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A PARAMETRIC FUNCTIONAL EQUATION
ORIGINATING FROM NUMBER THEORY

Aziz Mouzoun , Driss Zeglami, Youssef Aissi

Abstract. Let S be a semigroup and α, β ∈ R. The purpose of this paper
is to determine the general solution f : R2 → S of the following parametric
functional equation

f(x1x2 + αy1y2, x1y2 + x2y1 + βy1y2) = f(x1, y1)f(x2, y2),

for all (x1, y1), (x2, y2) ∈ R2, that generalizes some functional equations aris-
ing from number theory and is connected with the characterizations of the
determinant of matrices.

1. Introduction

Throughout this paper S denotes a semigroup (i.e., a non-empty set
equipped with an associative composition rule (x, y) → xy), K denotes ei-
ther the set of real numbers R or complex numbers C, and α, β ∈ R. The
semigroup S will represent the range space of the solutions in the second sec-
tion of this paper. We equip R2 with the multiplication rule ∗α,β defined by

(x1, y1) ∗α,β (x2, y2) = (x1x2 + αy1y2, x1y2 + x2y1 + βy1y2),
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for all (x1, y1), (x2, y2) ∈ R2. The rule makes R2 into an abelian monoid with
neutral element (1, 0).

We introduce the multiplicative Cauchy ∗α,β-functional equation

(E(α, β)) f((x1, y1) ∗α,β (x2, y2)) = f(x1, y1)f(x2, y2),

i.e.

(1.1) f(x1x2 + αy1y2, x1y2 + x2y1 + βy1y2) = f(x1, y1)f(x2, y2),

where (x1, y1), (x2, y2) ∈ R2, α, β are fixed real parameters and f : (R2, ∗α,β)→
S is the unknown multiplicative function to be determined.

Let us mention some recent contributions to the theory of functional equa-
tions related to (1.1). For β = 0, where (E(α, β)) reduces to (E(α, 0)), Berrone
and Dieulefait ([5]) characterized the solution f : R2 → R of the functional
equation

f(x1x2 + αy1y2, x1y2 + x2y1) = f(x1, y1)f(x2, y2),

that arises from the product of two numbers in a quadratic number field.
Functional equations which result from the formula of the product of two
numbers in a pure cubic (resp. quartic) number field were investigated in [11]
(resp. [15]). Another particular instance of (1.1) is the functional equation

(1.2) f(x1x2 − y1y2, x1y2 + x2y1 + y1y2) = f(x1, y1)f(x2, y2),

which was derived from the Proth identity. Ebanks ([8]) found the solu-
tions f : F2 → S of (1.2), here F is any field containing Q(i

√
3) and S is

a commutative semigroup, and Chavez and Sahoo ([6]) determined its solu-
tions f : K2 → K. In [9] Jung and Bae discussed the form of the solutions
f : R2 → R of

f(x1x2 − y1y2, x1y2 + x2y1) = f(x1, y1)f(x2, y2),

which arises from the following identity (x1x2 + y1y2)2 + (x1y2 − x2y1)2 =
(x21 + y21)

(
x22 + y22

)
. Akkouchi and Rhali ([4]), Chavez and Sahoo ([6]) de-

scribed, for a fixed λ ∈ K∗ := K\ {0}, the solutions f : K2 → K and f : K2 →
S, respectively, of the functional equation

f(x1x2 + (λ− 1)y1y2, x1y2 + x2y1 + (λ− 2)y1y2) = f(x1, y1)f(x2, y2),

which is connected to the determinant of some matrices.



A parametric functional equation originating from number theory 73

Recently, the authors ([10]) treated another kind of equation than (1.1).
They described the solutions f : R2 → M2(C) of the matrix functional equa-
tion

(1.3) f(x1x2 + αy1y2, x1y2 + γx2y1) = f(x1, y1)f(x2, y2),

where α, γ are fixed real numbers. Of course, Eq. (1.3) differs from (1.1)
when γ 6= 1.

In connection with the characterization of functional equations arising
from the number theory, the present paper complements and contains the
existing results by finding the solutions f : R2 → S of the parametric func-
tional equation (E(α, β)). We impose no conditions like continuity on the
solutions.
(1) We characterize, in terms of multiplicative functions from (R, ·) or (C, ·)

to S, the solutions f : R2 → S of (E(α, β)).
(2) We find explicit expressions for the functions f : R2 → C satisfying the

equation (E(α, β)), and
(3) we describe, in terms of multiplicative functions M : (R, ·)→ R and addi-

tive ones A : (R,+)→ R, its real-valued solutions.
(4) By a more direct approach, we solve the particular instance of (E(α, β))

for β2 + 4α 6= 0, in which S = M2(C).

Notation. Throughout this paperK denotes either R or C withK∗ = K\{0},
R+ = {x ∈ R | x ≥ 0}, and S denotes a semigroup. That S is a regular
semigroup means that for all x ∈ S there exist a ∈ S such that x = xax.

