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1. Introduction

In equilibrium statistical physics, originated by Boltzmann (1877) and
Gibbs (1902), the Ising model of ferromagnetism is considered. Let Ω be the
configuration space of functions Zn → A on the integer lattice Zn with in-
teracting values in A over its sites, e.g. “spin” values + or –, assigning the
resulting energy (potential) for each configuration. One considers probabil-
ity distributions on Ω, invariant under translation, called equilibrium states
depending of this potential functions on Ω and on “temperature”.

In 1960/70 Yakov Sinai, David Ruelle and Rufus Bowen applied this theory
to investigate invariant sets in dynamics distributing measures on them, see
[29], [28] and [1].

Let us start with the following important

Lemma 1.1 (Finite variational principle). For given real numbers φ1, . . . ,φd,
the function

F (p1, . . . pd) :=

d∑

i=1

−pi log pi

entropy

+

d∑

i=1

piφi

average potential

on the simplex {(p1, . . . , pd) : pi ≥ 0,
∑d
i=1 pi = 1} attains its maximum, called

pressure or free energy, equal to P (φ) = log
∑d
i=1 e

φi , at the only element of
the simplex, called equilibrium state,

p̂j = eφj/

d∑

i=1

eφi .

Hint:
∑d
i=1−pi log pi +

∑d
i=1 piφi =

∑d
i=1 pi log(eφi/pi).

Introduction: corresponding dynamics notions

Let f : X → X be a continuous map for a compact metric space (X, ρ)
and φ : X → R be a continuous function (potential).

Definition 1.2 (Variational topological pressure).

Pvar(f, φ) := sup
µ∈M(f)

(
hµ(f) +

∫

X

φdµ

)
,



Thermodynamic formalism 3

where M(f) is the set of all f -invariant Borel probability measures on X and
hµ(f) is measure-theoretical entropy.

Any measure where supremum above is attained is called equilibrium state
or equilibrium measure. Let us recall the definition

hµ(f) := sup
A

lim
n→∞

1

n+ 1

∑

A∈A n

−µ(A) logµ(A),

supremum over finite partitions A of X, where A n :=
∨
j=0,...,n f

−jA .

Definition 1.3 (Topological pressure via separated sets).

Psep(f, φ) := lim
ε→0

limn→∞
1

n
log
(

sup
Y

∑

y∈Y
expSnφ(y)

)
,

supremum over all Y ⊂ X such that for distinct x, y ∈ Y , ρn(x, y) :=
max{ρ(f i(x), f i(y)), 0 ≤ i ≤ n} ≥ ε.

Theorem 1.4 (Variational principle: Ruelle, Walters, Misiurewicz, Denker,
...). Pvar(f, φ) = Psep(f, φ).

For this and related theory see e.g. [30] or [25]. In view of Theorem 1.4 we
can omit subscripts and write P (f, φ).

Call f : X → X distance expanding if there exist λ > 1, C > 0 such that
for all x, y ∈ X, sufficiently close to each other, then

ρ(fn(x), fn(y)) ≥ Cλnρ(x, y) for all n ∈ N.

Sometimes we use the word hyperbolic.
Lemma 1.1 becomes in the infinite (dynamical, expanding) setting:

Theorem 1.5 (Gibbs measure – uniform case). Let f : X → X be a dis-
tance expanding, topologically transitive continuous open map of a compact
metric space X and φ : X → R be a Hölder continuous potential. Then, there
exists exactly one µφ ∈ M(f,X), called a Gibbs measure, such that for con-
stants C, r0 > 0, all x ∈ X and all n ∈ N

C−1 <
µφ(f−nx (B(fn(x), r0))

exp(Snφ(x)− nP )
< C,

called the Gibbs property, where f−nx is the local branch of f−n mapping
fn(x) to x and Snφ(x) :=

∑n−1
j=0 φ(f j(x)).
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• µφ is the unique equilibrium state for φ, and is ergodic. It is equivalent to the
unique exp−(φ − P )-conformal measure mφ, that is an f -quasi-invariant
measure with Jacobian exp−(φ− P ) for a constant P .
• P = P (f, φ) := limn→∞ 1

n log
∑
x∈f−n(x0) expSnφ(x). This normalizing

limit exists and is equal P(f, φ) for every x ∈ X.

