A PARAMETRIC FUNCTIONAL EQUATION ORIGINATING FROM NUMBER THEORY

Aziz Mouzoun © (1), Driss Zeglami, Youssef Aissi

Abstract

Let S be a semigroup and $\alpha, \beta \in \mathbb{R}$. The purpose of this paper is to determine the general solution $f: \mathbb{R}^{2} \rightarrow S$ of the following parametric functional equation $$
f\left(x_{1} x_{2}+\alpha y_{1} y_{2}, x_{1} y_{2}+x_{2} y_{1}+\beta y_{1} y_{2}\right)=f\left(x_{1}, y_{1}\right) f\left(x_{2}, y_{2}\right),
$$ for all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$, that generalizes some functional equations arising from number theory and is connected with the characterizations of the determinant of matrices.

1. Introduction

Throughout this paper S denotes a semigroup (i.e., a non-empty set equipped with an associative composition rule $(x, y) \rightarrow x y), \mathbb{K}$ denotes either the set of real numbers \mathbb{R} or complex numbers \mathbb{C}, and $\alpha, \beta \in \mathbb{R}$. The semigroup S will represent the range space of the solutions in the second section of this paper. We equip \mathbb{R}^{2} with the multiplication rule $*_{\alpha, \beta}$ defined by

$$
\left(x_{1}, y_{1}\right) *_{\alpha, \beta}\left(x_{2}, y_{2}\right)=\left(x_{1} x_{2}+\alpha y_{1} y_{2}, x_{1} y_{2}+x_{2} y_{1}+\beta y_{1} y_{2}\right)
$$

Received: 10.01.2021. Accepted: 03.01.2022. Published online: 17.01.2022.
(2020) Mathematics Subject Classification: 39B32, 39B42, 39B52, 47A62.

Key words and phrases: functional equation, number theory, character, multiplicative function, monoid, additive function.
for all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$. The rule makes \mathbb{R}^{2} into an abelian monoid with neutral element $(1,0)$.

We introduce the multiplicative Cauchy $*_{\alpha, \beta}$-functional equation
$(E(\alpha, \beta)) \quad f\left(\left(x_{1}, y_{1}\right) *_{\alpha, \beta}\left(x_{2}, y_{2}\right)\right)=f\left(x_{1}, y_{1}\right) f\left(x_{2}, y_{2}\right)$,
i.e.

$$
\begin{equation*}
f\left(x_{1} x_{2}+\alpha y_{1} y_{2}, x_{1} y_{2}+x_{2} y_{1}+\beta y_{1} y_{2}\right)=f\left(x_{1}, y_{1}\right) f\left(x_{2}, y_{2}\right) \tag{1.1}
\end{equation*}
$$

where $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}, \alpha, \beta$ are fixed real parameters and $f:\left(\mathbb{R}^{2}, *_{\alpha, \beta}\right) \rightarrow$ S is the unknown multiplicative function to be determined.

Let us mention some recent contributions to the theory of functional equations related to (1.1). For $\beta=0$, where $(E(\alpha, \beta))$ reduces to $(E(\alpha, 0))$, Berrone and Dieulefait ([5]) characterized the solution $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ of the functional equation

$$
f\left(x_{1} x_{2}+\alpha y_{1} y_{2}, x_{1} y_{2}+x_{2} y_{1}\right)=f\left(x_{1}, y_{1}\right) f\left(x_{2}, y_{2}\right)
$$

that arises from the product of two numbers in a quadratic number field. Functional equations which result from the formula of the product of two numbers in a pure cubic (resp. quartic) number field were investigated in [11] (resp. [15]). Another particular instance of (1.1) is the functional equation

$$
\begin{equation*}
f\left(x_{1} x_{2}-y_{1} y_{2}, x_{1} y_{2}+x_{2} y_{1}+y_{1} y_{2}\right)=f\left(x_{1}, y_{1}\right) f\left(x_{2}, y_{2}\right) \tag{1.2}
\end{equation*}
$$

which was derived from the Proth identity. Ebanks ([8]) found the solutions $f: \mathbb{F}^{2} \rightarrow S$ of 1.2 , here \mathbb{F} is any field containing $\mathbb{Q}(i \sqrt{3})$ and S is a commutative semigroup, and Chavez and Sahoo ([6]) determined its solutions $f: \mathbb{K}^{2} \rightarrow \mathbb{K}$. In [9] Jung and Bae discussed the form of the solutions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ of

$$
f\left(x_{1} x_{2}-y_{1} y_{2}, x_{1} y_{2}+x_{2} y_{1}\right)=f\left(x_{1}, y_{1}\right) f\left(x_{2}, y_{2}\right)
$$

which arises from the following identity $\left(x_{1} x_{2}+y_{1} y_{2}\right)^{2}+\left(x_{1} y_{2}-x_{2} y_{1}\right)^{2}=$ $\left(x_{1}^{2}+y_{1}^{2}\right)\left(x_{2}^{2}+y_{2}^{2}\right)$. Akkouchi and Rhali ([4]), Chavez and Sahoo ([6]) described, for a fixed $\lambda \in \mathbb{K}^{*}:=\mathbb{K} \backslash\{0\}$, the solutions $f: \mathbb{K}^{2} \rightarrow \mathbb{K}$ and $f: \mathbb{K}^{2} \rightarrow$ S, respectively, of the functional equation

$$
f\left(x_{1} x_{2}+(\lambda-1) y_{1} y_{2}, x_{1} y_{2}+x_{2} y_{1}+(\lambda-2) y_{1} y_{2}\right)=f\left(x_{1}, y_{1}\right) f\left(x_{2}, y_{2}\right)
$$

which is connected to the determinant of some matrices.

Recently, the authors ([10]) treated another kind of equation than 1.1). They described the solutions $f: \mathbb{R}^{2} \rightarrow M_{2}(\mathbb{C})$ of the matrix functional equation

$$
\begin{equation*}
f\left(x_{1} x_{2}+\alpha y_{1} y_{2}, x_{1} y_{2}+\gamma x_{2} y_{1}\right)=f\left(x_{1}, y_{1}\right) f\left(x_{2}, y_{2}\right) \tag{1.3}
\end{equation*}
$$

where α, γ are fixed real numbers. Of course, Eq. (1.3) differs from (1.1) when $\gamma \neq 1$.

In connection with the characterization of functional equations arising from the number theory, the present paper complements and contains the existing results by finding the solutions $f: \mathbb{R}^{2} \rightarrow S$ of the parametric functional equation $(E(\alpha, \beta))$. We impose no conditions like continuity on the solutions.
(1) We characterize, in terms of multiplicative functions from (\mathbb{R}, \cdot) or (\mathbb{C}, \cdot) to S, the solutions $f: \mathbb{R}^{2} \rightarrow S$ of $(E(\alpha, \beta))$.
(2) We find explicit expressions for the functions $f: \mathbb{R}^{2} \rightarrow \mathbb{C}$ satisfying the equation $(E(\alpha, \beta))$, and
(3) we describe, in terms of multiplicative functions $M:(\mathbb{R}, \cdot) \rightarrow \mathbb{R}$ and additive ones $A:(\mathbb{R},+) \rightarrow \mathbb{R}$, its real-valued solutions.
(4) By a more direct approach, we solve the particular instance of $(E(\alpha, \beta))$ for $\beta^{2}+4 \alpha \neq 0$, in which $S=M_{2}(\mathbb{C})$.
Notation. Throughout this paper \mathbb{K} denotes either \mathbb{R} or \mathbb{C} with $\mathbb{K}^{*}=\mathbb{K} \backslash\{0\}$, $\mathbb{R}^{+}=\{x \in \mathbb{R} \mid x \geq 0\}$, and S denotes a semigroup. That S is a regular semigroup means that for all $x \in S$ there exist $a \in S$ such that $x=x a x$.

In the sequel, all semigroups and groups will be denoted using multiplicative notation. Let S_{1}, S_{2} be semigroups. A function $\phi: S_{1} \rightarrow S_{2}$ is said to be a semigroup morphism if $\phi(x y)=\phi(x) \phi(y)$ for all $x, y \in S_{1}$. If the semigroup operation in S_{2} is a multiplication, then the semigroup morphism ϕ is said to be a multiplicative function. If the semigroup operation in S_{2} is the addition, then the semigroup morphism ϕ is said to be an additive function. A character on a group G is a multiplicative function $\chi: G \rightarrow \mathbb{C}^{*}$, where \mathbb{C}^{*} denotes the multiplicative group of non-zero complex numbers. As well known, any nonzero multiplicative function on a group is a character (see [13, Lemma 3.4(a)]). It is possible for a multiplicative function on S to take the value 0 on a proper non-empty subset of S. For any multiplicative function $\phi: S \rightarrow \mathbb{C}$ we use the notation

$$
I_{\phi}:=\{x \in S \mid \phi(x)=0\}
$$

2. Main results

Inspired by papers [6, 8, 7, we will describe the solutions $f: \mathbb{R}^{2} \rightarrow S$ of the functional equation $(E(\alpha, \beta))$. Let \mathbb{H} be the set defined by

$$
\mathbb{H}:=\{(z, \bar{z}) \mid z \in \mathbb{C}\} .
$$

We equip \mathbb{H} with the multiplication rule \diamond defined by

$$
\left(z_{1}, \bar{z}_{1}\right) \diamond\left(z_{2}, \bar{z}_{2}\right)=\left(z_{1} z_{2}, \overline{z_{1} z_{2}}\right) \quad \text { for all } z_{1}, z_{2} \in \mathbb{C}
$$

The following lemma presents a result that is essential for the proof of our main results.