In the sequel, all semigroups and groups will be denoted using multiplica-
tive notation. Let S1, S2 be semigroups. A function φ : S1 → S2 is said to be
a semigroup morphism if φ(xy) = φ(x)φ(y) for all x, y ∈ S1. If the semigroup
operation in S2 is a multiplication, then the semigroup morphism φ is said to
be a multiplicative function. If the semigroup operation in S2 is the addition,
then the semigroup morphism φ is said to be an additive function. A character
on a group G is a multiplicative function χ : G → C∗, where C∗ denotes the
multiplicative group of non-zero complex numbers. As well known, any non-
zero multiplicative function on a group is a character (see [13, Lemma 3.4(a)]).
It is possible for a multiplicative function on S to take the value 0 on a proper
non-empty subset of S. For any multiplicative function φ : S → C we use the
notation

Iφ := {x ∈ S | φ(x) = 0}.
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2. Main results

Inspired by papers [6, 8, 7], we will describe the solutions f : R2 → S of
the functional equation (E(α, β)). Let H be the set defined by

H := {(z, z̄) | z ∈ C}.

We equip H with the multiplication rule � defined by

(z1, z̄1) � (z2, z̄2) = (z1z2, z1z2) for all z1, z2 ∈ C.

The following lemma presents a result that is essential for the proof of our
main results.

Lemma 2.1. Let α, β ∈ R such that β2 +4α < 0. The map τ : (R2, ∗α,β)→
(H, �) defined by

τ(x, y) =
(
x+

1

2
(β + i

√
−β2 − 4α)y, x+

1

2
(β − i

√
−β2 − 4α)y

)
, x, y ∈ R,

is a bijective homomorphism.

Proof. With the notation ξ :=
1

2
(β + i

√
−β2 − 4α), we have

τ((x1, y1) ∗α,β (x2, y2)) = τ(x1x2 + αy1y2, x1y2 + x2y1 + βy1y2)

= ((x1 + ξy1)(x2 + ξy2), (x1 + ξ̄y1)(x2 + ξ̄y2))

= (τ1(x1, y1)τ1(x2, y2), τ2(x1, y1)τ2(x2, y2))

= τ(x1, y1) � τ(x2, y2),

for all (x1, y1), (x2, y2) ∈ R2. This implies that τ is an homomorphism from
(R2, ∗α,β) to (H, �). To show that τ is bijective, it is elementary to see, for all
(z, z̄) ∈ H with z = a+ ib, (a, b) ∈ R2, that

(x, y) =

(
a− β√

−β2 − 4α
b,

2√
−β2 − 4α

b

)

is the unique element of R2 such that τ(x, y) = (z, z̄). �



A parametric functional equation originating from number theory 75

The following theorem lists the solutions f : R2 → S of the equation
(E(α, β)) when β2 + 4α 6= 0.

Theorem 2.2. Let α, β ∈ R such that β2 + 4α 6= 0. The general solution
f : R2 → S of (E(α, β)) depends on the sign of β2 + 4α and is given by:
(1) If β2 + 4α > 0, then

f(x, y) = M1

(
x+

1

2
(β −

√
β2 + 4α)y

)
M2

(
x+

1

2
(β +

√
β2 + 4α)y

)
,

for all x, y ∈ R, where M1,M2 : (R, ·)→ S are multiplicative functions.
(2) If β2 + 4α < 0, then

f(x, y) = M
(
x+

1

2
(β + i

√
−β2 − 4α)y

)
,

for all x, y ∈ R, where M : (C, ·)→ S is a multiplicative function.

Proof. Let f : R2 → S be a solution of (E(α, β)). In solving equation
(E(α, β)), two different cases arise depending on the sign of β2 + 4α.

Case 1: If β2 + 4α > 0, we distinguish between two subcases.
Subcase 1: Suppose first that α 6= 0. Putting γ =

√
β2 + 4α, s = β + γ

and δ = β − γ, it is easy to see that sδ = −4α, s 6= 0 and δ 6= 0. We adopt
the ideas of [6] to the situation at hand. In matrix terminology, (E(α, β)) can
be written as

(x1, y1) ∗α,β (x2, y2) = (x1x2 + αy1y2, x1y2 + x2y1 + βy1y2)

=

(
x2 αy2
y2 x2 + βy2

)(
x1
y1

)
,

where x1, x2, y1, y2 ∈ R. The diagonalization of last equality gives us

(x1, y1) ∗α,β (x2, y2) = Q

 x2 +
1

2
δy2 0

0 x2 +
1

2
sy2

Q−1

(
x1
y1

)
,

where Q =

 1 1

−2

s
−2

δ

 and Q−1 =
α

γ

 −
2

δ
−1

2

s
1

 .
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Hence, the equation (E(α, β)) can be reformulated as

(2.1) f

(
Q

 x2 +
1

2
δy2 0

0 x2 +
1

2
sy2

Q−1

(
x1
y1

))
= f(x1, y1)f(x2, y2),

where x1, x2, y1, y2 ∈ R. We define the function: φ : R2 → S by

(2.2) φ(X) := f(QX), X ∈ R2.

We use (2.2) to rewrite (2.1) in terms of φ as

(2.3) φ

( x2 +
1

2
δy2 0

0 x2 +
1

2
sy2

Q−1

(
x1
y1

))

= φ

(
Q−1

(
x1
y1

)
)φ(Q−1

(
x2
y2

))
, x1, x2, y1, y2 ∈ R.

