b3 c3

b1 b2 b3
a1 a2 a3
c1 c2 c3

 =

a1 0 0
0 a2 0
0 0 a3


such that

f =

3∑
i=1

aiχi, g =

3∑
i=1

biχi, h =

3∑
i=1

ciχi.(4.10)
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(b) If V = span{χ′, χ,ΦA,χ}, then there exist aj , bj , cj ∈ C satisfying

(4.11)

a1 b1 c1
a2 b2 c2
a3 b3 c3

b1 b2 b3
a1 a2 a3
c1 c2 c3

 =

a1 0 0
0 a2 a3
0 a3 0


such that

(4.12)


f = a1χ

′ + a2χ+ a3ΦA,χ,

g = b1χ
′ + b2χ+ b3ΦA,χ,

h = c1χ
′ + c2χ+ c3ΦA,χ.

(c) If V = span{χ,ΦA,χ,ΨA′,A,χ}, then there exist aj , bj , cj ∈ C satisfying

(4.13)

a1 b1 c1
a2 b2 c2
a3 b3 c3

b1 b2 b3
a1 a2 a3
c1 c2 c3

 =

a1 a2 a3
a2 a3 0
a3 0 0


such that

(4.14)


f = a1χ+ a2ΦA,χ + a3ΨA′,A,χ,

g = b1χ+ b2ΦA,χ + b3ΨA′,A,χ,

h = c1χ+ c2ΦA,χ + c3ΨA′,A,χ.

Conversely, in each case if f, g, h is such a linear combination with coeffi-
cients satisfying the stated condition, then the functions satisfy (1.1). More-
over if any one of f, g, h is zero then the corresponding coefficients can be
chosen to be zero.

Proof. For part (a), let E ⊆ {1, 2, 3} be chosen so that {χi | i ∈ E} is a
basis for V . Then there is a unique representation of f, g, h in the form (4.10)
with ak = bk = ck = 0 for all k /∈ E. With f =

∑
i∈E aiχi, g =

∑
i∈E biχi,

h =
∑
i∈E ciχi , the linear independence of {χi | i ∈ E} implies that (1.1) is

satisfied if and only if the constants {ai, bi, ci | i ∈ E} satisfy

aibj + biaj + cicj = δijai,

where δii = 1 and δij = 0 for j 6= i. Combining this with ak = bk = ck = 0 for
k /∈ E we have the constraint (4.9).

In part (b), define γ1 := χ′, γ2 := χ, γ3 := ΦA,χ, and let E ⊆ {1, 2, 3}
be chosen so that {γi | i ∈ E} is a basis for V . As before there is a unique
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representation of f, g, h in the form (4.12) with ak = bk = ck = 0 for all k /∈ E.
Inserting these forms into (1.1) we find after some rearrangement that

a3ΦA,χ(xy) = (2a1b1 + c21 − a1)χ′(x)χ′(y) + (2a2b2 + c22 − a2)χ(x)χ(y)

+ (a1b2 + b1a2 + c1c2)[χ′(x)χ(y) + χ(x)χ′(y)]

+ (2a3b3 + c23)ΦA,χ(x)ΦA,χ(y)

+ (a1b3 + b1a3 + c1c3)[χ′(x)ΦA,χ(y) + ΦA,χ(x)χ′(y)]

+ (a2b3 + b2a3 + c2c3)[χ(x)ΦA,χ(y) + ΦA,χ(x)χ(y)].

Since ΦA,χ(xy) = ΦA,χ(x)χ(y) + χ(x)ΦA,χ(y) we can rewrite the preceding
equation as

0 = (2a1b1 + c21 − a1)χ′(x)χ′(y) + (2a2b2 + c22 − a2)χ(x)χ(y)

+ (a1b2 + b1a2 + c1c2)[χ′(x)χ(y) + χ(x)χ′(y)]

+ (2a3b3 + c23)ΦA,χ(x)ΦA,χ(y)

+ (a1b3 + b1a3 + c1c3)[χ′(x)ΦA,χ(y) + ΦA,χ(x)χ′(y)]

+ (a2b3 + b2a3 + c2c3 − a3)[χ(x)ΦA,χ(y) + ΦA,χ(x)χ(y)].