Lemma 2.1. Let $\alpha, \beta \in \mathbb{R}$ such that $\beta^{2}+4 \alpha<0$. The map $\tau:\left(\mathbb{R}^{2}, *_{\alpha, \beta}\right) \rightarrow$ (\mathbb{H}, \diamond) defined by
$\tau(x, y)=\left(x+\frac{1}{2}\left(\beta+i \sqrt{-\beta^{2}-4 \alpha}\right) y, x+\frac{1}{2}\left(\beta-i \sqrt{-\beta^{2}-4 \alpha}\right) y\right), \quad x, y \in \mathbb{R}$, is a bijective homomorphism.

Proof. With the notation $\xi:=\frac{1}{2}\left(\beta+i \sqrt{-\beta^{2}-4 \alpha}\right)$, we have

$$
\begin{aligned}
\tau\left(\left(x_{1}, y_{1}\right) *_{\alpha, \beta}\left(x_{2}, y_{2}\right)\right) & =\tau\left(x_{1} x_{2}+\alpha y_{1} y_{2}, x_{1} y_{2}+x_{2} y_{1}+\beta y_{1} y_{2}\right) \\
& =\left(\left(x_{1}+\xi y_{1}\right)\left(x_{2}+\xi y_{2}\right),\left(x_{1}+\bar{\xi} y_{1}\right)\left(x_{2}+\bar{\xi} y_{2}\right)\right) \\
& =\left(\tau_{1}\left(x_{1}, y_{1}\right) \tau_{1}\left(x_{2}, y_{2}\right), \tau_{2}\left(x_{1}, y_{1}\right) \tau_{2}\left(x_{2}, y_{2}\right)\right) \\
& =\tau\left(x_{1}, y_{1}\right) \diamond \tau\left(x_{2}, y_{2}\right)
\end{aligned}
$$

for all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$. This implies that τ is an homomorphism from $\left(\mathbb{R}^{2}, *_{\alpha, \beta}\right)$ to (\mathbb{H}, \diamond). To show that τ is bijective, it is elementary to see, for all $(z, \bar{z}) \in \mathbb{H}$ with $z=a+i b,(a, b) \in \mathbb{R}^{2}$, that

$$
(x, y)=\left(a-\frac{\beta}{\sqrt{-\beta^{2}-4 \alpha}} b, \frac{2}{\sqrt{-\beta^{2}-4 \alpha}} b\right)
$$

is the unique element of \mathbb{R}^{2} such that $\tau(x, y)=(z, \bar{z})$.

The following theorem lists the solutions $f: \mathbb{R}^{2} \rightarrow S$ of the equation $(E(\alpha, \beta))$ when $\beta^{2}+4 \alpha \neq 0$.

ThEOREM 2.2. Let $\alpha, \beta \in \mathbb{R}$ such that $\beta^{2}+4 \alpha \neq 0$. The general solution $f: \mathbb{R}^{2} \rightarrow S$ of $(E(\alpha, \beta))$ depends on the sign of $\beta^{2}+4 \alpha$ and is given by:
(1) If $\beta^{2}+4 \alpha>0$, then

$$
f(x, y)=M_{1}\left(x+\frac{1}{2}\left(\beta-\sqrt{\beta^{2}+4 \alpha}\right) y\right) M_{2}\left(x+\frac{1}{2}\left(\beta+\sqrt{\beta^{2}+4 \alpha}\right) y\right)
$$

for all $x, y \in \mathbb{R}$, where $M_{1}, M_{2}:(\mathbb{R}, \cdot) \rightarrow S$ are multiplicative functions.
(2) If $\beta^{2}+4 \alpha<0$, then

$$
f(x, y)=M\left(x+\frac{1}{2}\left(\beta+i \sqrt{-\beta^{2}-4 \alpha}\right) y\right)
$$

for all $x, y \in \mathbb{R}$, where $M:(\mathbb{C}, \cdot) \rightarrow S$ is a multiplicative function.
Proof. Let $f: \mathbb{R}^{2} \rightarrow S$ be a solution of $(E(\alpha, \beta))$. In solving equation $(E(\alpha, \beta))$, two different cases arise depending on the sign of $\beta^{2}+4 \alpha$.

Case 1: If $\beta^{2}+4 \alpha>0$, we distinguish between two subcases.
Subcase 1: Suppose first that $\alpha \neq 0$. Putting $\gamma=\sqrt{\beta^{2}+4 \alpha}$, $s=\beta+\gamma$ and $\delta=\beta-\gamma$, it is easy to see that $s \delta=-4 \alpha, s \neq 0$ and $\delta \neq 0$. We adopt the ideas of [6] to the situation at hand. In matrix terminology, $(E(\alpha, \beta))$ can be written as

$$
\begin{aligned}
\left(x_{1}, y_{1}\right) *_{\alpha, \beta}\left(x_{2}, y_{2}\right) & =\left(x_{1} x_{2}+\alpha y_{1} y_{2}, x_{1} y_{2}+x_{2} y_{1}+\beta y_{1} y_{2}\right) \\
& =\left(\begin{array}{cc}
x_{2} & \alpha y_{2} \\
y_{2} & x_{2}+\beta y_{2}
\end{array}\right)\binom{x_{1}}{y_{1}}
\end{aligned}
$$

where $x_{1}, x_{2}, y_{1}, y_{2} \in \mathbb{R}$. The diagonalization of last equality gives us

$$
\left(x_{1}, y_{1}\right) *_{\alpha, \beta}\left(x_{2}, y_{2}\right)=Q\left(\begin{array}{cc}
x_{2}+\frac{1}{2} \delta y_{2} & 0 \\
0 & x_{2}+\frac{1}{2} s y_{2}
\end{array}\right) Q^{-1}\binom{x_{1}}{y_{1}}
$$

where $Q=\left(\begin{array}{cc}1 & 1 \\ -\frac{2}{s} & -\frac{2}{\delta}\end{array}\right)$ and $Q^{-1}=\frac{\alpha}{\gamma}\left(\begin{array}{cc}-\frac{2}{\delta} & -1 \\ \frac{2}{s} & 1\end{array}\right)$.

Hence, the equation $(E(\alpha, \beta))$ can be reformulated as
(2.1) $f\left(Q\left(\begin{array}{cc}x_{2}+\frac{1}{2} \delta y_{2} & 0 \\ 0 & x_{2}+\frac{1}{2} s y_{2}\end{array}\right) Q^{-1}\binom{x_{1}}{y_{1}}\right)=f\left(x_{1}, y_{1}\right) f\left(x_{2}, y_{2}\right)$,
where $x_{1}, x_{2}, y_{1}, y_{2} \in \mathbb{R}$. We define the function: $\phi: \mathbb{R}^{2} \rightarrow S$ by

$$
\begin{equation*}
\phi(X):=f(Q X), \quad X \in \mathbb{R}^{2} \tag{2.2}
\end{equation*}
$$

We use 2.2 to rewrite 2.1 in terms of ϕ as
(2.3) $\phi\left(\left(\begin{array}{cc}x_{2}+\frac{1}{2} \delta y_{2} & 0 \\ 0 & x_{2}+\frac{1}{2} s y_{2}\end{array}\right) Q^{-1}\binom{x_{1}}{y_{1}}\right)$

$$
=\phi\left(Q^{-1}\binom{x_{1}}{y_{1}}\right) \phi\left(Q^{-1}\binom{x_{2}}{y_{2}}\right), \quad x_{1}, x_{2}, y_{1}, y_{2} \in \mathbb{R}
$$

We make the change of variables

$$
\begin{equation*}
\binom{u_{j}}{v_{j}}=Q^{-1}\binom{x_{j}}{y_{j}} \quad \text { for } j=1,2 . \tag{2.4}
\end{equation*}
$$

We obtain after some computations that

$$
\left(\begin{array}{cc}
x_{2}+\frac{1}{2} \delta y_{2} & 0 \\
0 & x_{2}+\frac{1}{2} s y_{2}
\end{array}\right)=\left(\begin{array}{cc}
\frac{-\gamma \delta}{2 \alpha} u_{2} & 0 \\
0 & \frac{\gamma s}{2 \alpha} v_{2}
\end{array}\right)
$$

By the change of variables (2.4), the equation (2.3) becomes

$$
\phi\left(\left(\begin{array}{cc}
\frac{-\gamma \delta}{2 \alpha} u_{2} & 0 \\
0 & \frac{\gamma s}{2 \alpha} v_{2}
\end{array}\right)\binom{u_{1}}{v_{1}}\right)=\phi\binom{u_{1}}{v_{1}} \phi\binom{u_{2}}{v_{2}}, \quad u_{1}, u_{2}, v_{1}, v_{2} \in \mathbb{R}
$$