We make the change of variables

(2.4)
(
uj
vj

)
= Q−1

(
xj
yj

)
for j = 1, 2.

We obtain after some computations that x2 +
1

2
δy2 0

0 x2 +
1

2
sy2

 =

 −γδ
2α

u2 0

0
γs

2α
v2

 .

By the change of variables (2.4), the equation (2.3) becomes

φ

( −γδ
2α

u2 0

0
γs

2α
v2

( u1
v1

))
= φ

(
u1
v1

)
φ

(
u2
v2

)
, u1, u2, v1, v2 ∈ R.

This yields that

(2.5) φ
(−γδ

2α
u1u2,

γs

2α
v1v2

)
= φ(u1, v1)φ(u2, v2), u1, u2, v1, v2 ∈ R.
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Let h : R2 → S be a function defined by h(u, v) := φ
(
− 2α

γδu,
2α
γs v
)
, where

(u, v) ∈ R2. Since α 6= 0 we get that

(2.6) φ(u, v) = h
(−γδ

2α
u,
γs

2α
v
)
, (u, v) ∈ R2.

By using (2.6) in (2.5) we find that

h
(−γδ

2α
u1
−γδ
2α

u2,
γs

2α
v1
γs

2α
v2

)
= h

(−γδ
2α

u1,
γs

2α
v1

)
h
(−γδ

2α
u2,

γs

2α
v2

)
.

This yields that

(2.7) h(x1x2, y1y2) = h(x1, y1)h(x2, y2), x1, y1, x2, y2 ∈ R.

If we put y1 = y2 = 1 and x1 = x2 = 1 separately in (2.7), we get respectively

h(x1x2, 1) = h(x1, 1)h(x2, 1), x1, x2 ∈ R,

and h(1, y1y2) = h(1, y1)h(1, y2), y1, y2 ∈ R.

These yield that there exist multiplicative functions M1,M2 : (R, ·)→ S such
that h(x, 1) = M1(x) and h(1, y) = M2(y) for all x, y ∈ R. Since h(x, y) =
h(x, 1)h(1, y) for all x, y ∈ R, we deduce that h(x, y) = M1(x)M2(y), x, y ∈ R.
So according to (2.6), we get

(2.8) φ(x, y) = M1

(−γδ
2α

x
)
M2

( γs
2α
y
)
.

From (2.2) and (2.8) we infer that

f(x, y) = φ
(
Q−1

(
x

y

))
= φ

( s
2γ
x− α

γ
y,− δ

2γ
x+

α

γ
y
)

= M1

(−γδ
2α

( s
2γ
x− α

γ
y
))
M2

( γs
2α

(
− δ

2γ
x+

α

γ
y
))

= M1

(
x+

δ

2
y
)
M2

(
x+

s

2
y
)

= M1

(
x+

1

2
(β −

√
β2 + 4α)y

)
M2

(
x+

1

2
(β +

√
β2 + 4α)y

)
.
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Subcase 2: If α = 0, then β ∈ R∗ and (E(α, β)) becomes

(2.9) f(x1x2, x1y2 + x2y1 + βy1y2) = f(x1, y1)f(x2, y2),

where x1, x2, y1, y2 ∈ R. Let f : R2 → S be a solution of (2.9). By using the
function F : R2 → S defined by

(2.10) F(u, v) := f(u, v/β), u, v ∈ R,

the equation (2.9) becomes

(2.11) F(u1, v1)F(u2, v2) = F(u1u2, u1v2 + u2v1 + v1v2), u1, u2, v1, v2 ∈ R.

Let k : R2 → S be the function defined for any x, y ∈ R by

(2.12) k(x, y) := F(x, y − x).

By using (2.12) in (2.11), we arrive at the functional equation

k(x1, y1)k(x2, y2) = k(x1x2, y1y2), x1, x2, y1, y2 ∈ R.

In a similar fashion as in (2.7), we deduce that there exist multiplicative
functions M1,M2 : (R, ·)→ S such that

(2.13) k(x, y) = M1(x)M2(y), x, y ∈ R.

Thus, by virtue of (2.12) and (2.10) in (2.13), we infer that

f(x, y) = M1(x)M2(x+ βy), x, y ∈ R.

So we are in case (1) with α = 0.
Case 2: Suppose that β2 + 4α < 0. We use the notations of Lemma 2.1. In

term of the function g : H→ S defined by

(2.14) g := f ◦ τ−1,

the equation (E(α, β)) reads as

g(τ((x1, y1) ∗α,β (x2, y2))) = g(τ(x1, y1))g(τ(x2, y2)),

i.e.

g(τ(x1, y1) � τ(x2, y2)) = g(τ(x1, y1))g(τ(x2, y2)).
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For ξ = 1
2(β + i

√
−β2 − 4α), the last equation becomes

(2.15) g
(
(x1 + ξy1, x1 + ξ̄y1) � (x2 + ξy2, x2 + ξ̄y2)

)
= g

(
x1 + ξy1, x1 + ξ̄y1

)
g
(
x2 + ξy2, x2 + ξ̄y2

)
.

If we put zi = xi + ξyi for all xi, yi ∈ R and i ∈ {1, 2} in (2.15), we get

g((z1, z̄1) � (z2, z̄2)) = g(z1, z̄1)g(z2, z̄2), z1, z2 ∈ C.