By the linear independence of basis elements, the coefficients of all nonzero
terms vanish. Combining this with ak = bk = ck = 0 for all k /∈ E, we
have (4.11).

For part (c) define γ1 := χ, γ2 := ΦA,χ, γ3 := ΨA′,A,χ and let E ⊆ {1, 2, 3}
be chosen so that {γi | i ∈ E} is a basis for V . Again there is a unique
representation of f, g, h in the form (4.14) with ak = bk = ck = 0 for all
k /∈ E. Here we find that (1.1) is satisfied if and only if

a1χ(xy) + a2ΦA,χ(xy) + a3ΨA′,A,χ(xy)

= (2a1b1 + c21)χ(x)χ(y) + (2a2b2 + c22)ΦA,χ(x)ΦA,χ(y)

+ (2a3b3 + c23)ΨA′,A,χ(x)ΨA′,A,χ(y)

+ (a1b2 + b1a2 + c1c2)[χ(x)ΦA,χ(y) + ΦA,χ(x)χ(y)]

+ (a1b3 + b1a3 + c1c3)[χ(x)ΨA′,A,χ(y) + ΨA′,A,χ(x)χ(y)]

+ (a2b3 + b2a3 + c2c3)[ΦA,χ(x)ΨA′,A,χ(y) + ΨA′,A,χ(x)ΦA,χ(y)].
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Since ΨA′,A,χ(xy) = ΨA′,A,χ(x)χ(y) + χ(x)ΨA′,A,χ(y) + ΦA,χ(y)ΦA,χ(y) and
ΦA,χ(xy) = ΦA,χ(x)χ(y) + χ(x)ΦA,χ(y), the preceding equation reduces to

0 = (2a1b1 + c21 − a1)χ(x)χ(y) + (2a2b2 + c22 − a3)ΦA,χ(x)ΦA,χ(y)

+ (2a3b3 + c23)ΨA′,A,χ(x)ΨA′,A,χ(y)

+ (a1b2 + b1a2 + c1c2 − a2)[χ(x)ΦA,χ(y) + ΦA,χ(x)χ(y)]

+ (a1b3 + b1a3 + c1c3 − a3)[χ(x)ΨA′,A,χ(y) + ΨA′,A,χ(x)χ(y)]

+ (a2b3 + b2a3 + c2c3)[ΦA,χ(x)ΨA′,A,χ(y) + ΨA′,A,χ(x)ΦA,χ(y)].

As before, the independence of basis elements implies that the coefficients of
all nonzero terms vanish, and we have the claimed (4.13).

The converse statements are easily verified by substitution. �

5. The solution of (1.1)

Now we are ready for the main result. Observe that if f = 0 in (1.1),
then h = 0 and g is an arbitrary function. We omit this trivial case from our
theorem.

We adhere closely to the plan of the proof used in [1, Theorem]. Much of
that proof is repeated here, for two reasons. One reason is for completeness,
but the larger reason is that we arrive at a solution family in part (c) that is
stated more concisely than the one in [1]. We comment on that point again
after the proof.

Theorem 5.1. Let S be a t-compatible topological semigroup, and suppose
f, g, h ∈ C(S) satisfy (1.1) with f 6= 0. Then f, g, h belong to one of the three
families below. In each family we can choose a basis B for V and coefficients
aj , bj , cj so that the coefficients are equal to 0 for each term not appearing in
B. In addition the functions χj , χ, χ′,ΦA,χ,ΨA′,A,χ : S → C that appear in B
belong to C(S), where χ, χ′, χj are multiplicative and A,A′ ∈ C(S \ Iχ) are
additive.
(a) f, g, h ∈ V = span{χ1, χ2, χ3}, namely

f =

3∑
j=1

ajχj , g =

3∑
j=1

bjχj , h =

3∑
j=1

cjχj

with aj , bj , cj ∈ C satisfying (4.9).
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(b) f, g, h ∈ V = span{χ′, χ,ΦA,χ}, namely