This yields that

$$
\begin{equation*}
\phi\left(\frac{-\gamma \delta}{2 \alpha} u_{1} u_{2}, \frac{\gamma s}{2 \alpha} v_{1} v_{2}\right)=\phi\left(u_{1}, v_{1}\right) \phi\left(u_{2}, v_{2}\right), \quad u_{1}, u_{2}, v_{1}, v_{2} \in \mathbb{R} \tag{2.5}
\end{equation*}
$$

Let $h: \mathbb{R}^{2} \rightarrow S$ be a function defined by $h(u, v):=\phi\left(-\frac{2 \alpha}{\gamma \delta} u, \frac{2 \alpha}{\gamma s} v\right)$, where $(u, v) \in \mathbb{R}^{2}$. Since $\alpha \neq 0$ we get that

$$
\begin{equation*}
\phi(u, v)=h\left(\frac{-\gamma \delta}{2 \alpha} u, \frac{\gamma s}{2 \alpha} v\right), \quad(u, v) \in \mathbb{R}^{2} . \tag{2.6}
\end{equation*}
$$

By using 2.6 in 2.5 we find that

$$
h\left(\frac{-\gamma \delta}{2 \alpha} u_{1} \frac{-\gamma \delta}{2 \alpha} u_{2}, \frac{\gamma s}{2 \alpha} v_{1} \frac{\gamma s}{2 \alpha} v_{2}\right)=h\left(\frac{-\gamma \delta}{2 \alpha} u_{1}, \frac{\gamma s}{2 \alpha} v_{1}\right) h\left(\frac{-\gamma \delta}{2 \alpha} u_{2}, \frac{\gamma s}{2 \alpha} v_{2}\right)
$$

This yields that

$$
\begin{equation*}
h\left(x_{1} x_{2}, y_{1} y_{2}\right)=h\left(x_{1}, y_{1}\right) h\left(x_{2}, y_{2}\right), \quad x_{1}, y_{1}, x_{2}, y_{2} \in \mathbb{R} \tag{2.7}
\end{equation*}
$$

If we put $y_{1}=y_{2}=1$ and $x_{1}=x_{2}=1$ separately in 2.7), we get respectively

$$
\begin{aligned}
& \quad h\left(x_{1} x_{2}, 1\right)=h\left(x_{1}, 1\right) h\left(x_{2}, 1\right), \quad x_{1}, x_{2} \in \mathbb{R} \\
& \text { and } \quad h\left(1, y_{1} y_{2}\right)=h\left(1, y_{1}\right) h\left(1, y_{2}\right), \quad y_{1}, y_{2} \in \mathbb{R} .
\end{aligned}
$$

These yield that there exist multiplicative functions $M_{1}, M_{2}:(\mathbb{R}, \cdot) \rightarrow S$ such that $h(x, 1)=M_{1}(x)$ and $h(1, y)=M_{2}(y)$ for all $x, y \in \mathbb{R}$. Since $h(x, y)=$ $h(x, 1) h(1, y)$ for all $x, y \in \mathbb{R}$, we deduce that $h(x, y)=M_{1}(x) M_{2}(y), x, y \in \mathbb{R}$. So according to 2.6), we get

$$
\begin{equation*}
\phi(x, y)=M_{1}\left(\frac{-\gamma \delta}{2 \alpha} x\right) M_{2}\left(\frac{\gamma s}{2 \alpha} y\right) \tag{2.8}
\end{equation*}
$$

From 2.2 and 2.8 we infer that

$$
\begin{aligned}
f(x, y) & =\phi\left(Q^{-1}\binom{x}{y}\right) \\
& =\phi\left(\frac{s}{2 \gamma} x-\frac{\alpha}{\gamma} y,-\frac{\delta}{2 \gamma} x+\frac{\alpha}{\gamma} y\right) \\
& =M_{1}\left(\frac{-\gamma \delta}{2 \alpha}\left(\frac{s}{2 \gamma} x-\frac{\alpha}{\gamma} y\right)\right) M_{2}\left(\frac{\gamma s}{2 \alpha}\left(-\frac{\delta}{2 \gamma} x+\frac{\alpha}{\gamma} y\right)\right) \\
& =M_{1}\left(x+\frac{\delta}{2} y\right) M_{2}\left(x+\frac{s}{2} y\right) \\
& =M_{1}\left(x+\frac{1}{2}\left(\beta-\sqrt{\beta^{2}+4 \alpha}\right) y\right) M_{2}\left(x+\frac{1}{2}\left(\beta+\sqrt{\beta^{2}+4 \alpha}\right) y\right)
\end{aligned}
$$

Subcase 2: If $\alpha=0$, then $\beta \in \mathbb{R}^{*}$ and $(E(\alpha, \beta))$ becomes

$$
\begin{equation*}
f\left(x_{1} x_{2}, x_{1} y_{2}+x_{2} y_{1}+\beta y_{1} y_{2}\right)=f\left(x_{1}, y_{1}\right) f\left(x_{2}, y_{2}\right) \tag{2.9}
\end{equation*}
$$

where $x_{1}, x_{2}, y_{1}, y_{2} \in \mathbb{R}$. Let $f: \mathbb{R}^{2} \rightarrow S$ be a solution of 2.9 . By using the function $\mathfrak{F}: \mathbb{R}^{2} \rightarrow S$ defined by

$$
\begin{equation*}
\mathfrak{F}(u, v):=f(u, v / \beta), \quad u, v \in \mathbb{R} \tag{2.10}
\end{equation*}
$$

the equation 2.9 becomes
(2.11) $\mathfrak{F}\left(u_{1}, v_{1}\right) \mathfrak{F}\left(u_{2}, v_{2}\right)=\mathfrak{F}\left(u_{1} u_{2}, u_{1} v_{2}+u_{2} v_{1}+v_{1} v_{2}\right), \quad u_{1}, u_{2}, v_{1}, v_{2} \in \mathbb{R}$.

Let $k: \mathbb{R}^{2} \rightarrow S$ be the function defined for any $x, y \in \mathbb{R}$ by

$$
\begin{equation*}
k(x, y):=\mathfrak{F}(x, y-x) \tag{2.12}
\end{equation*}
$$

By using (2.12) in 2.11), we arrive at the functional equation

$$
k\left(x_{1}, y_{1}\right) k\left(x_{2}, y_{2}\right)=k\left(x_{1} x_{2}, y_{1} y_{2}\right), \quad x_{1}, x_{2}, y_{1}, y_{2} \in \mathbb{R}
$$

In a similar fashion as in (2.7), we deduce that there exist multiplicative functions $M_{1}, M_{2}:(\mathbb{R}, \cdot) \rightarrow S$ such that

$$
\begin{equation*}
k(x, y)=M_{1}(x) M_{2}(y), \quad x, y \in \mathbb{R} . \tag{2.13}
\end{equation*}
$$

Thus, by virtue of 2.12 and 2.10 in 2.13 , we infer that

$$
f(x, y)=M_{1}(x) M_{2}(x+\beta y), \quad x, y \in \mathbb{R}
$$

So we are in case (1) with $\alpha=0$.
Case 2: Suppose that $\beta^{2}+4 \alpha<0$. We use the notations of Lemma 2.1. In term of the function $g: \mathbb{H} \rightarrow S$ defined by

$$
\begin{equation*}
g:=f \circ \tau^{-1} \tag{2.14}
\end{equation*}
$$

the equation $(E(\alpha, \beta))$ reads as

$$
g\left(\tau\left(\left(x_{1}, y_{1}\right) *_{\alpha, \beta}\left(x_{2}, y_{2}\right)\right)\right)=g\left(\tau\left(x_{1}, y_{1}\right)\right) g\left(\tau\left(x_{2}, y_{2}\right)\right)
$$

i.e.

$$
g\left(\tau\left(x_{1}, y_{1}\right) \diamond \tau\left(x_{2}, y_{2}\right)\right)=g\left(\tau\left(x_{1}, y_{1}\right)\right) g\left(\tau\left(x_{2}, y_{2}\right)\right)
$$

For $\xi=\frac{1}{2}\left(\beta+i \sqrt{-\beta^{2}-4 \alpha}\right)$, the last equation becomes

$$
\begin{align*}
g\left(\left(x_{1}+\xi y_{1}, x_{1}+\bar{\xi} y_{1}\right)\right. & \left.\diamond\left(x_{2}+\xi y_{2}, x_{2}+\bar{\xi} y_{2}\right)\right) \tag{2.15}\\
& =g\left(x_{1}+\xi y_{1}, x_{1}+\bar{\xi} y_{1}\right) g\left(x_{2}+\xi y_{2}, x_{2}+\bar{\xi} y_{2}\right)
\end{align*}
$$

If we put $z_{i}=x_{i}+\xi y_{i}$ for all $x_{i}, y_{i} \in \mathbb{R}$ and $i \in\{1,2\}$ in 2.15, we get

$$
g\left(\left(z_{1}, \bar{z}_{1}\right) \diamond\left(z_{2}, \bar{z}_{2}\right)\right)=g\left(z_{1}, \bar{z}_{1}\right) g\left(z_{2}, \bar{z}_{2}\right), \quad z_{1}, z_{2} \in \mathbb{C} .
$$

This yields that

$$
g\left(z_{1} z_{2}, \bar{z}_{1} \bar{z}_{2}\right)=g\left(z_{1}, \bar{z}_{1}\right) g\left(z_{2}, \bar{z}_{2}\right), \quad z_{1}, z_{2} \in \mathbb{C}
$$

which means that there exists a multiplicative function $M:(\mathbb{C}, \cdot) \rightarrow S$ such that $g(z, \bar{z})=M(z), z \in \mathbb{C}$. So from (2.14) we obtain

$$
f(x, y)=M\left(x+\frac{1}{2}\left(\beta+i \sqrt{-\beta^{2}-4 \alpha}\right) y\right), x, y \in \mathbb{R}
$$

Hence we complete the proof of the first direction.
Conversely, simple computations prove that the formulas above for f define solutions of $(E(\alpha, \beta))$.