This yields that

g(z1z2, z̄1z̄2) = g(z1, z̄1)g(z2, z̄2), z1, z2 ∈ C,

which means that there exists a multiplicative function M : (C, ·) → S such
that g(z, z̄) = M(z), z ∈ C. So from (2.14) we obtain

f(x, y) = M
(
x+

1

2
(β + i

√
−β2 − 4α)y

)
, x, y ∈ R.

Hence we complete the proof of the first direction.
Conversely, simple computations prove that the formulas above for f define

solutions of (E(α, β)). �

• For K = R, as an immediate consequence of Theorem 2.2, taking β = λ− 2
and α = λ − 1 where λ ∈ R∗, we get [6, Theorem 3.3] on the semigroup-
valued solutions of (E(α, β)) on R2.
• As another interesting consequence of Theorem 2.2, on the solutions f : R2 →
S of (E(α, β)), we get [6, Theorem 3.2].
Now we focus on the solutions f : R2→S of (E(α, β))in the case β2+4α = 0.

Proposition 2.3. Assume β2 + 4α = 0. If f : R2 → S is a solution
of (E(α, β)) then there exist multiplicative functions M : (R, ·) → S and
χ : (R,+)→ S such that, for all (x, y) ∈ R2, we have
(1) for β = 0 :

f(x, y) = M(x)χ
(y
x

)
if x 6= 0 and f2(0, y) = M(0),

(2) for β 6= 0 :

f(x, y) = M
(
x+

β

2
y
)
χ
( βy

2x+ βy

)
if x+

β

2
y 6= 0 and f2

(
− 1

2
βy, y

)
= M(0).
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Moreover, in both cases, if S is uniquely 2-divisible semigroup, then
f
(
− 1

2βy, y
)

= M(0) for all y ∈ R.

Proof. Let f : R2 → S be a solution of (E(α, β)). Since β2 + 4α = 0,
then (E(α, β)) is (E(−1

4β
2, β)) :

(2.16) f
(
x1x2 −

β2

4
y1y2, x1y2 + x2y1 + βy1y2

)
= f(x1, y1)f(x2, y2).

If β = 0, then (2.16) becomes

(2.17) f(x1x2, x1y2 + x2y1) = f(x1, y1)f(x2, y2).

Putting y1 = y2 = 0 and x1 = x2 = 1 separately in (2.17), we obtain respec-
tively

f(x1x2, 0) = f(x1, 0)f(x2, 0), x1, x2 ∈ R,

and f(1, y1 + y2) = f(1, y1)f(1, y2), y1, y2 ∈ R.

These yield that there exist multiplicative functions M : (R, ·) → S and
χ : (R,+) → S such that f(x, 0) =: M(x) and f(1, x) =: χ(x) for all x ∈ R.
If x 6= 0, then we have f(x, y) = f(x, 0)f(1,

y

x
), which implies that

f(x, y) = M(x)χ
(y
x

)
for all (x, y) ∈ R∗ × R.

Otherwise, we have f2(0, y) = f(0, 0) = M(0). If we suppose that S is an
uniquely 2-divisible semigroup, then we get f(0, y) = M(0) for all y ∈ R,
because M2(0) = M(0).

Suppose now that β 6= 0. Let F : R2 → S be a function defined for any
u, v ∈ R, by

(2.18) F (u, v) := f(u, 2v/β).

Then, the equation (2.16) can be expressed in terms of F as follows

F (u1, v1)F (u2, v2) = f(u1, 2v1/β)f(u2, 2v2/β)

= F
(
u1u2 −

β2

4

2v1
β

2v2
β
,
β

2

(
u1

2v2
β

+ u2
2v1
β

+ β
2v1
β

2v2
β

))
= F (u1u2 − v1v2, u1v2 + u2v1 + 2v1v2), u1, u2,v1, v2 ∈ R.(2.19)
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Define the function g : R2 → S for any x, y ∈ R, by

(2.20) g(x, y) := F (x− y, y).

By using (2.20) in (2.19), we arrive at the functional equation

(2.21) g((x+ y)(u+ v), (x+ y)v + y(u+ v)) = g(x+ y, y)g(u+ v, v),

where x, y, u, v ∈ R. If we set x1 = x + y, y1 = y, x2 = u + v and y2 = v in
(2.21), we find that

g(x1x2, x1y2 + x2y1) = g(x1, y1)g(x2, y2),

i.e. g is a solution of (2.17). So in view of the previous discussions we have for
all x, y ∈ R

(2.22) g(x, y) = M(x)χ
(y
x

)
if x 6= 0 and g2(0, y) = g(0, 0),

where M : (R, ·) → S and χ : (R,+) → S are multiplicative functions and
g(0, 0) = M(0). From (2.20) and (2.22) we get

(2.23)

{
F (x, y) = M(x+ y)χ

( y

x+ y

)
, x+ y 6= 0,

F 2(x, y) = F (0, 0), x+ y = 0, x, y ∈ R.