An important example of a distance expanding map is ς : Σd → Σd, where
Σd is the space of all sequences (αn)n=0,1,... with αn ∈ {1, ..., d}, and ς is the
left shift ς((αn)) = (αn+1), used for ‘coding’ other maps, see e.g. Section 7.

2. Introduction to dimension one

Thermodynamic formalism is useful for studying properties of the under-
lying space X. In dimension one, for f real of class C1+ε or f holomorphic
(conformal) for an expanding repeller X, considering φ = φt := −t log |f ′| for
t ∈ R, the Gibbs property gives, as expSn(φt) = |(fn)′|−t,

µφt(f
−n
x (B(fn(x), r0))) ≈ exp(Snφ(x)− nP (φt))

≈ (diam f−nx (B(fn(x), r0)))t exp(−nP (φt)).

The latter follows from a comparison of the diameter with the inverse of the
absolute value of the derivative of fn at x, due to bounded distortion.

All this is not literally true if f has critical points in X, i.e. points where
the derivative f ′ is zero. Then the “escalator” fn to large scale deforms shapes
when passing close to critical points. Also φ is not Hölder at these points. Some
correctness of Theorem 1.5 depends then on recurrence of critical points and
on t where 1/t mimics temperature for t > 0.

When t = t0 is a zero of the function t 7→ P (φt), this gives (for expanding
(f,X))

(2.1) µφt0
(B) ≈ (diamB)t0

for all small balls B, hence HD(X) = t0. Moreover, the Hausdorff measure
Ht0 of X in this dimension is finite and nonzero.

The potentials −t log |f ′|, their pressure and equilibria are called geometric
since they provide a tool for a local geometrical insight in the space.
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A model application

Theorem 2.1 (Bowen, Series, Sullivan). For fc(z) := z2 + c for an arbi-
trary complex number c 6= 0 sufficiently close to 0, the invariant Jordan curve
J (Julia set for fc) is fractal, i.e. has Hausdorff dimension bigger than 1.

If HD(J) = 1, then 0 < H1(J) <∞ by Theorem 1.5 and h = R−1
2 ◦R1 on

S1 is absolutely continuous (F. & M. Riesz’ theorem), where Ri are Riemann
maps, R1(0) is the f fixed point in C and R2(∞) = ∞, see Fig. 1. Then
gi := R−1

i ◦ fc ◦Ri for i = 1, 2 preserve length ` on S1 and are ergodic. Hence
h preserves ` so it is a rotation, identity for appropriate R1, R2. Hence R1 and
R2 glue together to a holomorphic automorphism R of the Riemann sphere, a
homography. (Compare Mostov rigidity theorem.) Therefore R−1◦fc◦R(z) =
λz2 for λ with |λ| = 1 and in consequence c = 0.4 F. PRZYTYCKI

h

R2

R1

theorem.) Therefore R−1 ◦ fc ◦ R(z) = λz2 for λ with |λ| = 1 and in consequence
c = 0.

– Complex case

In the complex case we consider f a rational mapping of degree at least 2 of the
Riemann sphere C. We consider f acting on its Julia set K = J(f) (generalizing the
z2 + c model). Formally the Julia set is the complement in the sphere of the Fatou
set which is the set where the family of the iterates fn is locally equicontinuous.
J(f) is compact completely invariant and f on it acts in a “chaotic” way.

. .

Figure 1. Julia sets zoo: rabbit f(z) = z2−0.123+0.745i, basilica
f(z) = z2 − 1, dendrite f(z) = z2 + i, basilica mated with rabbit

f(z) = z2+c
z2−1 for c = 1+

√−3
2 with J(f) being the boundary between

white (basilica) and black (rabbit), Sierpiński-Julia carpet f(z) =
z2 − 1/16z2 i.e. boundaries of Fatou set components do not touch
each other (the corona-like shapes are lines of the same speed of
escape to ∞).