- For $\mathbb{K}=\mathbb{R}$, as an immediate consequence of Theorem 2.2, taking $\beta=\lambda-2$ and $\alpha=\lambda-1$ where $\lambda \in \mathbb{R}^{*}$, we get [6, Theorem 3.3] on the semigroupvalued solutions of $(E(\alpha, \beta))$ on \mathbb{R}^{2}.
- As another interesting consequence of Theorem 2.2 , on the solutions $f: \mathbb{R}^{2} \rightarrow$ S of $(E(\alpha, \beta))$, we get [6, Theorem 3.2].
Now we focus on the solutions $f: \mathbb{R}^{2} \rightarrow S$ of $(E(\alpha, \beta))$ in the case $\beta^{2}+4 \alpha=0$.
Proposition 2.3. Assume $\beta^{2}+4 \alpha=0$. If $f: \mathbb{R}^{2} \rightarrow S$ is a solution of $(E(\alpha, \beta))$ then there exist multiplicative functions $M:(\mathbb{R}, \cdot) \rightarrow S$ and $\chi:(\mathbb{R},+) \rightarrow S$ such that, for all $(x, y) \in \mathbb{R}^{2}$, we have
(1) for $\beta=0$:

$$
f(x, y)=M(x) \chi\left(\frac{y}{x}\right) \quad \text { if } x \neq 0 \quad \text { and } \quad f^{2}(0, y)=M(0)
$$

(2) for $\beta \neq 0$:
$f(x, y)=M\left(x+\frac{\beta}{2} y\right) \chi\left(\frac{\beta y}{2 x+\beta y}\right)$ if $x+\frac{\beta}{2} y \neq 0$ and $f^{2}\left(-\frac{1}{2} \beta y, y\right)=M(0)$.

Moreover, in both cases, if S is uniquely 2-divisible semigroup, then $f\left(-\frac{1}{2} \beta y, y\right)=M(0)$ for all $y \in \mathbb{R}$.

Proof. Let $f: \mathbb{R}^{2} \rightarrow S$ be a solution of $(E(\alpha, \beta))$. Since $\beta^{2}+4 \alpha=0$, then $(E(\alpha, \beta))$ is $\left(E\left(-\frac{1}{4} \beta^{2}, \beta\right)\right)$:

$$
\begin{equation*}
f\left(x_{1} x_{2}-\frac{\beta^{2}}{4} y_{1} y_{2}, x_{1} y_{2}+x_{2} y_{1}+\beta y_{1} y_{2}\right)=f\left(x_{1}, y_{1}\right) f\left(x_{2}, y_{2}\right) \tag{2.16}
\end{equation*}
$$

If $\beta=0$, then $\sqrt{2.16}$ becomes

$$
\begin{equation*}
f\left(x_{1} x_{2}, x_{1} y_{2}+x_{2} y_{1}\right)=f\left(x_{1}, y_{1}\right) f\left(x_{2}, y_{2}\right) \tag{2.17}
\end{equation*}
$$

Putting $y_{1}=y_{2}=0$ and $x_{1}=x_{2}=1$ separately in (2.17), we obtain respectively

$$
\begin{aligned}
& \quad f\left(x_{1} x_{2}, 0\right)=f\left(x_{1}, 0\right) f\left(x_{2}, 0\right), \quad x_{1}, x_{2} \in \mathbb{R} \\
& \text { and } \quad f\left(1, y_{1}+y_{2}\right)=f\left(1, y_{1}\right) f\left(1, y_{2}\right), \quad y_{1}, y_{2} \in \mathbb{R} .
\end{aligned}
$$

These yield that there exist multiplicative functions $M:(\mathbb{R}, \cdot) \rightarrow S$ and $\chi:(\mathbb{R},+) \rightarrow S$ such that $f(x, 0)=: M(x)$ and $f(1, x)=: \chi(x)$ for all $x \in \mathbb{R}$. If $x \neq 0$, then we have $f(x, y)=f(x, 0) f\left(1, \frac{y}{x}\right)$, which implies that

$$
f(x, y)=M(x) \chi\left(\frac{y}{x}\right) \quad \text { for all }(x, y) \in \mathbb{R}^{*} \times \mathbb{R}
$$

Otherwise, we have $f^{2}(0, y)=f(0,0)=M(0)$. If we suppose that S is an uniquely 2-divisible semigroup, then we get $f(0, y)=M(0)$ for all $y \in \mathbb{R}$, because $M^{2}(0)=M(0)$.

Suppose now that $\beta \neq 0$. Let $F: \mathbb{R}^{2} \rightarrow S$ be a function defined for any $u, v \in \mathbb{R}$, by

$$
\begin{equation*}
F(u, v):=f(u, 2 v / \beta) . \tag{2.18}
\end{equation*}
$$

Then, the equation 2.16 can be expressed in terms of F as follows
$F\left(u_{1}, v_{1}\right) F\left(u_{2}, v_{2}\right)=f\left(u_{1}, 2 v_{1} / \beta\right) f\left(u_{2}, 2 v_{2} / \beta\right)$

$$
\begin{align*}
& =F\left(u_{1} u_{2}-\frac{\beta^{2}}{4} \frac{2 v_{1}}{\beta} \frac{2 v_{2}}{\beta}, \frac{\beta}{2}\left(u_{1} \frac{2 v_{2}}{\beta}+u_{2} \frac{2 v_{1}}{\beta}+\beta \frac{2 v_{1}}{\beta} \frac{2 v_{2}}{\beta}\right)\right) \\
& =F\left(u_{1} u_{2}-v_{1} v_{2}, u_{1} v_{2}+u_{2} v_{1}+2 v_{1} v_{2}\right), \quad u_{1}, u_{2}, v_{1}, v_{2} \in \mathbb{R} \tag{2.19}
\end{align*}
$$

Define the function $g: \mathbb{R}^{2} \rightarrow S$ for any $x, y \in \mathbb{R}$, by

$$
\begin{equation*}
g(x, y):=F(x-y, y) \tag{2.20}
\end{equation*}
$$

By using (2.20) in (2.19), we arrive at the functional equation

$$
\begin{equation*}
g((x+y)(u+v),(x+y) v+y(u+v))=g(x+y, y) g(u+v, v) \tag{2.21}
\end{equation*}
$$

where $x, y, u, v \in \mathbb{R}$. If we set $x_{1}=x+y, y_{1}=y, x_{2}=u+v$ and $y_{2}=v$ in (2.21), we find that

$$
g\left(x_{1} x_{2}, x_{1} y_{2}+x_{2} y_{1}\right)=g\left(x_{1}, y_{1}\right) g\left(x_{2}, y_{2}\right)
$$

i.e. g is a solution of (2.17). So in view of the previous discussions we have for all $x, y \in \mathbb{R}$

$$
\begin{equation*}
g(x, y)=M(x) \chi\left(\frac{y}{x}\right) \quad \text { if } x \neq 0 \quad \text { and } \quad g^{2}(0, y)=g(0,0) \tag{2.22}
\end{equation*}
$$

where $M:(\mathbb{R}, \cdot) \rightarrow S$ and $\chi:(\mathbb{R},+) \rightarrow S$ are multiplicative functions and $g(0,0)=M(0)$. From 2.20 and 2.22 we get

$$
\begin{cases}F(x, y)=M(x+y) \chi\left(\frac{y}{x+y}\right), & x+y \neq 0 \tag{2.23}\\ F^{2}(x, y)=F(0,0), & x+y=0, \quad x, y \in \mathbb{R}\end{cases}
$$

By using 2.23 in 2.18 we obtain $f(x, y)=M\left(x+\frac{\beta}{2} y\right) \chi\left(\frac{\beta y}{2 x+\beta y}\right)$ if $x+\frac{\beta}{2} y \neq 0$ and $f^{2}\left(-\frac{1}{2} \beta y, y\right)=f(0,0)=M(0)$. If S is uniquely 2-divisible multiplicative semigroup, we get $f\left(-\frac{1}{2} \beta y, y\right)=M(0)$.

3. The scalar solutions of $(E(\alpha, \beta))$

In this section, we describe the solutions $f: \mathbb{R}^{2} \rightarrow \mathbb{K}$ of $(E(\alpha, \beta))$. The previous discussion allows us to determine the complex-valued solutions of the equation $(E(\alpha, \beta))$.