By using (2.23) in (2.18) we obtain f(x, y) = M(x+ β
2 y)χ

(
βy

2x+βy

)
if x+ β

2 y 6= 0

and f2(−1
2βy, y) = f(0, 0) = M(0). If S is uniquely 2-divisible multiplicative

semigroup, we get f(−1
2βy, y) = M(0). �

3. The scalar solutions of (E(α, β))

In this section, we describe the solutions f : R2 → K of (E(α, β)). The
previous discussion allows us to determine the complex-valued solutions of
the equation (E(α, β)).

Corollary 3.1. The general solution f : R2 → C of (E(α, β)) depends
on the sign of β2 + 4α and is given by:
(1) If β2 + 4α = 0, then either f ≡ 1 or there exist multiplicative functions

M : (R, ·)→ C and χ : (R,+)→ C such that for all x, y ∈ R we have
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(i) For β = 0,

f(x, y) =

{
M(x)χ

(y
x

)
, x 6= 0,

0, x = 0.

(ii) For β 6= 0,

f(x, y) =

 M
(
x+

β

2
y
)
χ
( βy

2x+ βy

)
, x+

β

2
y 6= 0,

0, else.

(2) If β2 + 4α > 0, then for all (x, y) ∈ R2 we have

f(x, y) = M1

(
x+

1

2
(β −

√
β2 + 4α)y

)
M2

(
x+

1

2
(β +

√
β2 + 4α)y

)
,

where M1,M2 : (R, ·)→ C are multiplicative functions.
(3) If β2 + 4α < 0, then for all (x, y) ∈ R2 we have

f(x, y) = M
(
x+

1

2
(β + i

√
−β2 − 4α)y

)
,

where M : (C, ·)→ C is a multiplicative function.

Proof. Let f : R2 → C be a solution of (E(α, β)). We have the following
two cases:

Case 1: Suppose that β2 + 4α = 0. We distinguish between two subcases:
(i) if β = 0, then according to Proposition 2.3 we infer that there exist

multiplicative functions M : (R∗, ·) → C and χ : (R,+) → C such that
f(x, y) = M(x)χ(

y

x
) for all (x, y) ∈ R∗ × R and f2(0, y) = f(0, 0) for

any y ∈ R. Since f2(0, 0) = f(0, 0) then f(0, 0) = 0 or f(0, 0) = 1. If
f(0, 0) = 1 then f(x, y) = f(x, y)f(0, 0) = f(0, 0) = 1 for all x, y ∈ R.
The second possibility f(0, 0) = 0 gives f(0, y) = 0 for all y ∈ R.

(ii) If β 6= 0, we get the desired result by using Proposition 2.3 and proceed-
ing as for (i).

Case 2: If β2 + 4α 6= 0, then we get the desired result by taking S = (C, ·)
in Theorem 2.2. �

As another consequence of Theorem 2.2, we express in terms of multiplica-
tive functions on (R, ·) and additive ones on (R,+) the real-valued solutions
of (E(α, β)).
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Corollary 3.2. The general solution f : R2 → R of (E(α, β)) depends
on the sign of β2 + 4α and is given by the following forms:
(1) If β2 + 4α = 0, then either f ≡ 1 or there exist a multiplicative function

M : (R, ·) → R and an additive one A : (R,+) → R such that for all
x, y ∈ R we have
(i) For β = 0,

f(x, y) =

{
M(x) exp(A(y/x)), x 6= 0,

0, x = 0.

(ii) For β 6= 0,

f(x, y) =

 M
(
x+

β

2
y
)

exp
(
A
( βy

2x+ βy

))
, x+

β

2
y 6= 0,

0, else.

(2) If β2 + 4α > 0, then for all (x, y) ∈ R2 we have

f(x, y) = M1

(
x+

1

2
(β −

√
β2 + 4α)y

)
M2

(
x+

1

2
(β +

√
β2 + 4α)y

)
,

where M1,M2 : (R, ·)→ R are multiplicative functions.
(3) If β2 + 4α < 0, then either f ≡ 1 or there exist a multiplicative function

M : (R+, ·)→ R and an additive one A : (R,+)→ R such that

f(x, y) = M(x2 + βxy − αy2) exp
(
A
(

arctan

√
−β2 − 4αy

2x+ βy

))
,

for all (x, y) ∈ R2 \ {(0, 0)} and f(0, 0) = 0.

Proof. Let f : R2 → R be a solution of (E(α, β)). Depending on the sign
of β2 + 4α, we have the following three cases:

Case 1: Suppose that β2 + 4α = 0.

(i) If β = 0 then, according to Proposition 2.3, there exist multiplicative
functions M : (R∗, ·) → R and χ : (R,+) → R such that f(x, y) =
M(x)χ(y/x) for all (x, y) ∈ R∗ × R. From [1, Theorem 5 in Chapter 3],
the multiplicative function χ from (R,+) to R has one of the following
expressions

χ ≡ 0 or χ(x) = exp(A(x)), x ∈ R,

whereA :R→R is an additive function. Thus f(x, y)=M(x) exp(A(y/x)),
(x, y) ∈ R∗×R. For f(0, y), y ∈ R, we can proceed like in Corollary 3.1.
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(ii) If β 6= 0, then we get the desired result by using Proposition 2.3 and
proceeding as for (i).

Case 2: If β2+4α > 0, then we get the expected result by taking S = (R, ·)
in Theorem 2.2.