f = a1χ
′ + a2χ+ a3ΦA,χ, g = b1χ

′ + b2χ+ b3ΦA,χ,

h = c1χ
′ + c2χ+ c3ΦA,χ

with aj , bj , cj ∈ C satisfying (4.11).
(c) f, g, h ∈ V = span{χ,ΦA,χ,ΨA′,A,χ}, namely

f = a1χ+ a2ΦA,χ + a3ΨA′,A,χ,

g = b1χ+ b2ΦA,χ + b3ΨA′,A,χ,

h = c1χ+ c2ΦA,χ + c3ΨA′,A,χ,

with aj , bj , cj ∈ C satisfying (4.13).
Conversely, the functions in each family satisfy (1.1).

Proof. Let f, g, h ∈ C(S) be a solution of (1.1) with f 6= 0, and suppose
first that {f, h} is linearly dependent. Then h = λf and (1.1) can be written
as

f(xy) = f(x)k(y) + k(x)f(y), x, y ∈ S,

where k ∈ C(S) is defined by

k := g +
1

2
λ2f.

By Corollary 4.5 there are two solution families. In case (i) we have f =
c(χ1 − χ2) and k = 1

2(χ1 + χ2) for a pair of distinct multiplicative functions
χ1, χ2 ∈ C(S) and c ∈ C∗. Thus we have f, g, h ∈ span{χ1, χ2} and are
in family (a). In case (ii) we get that k = χ is a (continuous) exponential
and f = ΦA,χ. Thus f, g, h ∈ span{χ,ΦA,χ}, giving a solution belonging to
family (b). From here on we assume that {f, h} is linearly independent, so
h 6= 0. Comparing the results of computing f((xy)z) and f(x(yz)) using (1.1),
and using the linear independence of f and h, we obtain as in [1] the pair of
functional equations

g(xy) = g(x)g(y) + αf(x)f(y) + β[f(x)h(y) + h(x)f(y)](5.1)

+ γh(x)h(y),

h(xy) = h(x)g(y) + g(x)h(y) + βf(x)f(y) + γ[f(x)h(y) + h(x)f(y)](5.2)

+ δh(x)h(y),



46 Bruce Ebanks

for some constants α, β, γ, δ ∈ C. Then computing g(x(yz)) and g((xy)z) using
equations (5.1), (5.2), and (1.1), a comparison of those results brings us (again
using linear independence of {f, h}) to the conclusion that

α+ βδ − γ2 = 0.(5.3)

Next, using (1.1), (5.1), and the linear independence of {f, h} we find that
the functional equation

(λf + g)(xy) = (λf + g)(x)(λf + g)(y) + (µf + νh)(x)(µf + νh)(y)(5.4)

holds if and only if the constants λ, µ, ν ∈ C satisfy

λ2 + µ2 = α, µν = β, and ν2 = λ+ γ.(5.5)

Now the proof divides into two main cases.
Case 1: Suppose β = 0. Now from (5.3) we have α = γ2, and the choice

(λ, µ, ν) = (−γ, 0, 0) yields a solution of (5.5). Therefore by (5.4) we have

g = χ+ γf(5.6)

for some multiplicative χ ∈ C(S). Using this to eliminate g from (1.1) and
(5.2), we arrive at the pair of functional equations

f(xy) = 2γf(x)f(y) + f(x)χ(y) + χ(x)f(y) + h(x)h(y),(5.7)

h(xy) = h(x)
(
χ+ 2γf +

δ

2
h
)
(y) +

(
χ+ 2γf +

δ

2
h
)
(x)h(y).(5.8)

Here we subdivide the proof again.
Subcase 1a: Suppose γ = 0. Now (5.7) and (5.8) reduce to

f(xy) = f(x)χ(y) + χ(x)f(y) + h(x)h(y),

h(xy) = h(x)
(
χ+

δ

2
h
)
(y) +

(
χ+

δ

2
h
)
(x)h(y),

with solutions given by Lemma 4.9. If δ 6= 0 then we have h = c(χ− χ′) and
f = −ch+ ΦA,χ with χ, χ′,ΦA,χ ∈ C(S), for χ 6= χ′ (multiplicative), c ∈ C∗,
and ΦA,χ 6= 0. In this case by (5.6) we have f, g, h ∈ span{χ′, χ,ΦA,χ} and
are again in solution family (b). If δ = 0 then we have h = ΦA,χ 6= 0 and
f = ΨA′,A,χ 6= 0. Thus by (5.6) we have f, g, h ∈ span{χ,ΦA,χ,ΨA′,A,χ} and
are in family (c).