Corollary 3.1. The general solution $f: \mathbb{R}^{2} \rightarrow \mathbb{C}$ of $(E(\alpha, \beta))$ depends on the sign of $\beta^{2}+4 \alpha$ and is given by:
(1) If $\beta^{2}+4 \alpha=0$, then either $f \equiv 1$ or there exist multiplicative functions $M:(\mathbb{R}, \cdot) \rightarrow \mathbb{C}$ and $\chi:(\mathbb{R},+) \rightarrow \mathbb{C}$ such that for all $x, y \in \mathbb{R}$ we have
(i) For $\beta=0$,

$$
f(x, y)= \begin{cases}M(x) \chi\left(\frac{y}{x}\right), & x \neq 0 \\ 0, & x=0\end{cases}
$$

(ii) For $\beta \neq 0$,

$$
f(x, y)= \begin{cases}M\left(x+\frac{\beta}{2} y\right) \chi\left(\frac{\beta y}{2 x+\beta y}\right), & x+\frac{\beta}{2} y \neq 0 \\ 0, & \text { else }\end{cases}
$$

(2) If $\beta^{2}+4 \alpha>0$, then for all $(x, y) \in \mathbb{R}^{2}$ we have

$$
f(x, y)=M_{1}\left(x+\frac{1}{2}\left(\beta-\sqrt{\beta^{2}+4 \alpha}\right) y\right) M_{2}\left(x+\frac{1}{2}\left(\beta+\sqrt{\beta^{2}+4 \alpha}\right) y\right)
$$

where $M_{1}, M_{2}:(\mathbb{R}, \cdot) \rightarrow \mathbb{C}$ are multiplicative functions.
(3) If $\beta^{2}+4 \alpha<0$, then for all $(x, y) \in \mathbb{R}^{2}$ we have

$$
f(x, y)=M\left(x+\frac{1}{2}\left(\beta+i \sqrt{-\beta^{2}-4 \alpha}\right) y\right)
$$

where $M:(\mathbb{C}, \cdot) \rightarrow \mathbb{C}$ is a multiplicative function.
Proof. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{C}$ be a solution of $(E(\alpha, \beta))$. We have the following two cases:

Case 1: Suppose that $\beta^{2}+4 \alpha=0$. We distinguish between two subcases:
(i) if $\beta=0$, then according to Proposition 2.3 we infer that there exist multiplicative functions $M:\left(\mathbb{R}^{*}, \cdot\right) \rightarrow \mathbb{C}$ and $\chi:(\mathbb{R},+) \rightarrow \mathbb{C}$ such that $f(x, y)=M(x) \chi\left(\frac{y}{x}\right)$ for all $(x, y) \in \mathbb{R}^{*} \times \mathbb{R}$ and $f^{2}(0, y)=f(0,0)$ for any $y \in \mathbb{R}$. Since $f^{2}(0,0)=f(0,0)$ then $f(0,0)=0$ or $f(0,0)=1$. If $f(0,0)=1$ then $f(x, y)=f(x, y) f(0,0)=f(0,0)=1$ for all $x, y \in \mathbb{R}$. The second possibility $f(0,0)=0$ gives $f(0, y)=0$ for all $y \in \mathbb{R}$.
(ii) If $\beta \neq 0$, we get the desired result by using Proposition 2.3 and proceeding as for (i).
Case 2: If $\beta^{2}+4 \alpha \neq 0$, then we get the desired result by taking $S=(\mathbb{C}, \cdot)$ in Theorem 2.2.

As another consequence of Theorem 2.2, we express in terms of multiplicative functions on (\mathbb{R}, \cdot) and additive ones on $(\mathbb{R},+)$ the real-valued solutions of $(E(\alpha, \beta))$.

Corollary 3.2. The general solution $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ of $(E(\alpha, \beta))$ depends on the sign of $\beta^{2}+4 \alpha$ and is given by the following forms:
(1) If $\beta^{2}+4 \alpha=0$, then either $f \equiv 1$ or there exist a multiplicative function $M:(\mathbb{R}, \cdot) \rightarrow \mathbb{R}$ and an additive one $A:(\mathbb{R},+) \rightarrow \mathbb{R}$ such that for all $x, y \in \mathbb{R}$ we have
(i) For $\beta=0$,

$$
f(x, y)= \begin{cases}M(x) \exp (A(y / x)), & x \neq 0 \\ 0, & x=0\end{cases}
$$

(ii) For $\beta \neq 0$,

$$
f(x, y)= \begin{cases}M\left(x+\frac{\beta}{2} y\right) \exp \left(A\left(\frac{\beta y}{2 x+\beta y}\right)\right), & x+\frac{\beta}{2} y \neq 0 \\ 0, & \text { else }\end{cases}
$$

(2) If $\beta^{2}+4 \alpha>0$, then for all $(x, y) \in \mathbb{R}^{2}$ we have

$$
f(x, y)=M_{1}\left(x+\frac{1}{2}\left(\beta-\sqrt{\beta^{2}+4 \alpha}\right) y\right) M_{2}\left(x+\frac{1}{2}\left(\beta+\sqrt{\beta^{2}+4 \alpha}\right) y\right)
$$

where $M_{1}, M_{2}:(\mathbb{R}, \cdot) \rightarrow \mathbb{R}$ are multiplicative functions.
(3) If $\beta^{2}+4 \alpha<0$, then either $f \equiv 1$ or there exist a multiplicative function $M:\left(\mathbb{R}^{+}, \cdot\right) \rightarrow \mathbb{R}$ and an additive one $A:(\mathbb{R},+) \rightarrow \mathbb{R}$ such that

$$
f(x, y)=M\left(x^{2}+\beta x y-\alpha y^{2}\right) \exp \left(A\left(\arctan \frac{\sqrt{-\beta^{2}-4 \alpha} y}{2 x+\beta y}\right)\right)
$$

for all $(x, y) \in \mathbb{R}^{2} \backslash\{(0,0)\}$ and $f(0,0)=0$.
Proof. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a solution of $(E(\alpha, \beta))$. Depending on the sign of $\beta^{2}+4 \alpha$, we have the following three cases:

Case 1: Suppose that $\beta^{2}+4 \alpha=0$.
(i) If $\beta=0$ then, according to Proposition 2.3 , there exist multiplicative functions $M:\left(\mathbb{R}^{*}, \cdot\right) \rightarrow \mathbb{R}$ and $\chi:(\mathbb{R},+) \rightarrow \mathbb{R}$ such that $f(x, y)=$ $M(x) \chi(y / x)$ for all $(x, y) \in \mathbb{R}^{*} \times \mathbb{R}$. From [1, Theorem 5 in Chapter 3], the multiplicative function χ from $(\mathbb{R},+)$ to \mathbb{R} has one of the following expressions

$$
\chi \equiv 0 \quad \text { or } \quad \chi(x)=\exp (A(x)), \quad x \in \mathbb{R}
$$

where $A: \mathbb{R} \rightarrow \mathbb{R}$ is an additive function. Thus $f(x, y)=M(x) \exp (A(y / x))$, $(x, y) \in \mathbb{R}^{*} \times \mathbb{R}$. For $f(0, y), y \in \mathbb{R}$, we can proceed like in Corollary 3.1.
(ii) If $\beta \neq 0$, then we get the desired result by using Proposition 2.3 and proceeding as for (i).
Case 2: If $\beta^{2}+4 \alpha>0$, then we get the expected result by taking $S=(\mathbb{R}, \cdot)$ in Theorem 2.2.

Case 3: If $\beta^{2}+4 \alpha<0$ then, from Theorem 2.2, we have

$$
\begin{equation*}
f(x, y)=m\left(x+\frac{1}{2}\left(\beta+i \sqrt{-\beta^{2}-4 \alpha}\right) y\right), \quad x, y \in \mathbb{R} \tag{3.1}
\end{equation*}
$$

where $m:(\mathbb{C}, \cdot) \rightarrow \mathbb{R}$ is a multiplicative function. For all $z_{1}, z_{2} \in \mathbb{C}$ we have

$$
\begin{equation*}
m\left(z_{1} z_{2}\right)=m\left(z_{1}\right) m\left(z_{2}\right) \tag{3.2}
\end{equation*}
$$

So $m(0)=1$ or $m(0)=0$. If $m(0)=1$ then for $z_{2}=0$ in (3.2) we get $m \equiv 1$. Suppose now that $m(0)=0$. Since $m\left(\sqrt{u_{1}}\right) m\left(\sqrt{u_{2}}\right)=m\left(\sqrt{u_{1} u_{2}}\right)$ for all $u_{1}, u_{2} \in \mathbb{R}^{+}$, then the map $M:\left(\mathbb{R}^{+}, \cdot\right) \rightarrow \mathbb{R}$ defined by

$$
M(u):=m(\sqrt{u}) \quad \text { for any } u \in \mathbb{R}^{+}
$$

is a multiplicative function. Let $z=u+i v \in \mathbb{C}^{*}$ and $z=|z| \exp (i \theta), \theta \in \mathbb{R}$, be its polar decomposition. We have

$$
\begin{equation*}
m(z)=m(|z| \exp (i \theta))=M\left(|z|^{2}\right) m(\exp (i \theta)) \tag{3.3}
\end{equation*}
$$

Now, for all $\theta_{1}, \theta_{2} \in \mathbb{R}$ we have

$$
m\left(\exp \left(i \theta_{1}\right)\right) m\left(\exp \left(i \theta_{2}\right)\right)=m\left(\exp \left(i\left(\theta_{1}+\theta_{2}\right)\right)\right)
$$