Case 3: If β2 + 4α < 0 then, from Theorem 2.2, we have

(3.1) f(x, y) = m
(
x+

1

2
(β + i

√
−β2 − 4α)y

)
, x, y ∈ R,

where m : (C, ·)→ R is a multiplicative function. For all z1, z2 ∈ C we have

(3.2) m(z1z2) = m(z1)m(z2).

So m(0) = 1 or m(0) = 0. If m(0) = 1 then for z2 = 0 in (3.2) we get
m ≡ 1. Suppose now that m(0) = 0. Since m(

√
u1)m(

√
u2) = m(

√
u1u2) for

all u1, u2 ∈ R+, then the map M : (R+, ·)→ R defined by

M(u) := m(
√
u) for any u ∈ R+,

is a multiplicative function. Let z = u + iv ∈ C∗ and z = |z| exp(iθ), θ ∈ R,
be its polar decomposition. We have

(3.3) m(z) = m(|z| exp(iθ)) = M(|z|2)m(exp(iθ)).

Now, for all θ1, θ2 ∈ R we have

m (exp(iθ1))m (exp(iθ2)) = m(exp(i(θ1 + θ2))).

Thus, in terms of ψ(θ) := m(exp(iθ)), we get

ψ(θ1 + θ2) = ψ(θ1)ψ(θ2), θ1, θ2 ∈ R.

From [1, Theorem 5 in Chapter 3], ψ has one of the following two forms

ψ ≡ 0 or ψ(θ) = exp(A(θ)), θ ∈ R,

where A : R→ R is an additive function. Hence, we deduce from (3.3) that

m(z) = M(|z|2) exp(A(θ))

= M(|z|2) exp
(
A
(

arctan
v

u

))
,(3.4)
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for all z = u + iv ∈ C∗, where M : (R+, ·) → R is a multiplicative function
and A : (R,+)→ R is an additive one. From (3.1) and (3.4) we conclude that,
for all (x, y) ∈ R2 \ {(0, 0)} ,

f(x, y) = M
((
x+

1

2
βy
)2
− 1

4
(β2 + 4α)y2

)
exp

(
A
(

arctan

√
−β2 − 4αy

2x+ βy

))
= M(x2 + βxy − αy2) exp

(
A
(

arctan

√
−β2 − 4αy

2x+ βy

))
,

and f(0, 0) = m(0) = 0.
Conversely, it is elementary to prove that the formulas for f above define

solutions of (E(α, β)). �

• For K = R, as an immediate consequence of Corollary 3.2, taking β = λ−2
and α = λ− 1 where λ ∈ R∗, we get [4, Theorem2.1].
As other interesting consequences of Corollary 3.2, on the solution f : R2 →

R of (E(α, β)), we get
• [6, Theorem 1.1], [8, Corllary 3.2] and [7, Theorem 2.1] in which (α, β) =

(−1, 1).
• [5, Theorem 1], here β = 0.

4. The 2 × 2 matrix valued solutions of (E(α, β))

In this section, the range space of the solutions of (E(α, β)) is the semi-
group M2(C). The significant difference from Section 2 is that here (from
Theorem 4.4, Remark 4.6, and Proposition 4.7) we can find, for β2 + 4α 6= 0,
explicit expressions of the solutions f : R2 → M2(C) of (E(α, β)) in terms of
scalar multiplicative functions on R or C. Some numerous references concern-
ing the study of matrix functional equations can be found e.g. in [2, 3, 10,
12, 14]. The following lemma describes the solutions of the matrix Cauchy
functional equation, namely

(4.1) M(x)M(y) = M(xy), x, y ∈ S,

on a regular abelian semigroup S.

Lemma 4.1 ([10]). Let S be a regular abelian semigroup. The solutions
M : S →M2(C) of the matrix multiplicative Cauchy functional equation (4.1)
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are the matrix valued functions of the two forms below in which P ranges over
GL2(C):
(1)

M(x) = P

(
φ1(x) 0

0 φ2(x)

)
P−1, x ∈ S,

where φ1, φ2 : S → C are multiplicative functions.
(2)

M(x) =

 P

(
φ(x) φ(x)A(x)

0 φ(x)

)
P−1 if x ∈ S \ Iφ,

0 if x ∈ Iφ,

where φ : S → C is a multiplicative function and A : S \ Iφ → C is an
additive function.

Remark 4.2. Let φ : (K, ·)→ C be a non-zero multiplicative function. It
is easy to verify that Iφ = {0} or Iφ = ∅. In fact, suppose that there exists
x0 6= 0 such that φ(x0) = 0 then for all x ∈ K : φ(x) = φ(x0)φ( xx0

) = 0 which
contradicts our assumption.

We will apply Lemma 4.1 to give the solutions f : R2 →M2(C) of equation
(E(α, β)). So we will first discuss the regularity of (R2, ∗α,β).

Lemma 4.3. Let α, β ∈ R such that β2 + 4α 6= 0. The set (R2, ∗α,β) is
a regular abelian monoid.

Proof. Clearly (R2, ∗α,β) is an abelian monoid. In order to prove that it
is regular, we will show that for all X ∈ R2 there exists Z ∈ R2 such that
X = X ∗α,β Z ∗α,β X. Let X = (x, y) ∈ R2, we have

(x, y) ∗α,β (x+ βy,−y) = (x2 + βxy − αy2, 0)

= (x2 + βxy − αy2)(1, 0).