Subcase 1b: Suppose γ 6= 0. Applying Corollary 4.5 to (5.8) yields two
solution families for the pair h, k, where k := χ+ 2γf + δ

2h ∈ C(S). The first
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family is h = c(χ1 − χ2), k = 1
2(χ1 + χ2) for distinct multiplicative χ1, χ2 ∈

C(S). Comparing the two equations for k, we see that f ∈ span{χ1, χ2, χ}.
Defining χ3 := χ and recalling (5.6), we have f, g, h ∈ span{χ1, χ2, χ3} and
are in family (a) again.

The second solution family of (5.8) from Corollary 4.5 is h = ΦA,χ′ , k = χ′,
for some exponential χ′ ∈ C(S) and nonzero additive A ∈ C(S\Iχ′). Equating
the two formulas for k here, we find that f ∈ span{χ′, χ,ΦA,χ′}. By (5.6) we
have f, g, h ∈ span{χ′, χ,ΦA,χ′} and (switching the roles of χ and χ′) are in
family (b) again. This completes Case 1.

Case 2: Suppose β 6= 0. Choosing constants λ, µ, ν satisfying (5.5) we
rewrite (5.4) as

(λf + g)(xy) = (λf + g)(x)(λf + g)(y) + νH(x)νH(y),(5.9)

where µν = β 6= 0 and H ∈ C(S) is defined by

νH := µf + νh.(5.10)

From the independence of f, h we have H 6= 0, therefore λf +g 6= 0. Applying
Lemma 4.1 to (5.9) we get

νH(xy) = (λf + g)(x)νH(y) + νH(x)(λf + g)(y) + ηνH(x)νH(y)

for some η ∈ C, that is

H(xy) = H(x)(λf + g +
ην

2
H)(y) + (λf + g +

ην

2
H)(x)H(y).(5.11)

Next we eliminate h from (1.1) using (5.10), resulting in

f(xy) = f(x)
(
g − µ

ν
H +

µ2

2ν2
f
)
(y) +

(
g − µ

ν
H +

µ2

2ν2
f
)
(x)f(y) +H(x)H(y).

Defining G ∈ C(S) by

G := g − µ

ν
H +

µ2

2ν2
f,(5.12)

we can write the preceding equation as

f(xy) = f(x)G(y) +G(x)f(y) +H(x)H(y),(5.13)
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which is again of the form (1.1). The independence of f,H follows from (5.10).
In addition we can write (5.11) in the form

H(xy) = H(x)G(y) +G(x)H(y) +
(
λ− µ2

2ν2
)
[f(x)H(y) +H(x)f(y)](5.14)

+
(2µ

ν
+ ην

)
H(x)H(y).

We apply to (5.13) the results established for (1.1) up to this point. In
particular we get the equation

H(xy) = H(x)G(y) +G(x)H(y) + β∗f(x)f(y) + γ∗[f(x)H(y) +H(x)f(y)]

+ δ∗H(x)H(y)

parallel to (5.2) for corresponding constants β∗, γ∗, δ∗ ∈ C. Now comparing
the equation above with (5.14) we find that

0 = −β∗f(x)f(y) +
(
λ− µ2

2ν2
− γ∗

)
[f(x)H(y) +H(x)f(y)]

+
(2µ

ν
+ ην − δ∗

)
H(x)H(y).

Since f and H are independent we therefore have β∗ = 0, so we are back
in Case 1 for the triple (f,G,H). Thus f,G,H belong to one of the families
(a),(b), or (c). Since f, g, h ∈ span{f,G,H} by (5.12) and (5.10), the functions
f, g, h belong to the same families. This finishes Case 2.