– Real case

Definition 2.2 (Real case, [PRiv2]). f ∈ C2 is called a generalized multimodal map
if it is defined on a neighbourhood of a compact invariant set K, critical points are
not infinitely flat, bounded distortion property for iterates holds, abbr. BD, is
topologically transitive and has positive topological entropy on K.

Figure 1. Broken egg argument

Complex case

In the complex case we consider f a rational mapping of degree at least
2 of the Riemann sphere C. We consider f acting on its Julia set K = J(f)
(generalizing the z2 + c model), see Fig. 2. Formally the Julia set is the com-
plement in the sphere of the Fatou set which is the set where the family of
the iterates fn is locally equicontinuous. J(f) is compact completely invariant
and f on it acts in a “chaotic” way.

Real case

Definition 2.2 (Real case, [20]). f ∈ C2 is called a generalized multimodal
map if it is defined on a neighbourhood of a compact invariant set K, critical
points are not infinitely flat, bounded distortion (BD) property for iterates
holds, is topologically transitive, and has positive topological entropy on K.
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. .

Figure 2. Julia sets zoo: rabbit f(z) = z2 − 0.123+ 0.745i, basilica
f(z) = z2 − 1, dendrite f(z) = z2 + i, basilica mated with rabbit
f(z) = z2+c

z2−1
for c = 1+

√−3
2

with J(f) being the boundary between
white (basilica) and black (rabbit), Sierpiński-Julia carpet f(z) =
z2 − 1/16z2 i.e. boundaries of Fatou set components do not touch
each other (the corona-like shapes are lines of the same speed of
escape to ∞).

AlsoK is a maximal forward invariant subset of a finite union Î of pairwise
disjoint closed intervals, whose endpoints are in K.

This maximality corresponds to the Darboux property. We write (f,K) ∈
A BD

+ , where + marks positive entropy. In place of BD one can assume C3 (and
write (f,K) ∈ A 3

+) and assume that all periodic orbits in K are hyperbolic
repelling. Then changing f outside K allows to get (f,K) ∈ A BD

+ .

Examples:. Basic sets in spectral decomposition via renormalizations [3,
Theorem III.4.2].

3. Hyperbolic potentials

For continuous f and φ as in Definitions 1.2 and 1.3 call φ : K → R satisfy-
ing P (f, φ) > supν∈M(f)

∫
φdν a hyperbolic potential. Equivalently P (f, φ) >

supK
1
nSnφ for some n. See [9].
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Theorem 3.1 (Complex and real: Denker, Urbański, Przytycki, Haydn,
Rivera-Letelier, Zdunik, Szostakiewicz, H. Li, Bruin, Todd). If φ is a Hölder
continuous hyperbolic potential, then there exists a unique equilibrium state
µφ. For every Hölder u : K → R, the Central Limit Theorem (CLT) and Law
of Iterated Logarithm (LIL) for the sequence of random variables u ◦ fn and
µφ hold.

The CLT follows from sufficiently fast convergence of iteration of transfer
operator (spectral gap). The LIL is proved via LIL for a return map (induc-
ing) to a nice domain related to µφ (Mañé, Denker, Urbański) providing a
Markov structure (Infinite Iterated Function System) avoiding critical points,
satisfying BD.

4. Non-uniform hyperbolicity

Define the following conditions, both for real and complex (rational) cases:
(a) Collet–Eckmann condition (CE). There exist λ > 1, C > 0

|(fn)′(f(c))| ≥ Cλn

for all critical points c ∈ K whose forward orbit is disjoint from the set
Crit(f) of all critical points of f . Moreover there are no indifferent periodic
orbits in K.

(b) Backward Collet–Eckmann condition at z0 ∈ K (CE2(z0)). There exist
λ > 1 and C > 0 such that for every n ≥ 1 and every w ∈ f−n(z0) (in a
neighbourhood of K in the real case)

|(fn)′(w)| ≥ Cλn.