So we have the following two cases:
Case 1: If x2 + βxy − αy2 6= 0, then X is invertible and its inverse is

X−1 =
1

x2 + βxy − αy2
(x+ βy,−y). So it is enough to take Z = X−1 ∈ R2.

Case 2: Suppose that x2 + βxy − αy2 = 0. If y = 0, then X = (0, 0) and
the result can be trivially shown. If y 6= 0, then we see that β2 + 4α > 0
because β2 + 4α 6= 0. Hence

x2 + βxy − αy2 =
(
x+

1

2
(β −

√
β2 + 4α)y

)(
x+

1

2
(β +

√
β2 + 4α)y

)
= 0.
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We first suppose that x = −1

2
(β +

√
β2 + 4α)y, then

X ∗α,β X = (x2 + αy2, 2xy + βy2)

=
(1

4
(β +

√
β2 + 4α)2y2 + αy2,−

√
β2 + 4αy2

)
= −

√
β2 + 4αy

(
− 1

2
(β +

√
β2 + 4α)y, y

)
= −

√
β2 + 4αyX.

By using the fact that (R2, ∗α,β) is abelian and (1, 0) is its neutral element,
we find that

X =
−1√

β2 + 4αy
X ∗α,β X = X ∗α,β

( −1√
β2 + 4αy

(1, 0)
)
∗α,β X.

Then, it is enough to take Z = ( −1√
β2+4αy

, 0) ∈ R2. Similarly, if x = −1
2(β −√

β2 + 4α)y, then we get that X = X ∗α,β (
1√

β2 + 4αy
, 0) ∗α,β X. So it is

enough to take Z = ( 1√
β2+4αy

, 0). This completes the proof of the lemma. �

The following main theorem highlights the 2 × 2-matrix valued solutions
of Eq. (E(α, β)) for β2 + 4α 6= 0. It reads as follows:

Theorem 4.4. Assume β2 + 4α 6= 0. The general solution f : R2→M2(C)
of (E(α, β)) is given by the following expressions in which P ∈ GL2(C)

f(x, y) = P

(
φ1(x, y) 0

0 φ2(x, y)

)
P−1,

f(x, y) =

 φ(x, y)P

(
1 ψ(x, y)

0 1

)
P−1 if (x, y) ∈ R2 \ Iφ,

0 if (x, y) ∈ Iφ,

where φ, φ1, φ2 : (R2, ∗α,β)→ C are multiplicative functions and ψ : (R2\Iφ, ∗α,β)
→ C is an additive one.

Proof. Let f : R2→M2(C) be a solution of (E(α, β)) with β2 + 4α 6= 0.
Then for all (x1, y1), (x2, y2) ∈ R2 we have

f((x1, y1) ∗α,β (x2, y2)) = f(x1, y1)f(x2, y2).
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This means that, with S = (R2, ∗α,β), the function f is a solution of the
matrix multiplicative Cauchy functional equation (4.1). According to Lemma
4.3 (R2, ∗α,β) is, for β2 + 4α 6= 0, a regular abelian monoid. Then the result
follows immediately from Lemma 4.1. �

Remark 4.5. Let φ : (R2, ∗α,β)→ C be a non-zero multiplicative function.
It is easy to verify, by using Corollary 3.1 and Remark 4.2, that
(1) If β2 + 4α < 0, then either Iφ = ∅ (in this case φ ≡ 1) or Iφ = {(0, 0)}.
(2) If β2 + 4α > 0, then either Iφ = ∅ or

Iφ =
{(
− 1

2
(β ∓

√
β2 + 4α)y, y

)
| y ∈ R

}
.

Remark 4.6. The multiplicative functions φ : (R2, ∗α,β)→ C (i.e. the so-
lutions φ : R2 → C of (E(α, β))) are given in Corollary 3.1 (2) and (3). Then,
from Theorem 4.4, in order to get the explicit expressions of the solutions
f : (R2, ∗α,β)→M2(C) of (E(α, β)) it remains to determine, for a fixed mul-
tiplicative function φ : (R2, ∗α,β) → C, the solution ψ : R2 \ Iφ → C of the
Cauchy’s additive ∗α,β-functional equation

(4.2) ψ((x1, y1) ∗α,β (x2, y2)) = ψ(x1, y1) + ψ(x2, y2).

Clearly, if Iφ = ∅ then ψ ≡ 0 because ψ(x, y) + ψ(0, 0) = ψ(0, 0) for all
(x, y) ∈ R2. So in the following proposition we work with Iφ 6= ∅.