The converse is established by Lemma 4.10. �

Note that the description of the solution in case (c) here is simpler than
the one given in [1, Theorem]. We achieved this simplification by tracking the
solution closely and not splitting the function ΨA′,A,χ into two terms. (In [1],
the function (A′ + A2)χ was split into the terms A′χ and A2χ.) This point
is illustrated in the following corollary, which generalizes [1, Theorem] and
is an immediate consequence of Theorem 5.1. Clearly any group satisfies the
conditions on S imposed here.

Corollary 5.2. Let S be a semigroup that satisfies S = S2 and has no
prime ideals. If f, g, h : S → C satisfy (1.1) with f 6= 0, then the solutions
belong to the following families, where χ, χ′, χj : S → C are multiplicative
functions and A,A′ : S \ Iχ → C are additive functions.
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(a) f, g, h ∈ V = span{χ1, χ2, χ3}, namely

f =

3∑
j=1

ajχj , g =

3∑
j=1

bjχj , h =

3∑
j=1

cjχj

with aj , bj , cj ∈ C satisfying (4.9).
(b) f, g, h ∈ V = span{χ′, χ,Aχ}, namely

f = a1χ
′ + a2χ+ a3Aχ, g = b1χ

′ + b2χ+ b3Aχ,

h = c1χ
′ + c2χ+ c3Aχ

with aj , bj , cj ∈ C satisfying (4.11).
(c) f, g, h ∈ V = span{χ,Aχ, (A′ + 1

2A
2)χ}, namely

f = a1χ+ a2Aχ+ a3(A′ +
1

2
A2)χ,

g = b1χ+ b2Aχ+ b3(A′ +
1

2
A2)χ,

h = c1χ+ c2Aχ+ c3(A′ +
1

2
A2)χ,

with aj , bj , cj ∈ C satisfying (4.13).
Conversely, the functions in each family satisfy (1.1).
If in addition S is a topological semigroup and f, g, h ∈ C(S), then we can

choose a basis B for V and coefficients aj , bj , cj in each part above so that the
coefficients are equal to 0 for each term not appearing in B, and the functions
appearing in B belong to C(S).

6. Examples

Since the case of groups and the case of semigroups generated by their
squares were handled in [1] and [2] respectively, we use semigroups which are
not groups and not generated by their squares.

We start with two examples applying Corollary 3.2.

Example 6.1. Let S = (N,+) and suppose f, g : S → C satisfy (1.2).
There exist nonzero solutions in cases (a) and (b) of Corollary 3.2, since
S \S2 = {1} is nonempty. The exponentials on S have the form χ(n) = bn for
some b ∈ C∗. Since S has no prime ideals, ΦA,χ,ρ reduces to simply Aχ where
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A : S → C is additive. Such additive functions have the form A(n) = an for
some a ∈ C. The solutions in cases (c)–(f) of Corollary 3.2 are obtained by
substituting these forms into the formulas given there.

For the next example let P denote the set of primes, and for each p ∈ P
define Cp : N→ N0 by

Cp(x) := the number of copies of p occurring in the prime factorization of x.

Then Cp is an additive function on the monoid S = (N, ·). For each x ∈ S let
Px denote the set of prime factors of x, so x =

∏
p∈Px p

Cp(x).

Example 6.2. Let S = (N, ·) and suppose f, g : S → C satisfy (1.2).
Exponentials χ : S → C have the form χ(x) =

∏
p∈Px χ(p)Cp(x) for all x ∈ S.

The empty product is understood to be 1, so χ(1) = 1. The prime ideals
of S are of the form ∪p∈Q(pN) for nonempty proper subsets Q ⊂ P . For a
given exponential χ, the additive functions A : S \ Iχ → C have the form
A(x) =

∑
p∈Px\Iχ A(p)Cp(x) for all x ∈ S \ Iχ. The empty sum is defined to

be 0, so A(1) = 0. The set P (1+)
χ is empty, and the set P (1)

χ = Iχ \ I2χ consists
of the primes p ∈ Iχ and their products with elements of S \ Iχ. Condition
(II) of Proposition 2.1 states that ρ(x) = ρ(p)χ(w) for x = pw with p ∈ P (1)

χ

and w ∈ S \ Iχ. Here the value of ρ(p) for each p ∈ P ∩ Iχ is arbitrary, and
the values of ρ at all other points of P (1)

χ are determined by condition (II).
Solutions of (1.2) are obtained by substituting these forms into the formu-

las in cases (c)–(f) of Corollary 3.2. Since S is a monoid, case (a) yields only
f = g = 0 and case (b) is vacuous.