Thus, in terms of $\psi(\theta):=m(\exp (i \theta))$, we get

$$
\psi\left(\theta_{1}+\theta_{2}\right)=\psi\left(\theta_{1}\right) \psi\left(\theta_{2}\right), \quad \theta_{1}, \theta_{2} \in \mathbb{R}
$$

From [1, Theorem 5 in Chapter 3], ψ has one of the following two forms

$$
\psi \equiv 0 \quad \text { or } \quad \psi(\theta)=\exp (A(\theta)), \quad \theta \in \mathbb{R}
$$

where $A: \mathbb{R} \rightarrow \mathbb{R}$ is an additive function. Hence, we deduce from (3.3) that

$$
\begin{align*}
m(z) & =M\left(|z|^{2}\right) \exp (A(\theta)) \\
& =M\left(|z|^{2}\right) \exp \left(A\left(\arctan \frac{v}{u}\right)\right) \tag{3.4}
\end{align*}
$$

for all $z=u+i v \in \mathbb{C}^{*}$, where $M:\left(\mathbb{R}^{+}, \cdot\right) \rightarrow \mathbb{R}$ is a multiplicative function and $A:(\mathbb{R},+) \rightarrow \mathbb{R}$ is an additive one. From (3.1) and (3.4) we conclude that, for all $(x, y) \in \mathbb{R}^{2} \backslash\{(0,0)\}$,

$$
\begin{aligned}
f(x, y) & =M\left(\left(x+\frac{1}{2} \beta y\right)^{2}-\frac{1}{4}\left(\beta^{2}+4 \alpha\right) y^{2}\right) \exp \left(A\left(\arctan \frac{\sqrt{-\beta^{2}-4 \alpha} y}{2 x+\beta y}\right)\right) \\
& =M\left(x^{2}+\beta x y-\alpha y^{2}\right) \exp \left(A\left(\arctan \frac{\sqrt{-\beta^{2}-4 \alpha} y}{2 x+\beta y}\right)\right)
\end{aligned}
$$

and $f(0,0)=m(0)=0$.
Conversely, it is elementary to prove that the formulas for f above define solutions of $(E(\alpha, \beta))$.

- For $\mathbb{K}=\mathbb{R}$, as an immediate consequence of Corollary 3.2, taking $\beta=\lambda-2$ and $\alpha=\lambda-1$ where $\lambda \in \mathbb{R}^{*}$, we get [4, Theorem2.1].
As other interesting consequences of Corollary 3.2 , on the solution $f: \mathbb{R}^{2} \rightarrow$ \mathbb{R} of $(E(\alpha, \beta))$, we get
- [6, Theorem 1.1], [8, Corllary 3.2] and [7, Theorem 2.1] in which $(\alpha, \beta)=$ $(-1,1)$.
- [5, Theorem 1], here $\beta=0$.

4. The 2×2 matrix valued solutions of $(E(\alpha, \beta))$

In this section, the range space of the solutions of $(E(\alpha, \beta))$ is the semigroup $M_{2}(\mathbb{C})$. The significant difference from Section 2 is that here (from Theorem 4.4, Remark 4.6, and Proposition 4.7) we can find, for $\beta^{2}+4 \alpha \neq 0$, explicit expressions of the solutions $f: \mathbb{R}^{2} \rightarrow M_{2}(\mathbb{C})$ of $(E(\alpha, \beta))$ in terms of scalar multiplicative functions on \mathbb{R} or \mathbb{C}. Some numerous references concerning the study of matrix functional equations can be found e.g. in [2, 3, 10 , 12, 14. The following lemma describes the solutions of the matrix Cauchy functional equation, namely

$$
\begin{equation*}
M(x) M(y)=M(x y), \quad x, y \in S \tag{4.1}
\end{equation*}
$$

on a regular abelian semigroup S.
Lemma 4.1 ([10]). Let S be a regular abelian semigroup. The solutions $M: S \rightarrow M_{2}(\mathbb{C})$ of the matrix multiplicative Cauchy functional equation 4.1)
are the matrix valued functions of the two forms below in which P ranges over $G L_{2}(\mathbb{C})$:
(1)

$$
M(x)=P\left(\begin{array}{cc}
\phi_{1}(x) & 0 \\
0 & \phi_{2}(x)
\end{array}\right) P^{-1}, \quad x \in S
$$

where $\phi_{1}, \phi_{2}: S \rightarrow \mathbb{C}$ are multiplicative functions.
(2)

$$
M(x)= \begin{cases}P\left(\begin{array}{cc}
\phi(x) & \phi(x) A(x) \\
0 & \phi(x)
\end{array}\right) P^{-1} & \text { if } x \in S \backslash I_{\phi} \\
0 & \text { if } x \in I_{\phi}\end{cases}
$$

where $\phi: S \rightarrow \mathbb{C}$ is a multiplicative function and $A: S \backslash I_{\phi} \rightarrow \mathbb{C}$ is an additive function.

REmARK 4.2. Let $\phi:(\mathbb{K}, \cdot) \rightarrow \mathbb{C}$ be a non-zero multiplicative function. It is easy to verify that $I_{\phi}=\{0\}$ or $I_{\phi}=\varnothing$. In fact, suppose that there exists $x_{0} \neq 0$ such that $\phi\left(x_{0}\right)=0$ then for all $x \in \mathbb{K}: \phi(x)=\phi\left(x_{0}\right) \phi\left(\frac{x}{x_{0}}\right)=0$ which contradicts our assumption.

We will apply Lemma 4.1 to give the solutions $f: \mathbb{R}^{2} \rightarrow M_{2}(\mathbb{C})$ of equation $(E(\alpha, \beta))$. So we will first discuss the regularity of $\left(\mathbb{R}^{2}, *_{\alpha, \beta}\right)$.

Lemma 4.3. Let $\alpha, \beta \in \mathbb{R}$ such that $\beta^{2}+4 \alpha \neq 0$. The set $\left(\mathbb{R}^{2}, *_{\alpha, \beta}\right)$ is a regular abelian monoid.

Proof. Clearly $\left(\mathbb{R}^{2}, *_{\alpha, \beta}\right)$ is an abelian monoid. In order to prove that it is regular, we will show that for all $X \in \mathbb{R}^{2}$ there exists $Z \in \mathbb{R}^{2}$ such that $X=X *_{\alpha, \beta} Z *_{\alpha, \beta} X$. Let $X=(x, y) \in \mathbb{R}^{2}$, we have

$$
\begin{aligned}
(x, y) *_{\alpha, \beta}(x+\beta y,-y) & =\left(x^{2}+\beta x y-\alpha y^{2}, 0\right) \\
& =\left(x^{2}+\beta x y-\alpha y^{2}\right)(1,0)
\end{aligned}
$$

So we have the following two cases:
Case 1: If $x^{2}+\beta x y-\alpha y^{2} \neq 0$, then X is invertible and its inverse is $X^{-1}=\frac{1}{x^{2}+\beta x y-\alpha y^{2}}(x+\beta y,-y)$. So it is enough to take $Z=X^{-1} \in \mathbb{R}^{2}$.

Case 2: Suppose that $x^{2}+\beta x y-\alpha y^{2}=0$. If $y=0$, then $X=(0,0)$ and the result can be trivially shown. If $y \neq 0$, then we see that $\beta^{2}+4 \alpha>0$ because $\beta^{2}+4 \alpha \neq 0$. Hence

$$
x^{2}+\beta x y-\alpha y^{2}=\left(x+\frac{1}{2}\left(\beta-\sqrt{\beta^{2}+4 \alpha}\right) y\right)\left(x+\frac{1}{2}\left(\beta+\sqrt{\beta^{2}+4 \alpha}\right) y\right)=0
$$

We first suppose that $x=-\frac{1}{2}\left(\beta+\sqrt{\beta^{2}+4 \alpha}\right) y$, then

$$
\begin{aligned}
X *_{\alpha, \beta} X & =\left(x^{2}+\alpha y^{2}, 2 x y+\beta y^{2}\right) \\
& =\left(\frac{1}{4}\left(\beta+\sqrt{\beta^{2}+4 \alpha}\right)^{2} y^{2}+\alpha y^{2},-\sqrt{\beta^{2}+4 \alpha} y^{2}\right) \\
& =-\sqrt{\beta^{2}+4 \alpha} y\left(-\frac{1}{2}\left(\beta+\sqrt{\beta^{2}+4 \alpha}\right) y, y\right) \\
& =-\sqrt{\beta^{2}+4 \alpha} y X
\end{aligned}
$$

By using the fact that $\left(\mathbb{R}^{2}, *_{\alpha, \beta}\right)$ is abelian and $(1,0)$ is its neutral element, we find that

$$
X=\frac{-1}{\sqrt{\beta^{2}+4 \alpha} y} X *_{\alpha, \beta} X=X *_{\alpha, \beta}\left(\frac{-1}{\sqrt{\beta^{2}+4 \alpha} y}(1,0)\right) *_{\alpha, \beta} X
$$

Then, it is enough to take $Z=\left(\frac{-1}{\sqrt{\beta^{2}+4 \alpha} y}, 0\right) \in \mathbb{R}^{2}$. Similarly, if $x=-\frac{1}{2}(\beta-$ $\left.\sqrt{\beta^{2}+4 \alpha}\right) y$, then we get that $X=X *_{\alpha, \beta}\left(\frac{1}{\sqrt{\beta^{2}+4 \alpha} y}, 0\right) *_{\alpha, \beta} X$. So it is enough to take $Z=\left(\frac{1}{\sqrt{\beta^{2}+4 \alpha} y}, 0\right)$. This completes the proof of the lemma.