Proposition 4.7. Assume that β2 + 4α 6= 0 and let φ : (R2, ∗α,β)→ C be
a fixed non-zero multiplicative function such that Iφ 6= ∅. The general solution
ψ : R2 \ Iφ → C of (4.2) depends on the sign of β2 + 4α and is given by:
(1) If β2 + 4α < 0, then there exists an additive function A : (C∗, ·)→ C such

that

ψ(x, y) = A
(
x+

1

2
(β + i

√
−β2 − 4α)y

)
,

for all (x, y) ∈ R2 \ {(0, 0)}.
(2) If β2 + 4α > 0, then there exist additive functions A1, A2 : (R∗, ·) → C

such that

ψ(x, y) = A1

(
x+

β −
√
β2 + 4α

2
y
)

+A2

(
x+

β +
√
β2 + 4α

2
y
)
,

for all (x, y) ∈ R2 \ Iφ and here

Iφ =
{(
− 1

2
(β ∓

√
β2 + 4α)y, y

)
| y ∈ R

}
.
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Proof. Let ψ : R2 \ Iφ → C be a solution of equation (4.2) such that
β2 + 4α 6= 0. In what follows we distinguish between two cases:

Case 1: Suppose that β2 + 4α < 0. From Remark 4.5 (1) we have Iφ =
{(0, 0)} because here Iφ 6= ∅. For all (a, b) ∈ R2 \ {(0, 0)} we define the
function Φ: H∗ → C by

Φ(a+ ib, a− ib) := ψ
(
a− β√

−β2 − 4α
b,

2√
−β2 − 4α

b
)
,

where H∗ := {(z, z̄) | z ∈ C∗}, this is equivalent to

(4.3) ψ(x, y) = Φ
(
x+

1

2
(β + i

√
−β2 − 4α)y, x+

1

2
(β − i

√
−β2 − 4α)y

)
,

where x, y ∈ R. For any (x1, y1), (x2, y2) ∈ R2 \ {(0, 0)} we compute that

Φ
(
x1 +

1

2
(β + i

√
−β2 − 4α)y1, x1 +

1

2
(β − i

√
−β2 − 4α)y1

)
+ Φ

(
x2 +

1

2
(β + i

√
−β2 − 4α)y2, x2 +

1

2
(β − i

√
−β2 − 4α)y2

)
= ψ(x1, y1) + ψ(x2, y2)

= ψ(x1x2 + αy1y2, x1y2 + x2y1 + βy1y2)

= Φ

((
x1 +

1

2
(β + i

√
−β2 − 4α)y1

)(
x2 +

1

2
(β + i

√
−β2 − 4α)y2

)
,

(
x1 +

1

2
(β − i

√
−β2 − 4α)y1

)(
x2 +

1

2
(β − i

√
−β2 − 4α)y2

))
.

This means that, for all z1, z2 ∈ C∗, we have

Φ(z1, z̄1) + Φ(z2, z̄2) = Φ(z1z2, z1z2),

which yields that the function A : (C∗, ·)→ C defined by

(4.4) A(z) = Φ(z, z̄) for all z ∈ C∗,

is additive. Therefore, from (4.4) and (4.3), we infer that

ψ(x, y) = A
(
x+

1

2
(β + i

√
−β2 − 4α)y

)
, (x, y) ∈ R2 \ {(0, 0)} .
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Case 2: Suppose that β2 + 4α > 0. Define σ : R2 \ Iφ → R∗ × R∗ by

σ(x, y) :=
(
x+

1

2
(β −

√
β2 + 4α)y, x+

1

2
(β +

√
β2 + 4α)y

)
,

for all (x, y) ∈ R2\Iφ, and let � be the binary operation on R∗×R∗ defined by

(x1, y1)� (x2, y2) = (x1x2, y1y2), (x1, y1), (x2, y2) ∈ R∗ × R∗.

According to Remark 4.5 (2) and the fact that Iφ 6= ∅, we can easily prove
that σ is a bijective homomorphism from (R2 \ Iφ, ∗α,β ) to (R∗ × R∗,�). Let
Ψ: R∗ × R∗ → C be a function defined by

(4.5) Ψ := ψ ◦ σ−1.

From (4.5) we reformulate (4.2) in terms of Ψ as

Ψ ◦ σ((x1, y1) ∗α,β (x2, y2)) = Ψ ◦ σ(x1, y1) + Ψ ◦ σ(x2, y2),

for all (x1, y1), (x2, y2) ∈ R2 \ Iφ. This yields that

Ψ(σ(x1, y1)� σ(x2, y2)) = Ψ(σ(x1, y1)) + Ψ(σ(x2, y2)).

Hence, for all (u1, v1), (u2, v2) ∈ R∗ × R∗ we have

Ψ(u1, v1) + Ψ(u2, v2) = Ψ((u1, v1)� (u2, v2)) = Ψ(u1u2, v1v2).

By using the last equality, we conclude that the functions x 7→ Ψ(x, 1) and
y 7→ Ψ(1, y) are additive functions from (R∗, ·) to (R,+) and that

Ψ(x, y) = Ψ(x, 1) + Ψ(1, y), x, y ∈ R∗.

So there exist additive functions A1, A2 : (R∗, ·)→ (R,+) such that

(4.6) Ψ(x, y) = A1(x) +A2(y), x, y ∈ R∗.

Therefore, from (4.5) and (4.6), we conclude that

ψ(x, y) = Ψ ◦ σ(x, y)

= Ψ
(
x+

1

2
(β −

√
β2 + 4α)y, x+

1

2
(β +

√
β2 + 4α)y

)
= A1

(
x+

1

2
(β −

√
β2 + 4α)y

)
+A2

(
x+

1

2
(β +

√
β2 + 4α)y

)
.

The converse statement is straightforward. �
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