Now we turn to examples illustrating our results about (1.1).

Example 6.3. Let S = (−1, 0)∪ (0, 1) under multiplication and the usual
topology. Clearly S = S2 and S has no prime ideals, so we can apply Corol-
lary 5.2 to get the solutions of (1.1) with f 6= 0. The continuous exponentials
on S have one of the three forms

χ = 1, χ(x) = |x|α, or χ(x) = |x|αsgn(x),

where α ∈ C has positive real part. The continuous additive functions on S
are of the form A(x) = c log |x| for some c ∈ C.

The next example has two prime ideals, I1 = {0} and I2 = (−1, 1), both
of which satisfy I = I2. We choose a topological version that eliminates I2 for
convenience. (The exponential χ with Iχ = I2 is defined by χ(1) = χ(−1) = 1
and χ(x) = 0 for −1 < x < 1.)



The cosine-sine functional equation on semigroups 51

Example 6.4. Let S = [−1, 1] under multiplication and the usual topol-
ogy. Then S is t-compatible, so we can apply Theorem 5.1 to get the continu-
ous solutions of (1.1) with f 6= 0. The continuous exponentials on S have one
of the three forms

χ = 1, χ(x) =

{
|x|α if x 6= 0,

0 if x = 0,
or χ(x) =

{
|x|αsgn(x) if x 6= 0,

0 if x = 0,

where α ∈ C has positive real part. The continuous additive functions on
S \ {0} are of the form A(x) = c log |x| for some c ∈ C. The only additive
function on S is the zero function, so ΦA,1 = ΨA′,A,1 = 0. Thus solution
families (b) and (c) arise (non-trivially) only for χ 6= 1.

The final example illustrates some of the complexity obstructing attempts
to solve (1.1) on a general semigroup. We return to S = (N, ·), which satisfies
S = S2 since it is a monoid. As we saw in Example 6.2 we can get the solutions
of (1.2) on S from Corollary 3.2. But S is not a compatible semigroup, since
I = pN is a prime ideal for any prime p and pw ∈ I \ I2 for every w ∈ S \ I,
thus condition (4.1) of compatibility fails.

The following example exhibits solutions of (1.1) that are not of the forms
in Theorem 5.1.

Example 6.5. Let S = (N, ·), let p 6= q be primes, let I = pN ∪ qN, and
let g : S → C be the exponential

g(x) =

{
1 for x ∈ S \ I,
0 for x ∈ I,

with null ideal I. Let h : S → C be defined by

h(x) =


0 for x ∈ S \ I,
ρ(s) for x = sw ∈ I \ I2, with s ∈ {p, q}, w ∈ S \ I,
0 for x ∈ I2,

where ρ : {p, q} → C is not the zero function. Define f : S → C by

f(x) =


A′(x) for x ∈ S \ I,
ρ′(s) for x = sw ∈ I \ I2 with s ∈ {p, q}, w ∈ S \ I,
ρ(s)ρ(t) for x = stw ∈ I2 \ I3 with s, t ∈ {p, q}, w ∈ S \ I,
0 for x ∈ I3,

for some additive A′ : S \ Iχ → C and a nonzero function ρ′ : {p, q} → C.
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It can be checked that f, g, h satisfy (1.1), with f 6= 0 and h = Φ0,g,ρ 6= 0.
Clearly neither f nor h has a form seen in Theorem 5.1.

Things can get more complicated than the last example. For other semi-
groups (and exponentials χ defined on them), all three pieces of the nullspace
partition Iχ = I2χ ∪ P

(1+)
χ ∪ P (1)

χ are nonempty, and the interactions under
multiplication of elements from different pieces can complicate the picture
further. The proliferation of cases created by this situation makes the prob-
lem of solving (1.1) on a general semigroup rather unwieldy.
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