The following main theorem highlights the 2×2-matrix valued solutions of Eq. $(E(\alpha, \beta))$ for $\beta^{2}+4 \alpha \neq 0$. It reads as follows:

ThEOREM 4.4. Assume $\beta^{2}+4 \alpha \neq 0$. The general solution $f: \mathbb{R}^{2} \rightarrow M_{2}(\mathbb{C})$ of $(E(\alpha, \beta))$ is given by the following expressions in which $P \in G L_{2}(\mathbb{C})$

$$
\begin{gathered}
f(x, y)=P\left(\begin{array}{cc}
\phi_{1}(x, y) & 0 \\
0 & \phi_{2}(x, y)
\end{array}\right) P^{-1} \\
f(x, y)= \begin{cases}\phi(x, y) P\left(\begin{array}{cc}
1 & \psi(x, y) \\
0 & 1
\end{array}\right) P^{-1} & \text { if }(x, y) \in \mathbb{R}^{2} \backslash I_{\phi} \\
0 & \text { if }(x, y) \in I_{\phi}\end{cases}
\end{gathered}
$$

where $\phi, \phi_{1}, \phi_{2}:\left(\mathbb{R}^{2}, *_{\alpha, \beta}\right) \rightarrow \mathbb{C}$ are multiplicative functions and $\psi:\left(\mathbb{R}^{2} \backslash I_{\phi}, *_{\alpha, \beta}\right)$ $\rightarrow \mathbb{C}$ is an additive one.

Proof. Let $f: \mathbb{R}^{2} \rightarrow M_{2}(\mathbb{C})$ be a solution of $(E(\alpha, \beta))$ with $\beta^{2}+4 \alpha \neq 0$. Then for all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$ we have

$$
f\left(\left(x_{1}, y_{1}\right) *_{\alpha, \beta}\left(x_{2}, y_{2}\right)\right)=f\left(x_{1}, y_{1}\right) f\left(x_{2}, y_{2}\right)
$$

This means that, with $S=\left(\mathbb{R}^{2}, *_{\alpha, \beta}\right)$, the function f is a solution of the matrix multiplicative Cauchy functional equation 4.1. According to Lemma $4.3\left(\mathbb{R}^{2}, *_{\alpha, \beta}\right)$ is, for $\beta^{2}+4 \alpha \neq 0$, a regular abelian monoid. Then the result follows immediately from Lemma 4.1.

REMARK 4.5. Let $\phi:\left(\mathbb{R}^{2}, *_{\alpha, \beta}\right) \rightarrow \mathbb{C}$ be a non-zero multiplicative function. It is easy to verify, by using Corollary 3.1 and Remark 4.2, that
(1) If $\beta^{2}+4 \alpha<0$, then either $I_{\phi}=\varnothing$ (in this case $\phi \equiv 1$) or $I_{\phi}=\{(0,0)\}$.
(2) If $\beta^{2}+4 \alpha>0$, then either $I_{\phi}=\varnothing$ or

$$
I_{\phi}=\left\{\left.\left(-\frac{1}{2}\left(\beta \mp \sqrt{\beta^{2}+4 \alpha}\right) y, y\right) \right\rvert\, y \in \mathbb{R}\right\} .
$$

REMARK 4.6. The multiplicative functions $\phi:\left(\mathbb{R}^{2}, *_{\alpha, \beta}\right) \rightarrow \mathbb{C}$ (i.e. the solutions $\phi: \mathbb{R}^{2} \rightarrow \mathbb{C}$ of $\left.(E(\alpha, \beta))\right)$ are given in Corollary 3.1 2) and (3). Then, from Theorem 4.4, in order to get the explicit expressions of the solutions $f:\left(\mathbb{R}^{2}, *_{\alpha, \beta}\right) \rightarrow M_{2}(\mathbb{C})$ of $(E(\alpha, \beta))$ it remains to determine, for a fixed multiplicative function $\phi:\left(\mathbb{R}^{2}, *_{\alpha, \beta}\right) \rightarrow \mathbb{C}$, the solution $\psi: \mathbb{R}^{2} \backslash I_{\phi} \rightarrow \mathbb{C}$ of the Cauchy's additive $*_{\alpha, \beta}$-functional equation

$$
\begin{equation*}
\psi\left(\left(x_{1}, y_{1}\right) *_{\alpha, \beta}\left(x_{2}, y_{2}\right)\right)=\psi\left(x_{1}, y_{1}\right)+\psi\left(x_{2}, y_{2}\right) \tag{4.2}
\end{equation*}
$$

Clearly, if $I_{\phi}=\varnothing$ then $\psi \equiv 0$ because $\psi(x, y)+\psi(0,0)=\psi(0,0)$ for all $(x, y) \in \mathbb{R}^{2}$. So in the following proposition we work with $I_{\phi} \neq \varnothing$.

Proposition 4.7. Assume that $\beta^{2}+4 \alpha \neq 0$ and let $\phi:\left(\mathbb{R}^{2}, *_{\alpha, \beta}\right) \rightarrow \mathbb{C}$ be a fixed non-zero multiplicative function such that $I_{\phi} \neq \varnothing$. The general solution $\psi: \mathbb{R}^{2} \backslash I_{\phi} \rightarrow \mathbb{C}$ of 4.2 depends on the sign of $\beta^{2}+4 \alpha$ and is given by:
(1) If $\beta^{2}+4 \alpha<0$, then there exists an additive function $A:\left(\mathbb{C}^{*}, \cdot\right) \rightarrow \mathbb{C}$ such that

$$
\psi(x, y)=A\left(x+\frac{1}{2}\left(\beta+i \sqrt{-\beta^{2}-4 \alpha}\right) y\right)
$$

for all $(x, y) \in \mathbb{R}^{2} \backslash\{(0,0)\}$.
(2) If $\beta^{2}+4 \alpha>0$, then there exist additive functions $A_{1}, A_{2}:\left(\mathbb{R}^{*}, \cdot\right) \rightarrow \mathbb{C}$ such that

$$
\psi(x, y)=A_{1}\left(x+\frac{\beta-\sqrt{\beta^{2}+4 \alpha}}{2} y\right)+A_{2}\left(x+\frac{\beta+\sqrt{\beta^{2}+4 \alpha}}{2} y\right)
$$

for all $(x, y) \in \mathbb{R}^{2} \backslash I_{\phi}$ and here

$$
I_{\phi}=\left\{\left.\left(-\frac{1}{2}\left(\beta \mp \sqrt{\beta^{2}+4 \alpha}\right) y, y\right) \right\rvert\, y \in \mathbb{R}\right\}
$$

Proof. Let $\psi: \mathbb{R}^{2} \backslash I_{\phi} \rightarrow \mathbb{C}$ be a solution of equation 4.2 such that $\beta^{2}+4 \alpha \neq 0$. In what follows we distinguish between two cases:

Case 1: Suppose that $\beta^{2}+4 \alpha<0$. From Remark 4.5 (1) we have $I_{\phi}=$ $\{(0,0)\}$ because here $I_{\phi} \neq \varnothing$. For all $(a, b) \in \mathbb{R}^{2} \backslash\{(0,0)\}$ we define the function $\Phi: \mathbb{H}^{*} \rightarrow \mathbb{C}$ by

$$
\Phi(a+i b, a-i b):=\psi\left(a-\frac{\beta}{\sqrt{-\beta^{2}-4 \alpha}} b, \frac{2}{\sqrt{-\beta^{2}-4 \alpha}} b\right)
$$

where $\mathbb{H}^{*}:=\left\{(z, \bar{z}) \mid z \in \mathbb{C}^{*}\right\}$, this is equivalent to

$$
\begin{equation*}
\psi(x, y)=\Phi\left(x+\frac{1}{2}\left(\beta+i \sqrt{-\beta^{2}-4 \alpha}\right) y, x+\frac{1}{2}\left(\beta-i \sqrt{-\beta^{2}-4 \alpha}\right) y\right) \tag{4.3}
\end{equation*}
$$

where $x, y \in \mathbb{R}$. For any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2} \backslash\{(0,0)\}$ we compute that

$$
\begin{aligned}
& \Phi\left(x_{1}+\frac{1}{2}\left(\beta+i \sqrt{-\beta^{2}-4 \alpha}\right) y_{1}, x_{1}+\frac{1}{2}\left(\beta-i \sqrt{-\beta^{2}-4 \alpha}\right) y_{1}\right) \\
& +\Phi\left(x_{2}+\frac{1}{2}\left(\beta+i \sqrt{-\beta^{2}-4 \alpha}\right) y_{2}, x_{2}+\frac{1}{2}\left(\beta-i \sqrt{-\beta^{2}-4 \alpha}\right) y_{2}\right) \\
& =\psi\left(x_{1}, y_{1}\right)+\psi\left(x_{2}, y_{2}\right) \\
& =\psi\left(x_{1} x_{2}+\alpha y_{1} y_{2}, x_{1} y_{2}+x_{2} y_{1}+\beta y_{1} y_{2}\right) \\
& =\Phi\left(\left(x_{1}+\frac{1}{2}\left(\beta+i \sqrt{-\beta^{2}-4 \alpha}\right) y_{1}\right)\left(x_{2}+\frac{1}{2}\left(\beta+i \sqrt{-\beta^{2}-4 \alpha}\right) y_{2}\right)\right. \\
& \left.\quad \quad\left(x_{1}+\frac{1}{2}\left(\beta-i \sqrt{-\beta^{2}-4 \alpha}\right) y_{1}\right)\left(x_{2}+\frac{1}{2}\left(\beta-i \sqrt{-\beta^{2}-4 \alpha}\right) y_{2}\right)\right)
\end{aligned}
$$

This means that, for all $z_{1}, z_{2} \in \mathbb{C}^{*}$, we have

$$
\Phi\left(z_{1}, \bar{z}_{1}\right)+\Phi\left(z_{2}, \bar{z}_{2}\right)=\Phi\left(z_{1} z_{2}, \overline{z_{1} z_{2}}\right)
$$

which yields that the function $A:\left(\mathbb{C}^{*}, \cdot\right) \rightarrow \mathbb{C}$ defined by

$$
\begin{equation*}
A(z)=\Phi(z, \bar{z}) \quad \text { for all } z \in \mathbb{C}^{*} \tag{4.4}
\end{equation*}
$$

is additive. Therefore, from (4.4) and 4.3), we infer that

$$
\psi(x, y)=A\left(x+\frac{1}{2}\left(\beta+i \sqrt{-\beta^{2}-4 \alpha}\right) y\right), \quad(x, y) \in \mathbb{R}^{2} \backslash\{(0,0)\}
$$

Case 2: Suppose that $\beta^{2}+4 \alpha>0$. Define $\sigma: \mathbb{R}^{2} \backslash I_{\phi} \rightarrow \mathbb{R}^{*} \times \mathbb{R}^{*}$ by

$$
\sigma(x, y):=\left(x+\frac{1}{2}\left(\beta-\sqrt{\beta^{2}+4 \alpha}\right) y, x+\frac{1}{2}\left(\beta+\sqrt{\beta^{2}+4 \alpha}\right) y\right)
$$

for all $(x, y) \in \mathbb{R}^{2} \backslash I_{\phi}$, and let \odot be the binary operation on $\mathbb{R}^{*} \times \mathbb{R}^{*}$ defined by

$$
\left(x_{1}, y_{1}\right) \odot\left(x_{2}, y_{2}\right)=\left(x_{1} x_{2}, y_{1} y_{2}\right), \quad\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{*} \times \mathbb{R}^{*}
$$

According to Remark $4.5(2)$ and the fact that $I_{\phi} \neq \varnothing$, we can easily prove that σ is a bijective homomorphism from $\left(\mathbb{R}^{2} \backslash I_{\phi}, *_{\alpha, \beta}\right)$ to $\left(\mathbb{R}^{*} \times \mathbb{R}^{*}, \odot\right)$. Let $\Psi: \mathbb{R}^{*} \times \mathbb{R}^{*} \rightarrow \mathbb{C}$ be a function defined by

$$
\begin{equation*}
\Psi:=\psi \circ \sigma^{-1} \tag{4.5}
\end{equation*}
$$

From (4.5) we reformulate 4.2 in terms of Ψ as

$$
\Psi \circ \sigma\left(\left(x_{1}, y_{1}\right) *_{\alpha, \beta}\left(x_{2}, y_{2}\right)\right)=\Psi \circ \sigma\left(x_{1}, y_{1}\right)+\Psi \circ \sigma\left(x_{2}, y_{2}\right)
$$

for all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2} \backslash I_{\phi}$. This yields that

$$
\Psi\left(\sigma\left(x_{1}, y_{1}\right) \odot \sigma\left(x_{2}, y_{2}\right)\right)=\Psi\left(\sigma\left(x_{1}, y_{1}\right)\right)+\Psi\left(\sigma\left(x_{2}, y_{2}\right)\right)
$$

Hence, for all $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right) \in \mathbb{R}^{*} \times \mathbb{R}^{*}$ we have

$$
\Psi\left(u_{1}, v_{1}\right)+\Psi\left(u_{2}, v_{2}\right)=\Psi\left(\left(u_{1}, v_{1}\right) \odot\left(u_{2}, v_{2}\right)\right)=\Psi\left(u_{1} u_{2}, v_{1} v_{2}\right)
$$

By using the last equality, we conclude that the functions $x \mapsto \Psi(x, 1)$ and $y \mapsto \Psi(1, y)$ are additive functions from $\left(\mathbb{R}^{*}, \cdot\right)$ to $(\mathbb{R},+)$ and that

$$
\Psi(x, y)=\Psi(x, 1)+\Psi(1, y), \quad x, y \in \mathbb{R}^{*}
$$

So there exist additive functions $A_{1}, A_{2}:\left(\mathbb{R}^{*}, \cdot\right) \rightarrow(\mathbb{R},+)$ such that

$$
\begin{equation*}
\Psi(x, y)=A_{1}(x)+A_{2}(y), \quad x, y \in \mathbb{R}^{*} \tag{4.6}
\end{equation*}
$$

Therefore, from (4.5) and 4.6, we conclude that

$$
\begin{aligned}
\psi(x, y) & =\Psi \circ \sigma(x, y) \\
& =\Psi\left(x+\frac{1}{2}\left(\beta-\sqrt{\beta^{2}+4 \alpha}\right) y, x+\frac{1}{2}\left(\beta+\sqrt{\beta^{2}+4 \alpha}\right) y\right) \\
& =A_{1}\left(x+\frac{1}{2}\left(\beta-\sqrt{\beta^{2}+4 \alpha}\right) y\right)+A_{2}\left(x+\frac{1}{2}\left(\beta+\sqrt{\beta^{2}+4 \alpha}\right) y\right)
\end{aligned}
$$

The converse statement is straightforward.

Acknowledgment. The authors would like to express their most sincere gratitude to the referee for a number of constructive comments which have led to an essential improvement of the paper.

References

[1] J. Aczél and J. Dhombres, Functional Equations in Several Variables, Encyclopedia of Mathematics and its Applications, 31, Cambridge University Press, Cambridge, 1989.
[2] Y. Aissi and D. Zeglami, D'Alembert's matrix functional equation with an endomorphism on abelian groups, Results Math. 75 (2020), no. 4, Paper No. 137, 17 pp.
[3] Y. Aissi, D. Zeglami, and M. Ayoubi, A variant of d'Alemberts matrix functional equation, Ann. Math. Sil. 35 (2021), no. 1, 21-43.
[4] M. Akkouchi and M.H. Lalaoui Rhali, General solutions of some functional equations, Bol. Mat. 12 (2005), no 1, 57-62.
[5] L.R. Berrone and L.V. Dieulefait, A functional equation related to the product in a quadratic number field, Aequationes Math. 81 (2011), no. 1-2, 167-175.
[6] E.A. Chávez and P.K. Sahoo, On functional equations of the multiplicative type, J. Math. Anal. Appl. 431 (2015), no. 1, 283-299.
[7] J. Chung and P.K. Sahoo, On a functional equation arising from Proth identity, Commun. Korean Math. Soc. 31 (2016), no. 1, 131-138.
[8] B. Ebanks, Reconsidering a functional equation arising from number theory, Publ. Math. Debrecen, 86 (2015), no. 1-2, 135-147.
[9] S.-M. Jung and J.-H. Bae, Some functional equations originating from number theory, Proc. Indian Acad. Sci. Math. Sci. 113 (2003), no. 2, 91-98.
[10] A. Mouzoun, D. Zeglami, and Y. Aissi, Matrix homomorphism equations on a class of monoids and non Abelian groupoids, J. Math. Anal. Appl. 503 (2021), no. 2, Paper No. 125354, 24 pp.
[11] A. Mouzoun, D. Zeglami, and M. Ayoubi, A functional equation originated from the product in a cubic number field, Mediterr. J. Math. 18 (2021), no. 5, Paper No. 191, 14 pp.
[12] P. Sinopoulos, Wilson's functional equation for vector and matrix functions, Proc. Amer. Math. Soc. 125 (1997), no. 4, 1089-1094.
[13] H. Stetkær, Functional Equations on Groups, World Scientific Publishing Company, Singapore, 2013.
[14] H. Stetkær, D'Alembert's and Wilson's functional equations for vector and 2×2 matrix valued functions, Math. Scand. 87 (2000), no. 1, 115-132.
[15] D. Zeglami, Some functional equations related to number theory, Acta Math. Hungar. 149 (2016), no. 2, 490-508.

Department of Mathematics
E.N.S.A.M
Moulay ISMAÏL University
B.P: 15290 Al Mansour
Meknès
Morocco
e-mail: mouzounposte@gmail.com
e-mail: zeglamidriss@yahoo.fr
e-mail: yaissi94@gmail.com