(c) Topological Collet–Eckmann condition (TCE), [23]. There exist M ≥ 0,
P ≥ 1, r > 0 such that for every x ∈ K there exist increasing nj ,
j = 1, 2, . . . , such that nj ≤ P · j and for each j and discs B(·) below,
understood in C or R,

#{0 ≤ i < nj : (Compfi(x) f
−(nj−i)B(fnj (x), r)) ∩ Crit(f) 6= ∅} ≤M.

(d) Exponential shrinking of components (ExpShrink). There exist λ > 1 and
r > 0 such that for every x ∈ K, every n > 0 and every connected
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component Wn of f−n(B(x, r)) for the disc (interval) B(x, r) in C (or R),
intersecting K

diam(Wn) ≤ λ−n.

(e) Lyapunov hyperbolicity (LyapHyp). There is λ > 1 such that the Lyapunov
exponent χ(µ) :=

∫
K

log |f ′| dµ of any ergodic measure µ ∈ M(f,K) sat-
isfies χ(µ) ≥ log λ.

(f) Uniform hyperbolicity on periodic orbits (UHP). There exists λ > 1 such
that every periodic point p ∈ K of period k ≥ 1 satisfies

|(fk)′(p)| ≥ λk.

Note that whereas in the complex case for a ball B = B(f(x), τ) and
its pullback B′ = Compx f

−1(B) (the component of the preimage contain-
ing x) we have f(B′) = B, in the real case it may be false, because of
“folds”. Therefore in the real case additional difficulties in this theory ap-
pear, in particular in TCE it is not equivalent to write that degrees of all fnj

on Compx f
−(nj)B(fnj (x), r) are uniformly bounded.

Theorem 4.1 (..., Keller, Nowicki, Sands, Przytycki, Rohde, Rivera-Lete-
lier, Graczyk, Smirnov). Assume there are no indifferent periodic orbits in K.
Then
1. The conditions (c)–(f), and (b) for some z0, are equivalent (in the real

case under the assumption of weak isolation: any periodic orbit close to K
must be in K).

2. CE implies (b)–(f).
3. If there is only one critical point in the Julia set in the complex case or if
f is S-unimodal on K = I in the real case, then all conditions above are
equivalent to each other.

4. TCE is topologically invariant; therefore all other conditions equivalent to
it are topologically invariant.

See e.g. [21]. For polynomials (b)–(f) are equivalent for K = J(f) =
Fr Ω∞(f), to Ω∞ the basin of ∞, being Hölder (Graczyk, Smirnov). Note
that for rational maps f satisfying TCE, if J(f) 6= C, then it is mean porous
hence HD(J(f)) < 2, see [23].

An order of proving the equivalences in Theorem 4.1 is, for z0 safe (defined
below),

CE2(z0)⇒ ExpShrink ⇒ LyapHyp ⇒ UHP ⇒ CE2(z0).

Separately one proves ExpShrink ⇔ TCE using for ⇒ the following
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Lemma 4.2 (Denker, Przytycki, Urbański, [4]).

n∑

j=0

′ − log |f j(x)− c| ≤ Qn

for a constant Q > 0 every c ∈ Crit(f), every x ∈ K and every integer n > 0.
Σ′ means that we omit in the sum an index j of smallest distance |f j(x)− c|.

Assuming UHP one proves CE2(z0) for safe and hyperbolic z0 by “shad-
owing”, see Fig. 3.

THERMODYNAMIC FORMALISM 7

R

fnκ

fn

fN1

fN2

fN3

exp−εn

Definition 4.3 (safe). We call z ∈ K safe if z /∈ ⋃∞j=1(f j(Crit(f))) and for every

ε > 0 and all n large enough B(z, exp(−εn)) ∩⋃nj=1(f j(Crit(f))) = ∅.

Notice that this definition implies that all points except at most a set of Hausdorff
dimension 0, are safe. Hyperbolic points (see below) are e.g. all points in invariant
hyperbolic (expanding) subsets of K. Such sets are abundant.

Definition 4.4 (hyperbolic). We call z ∈ K hyperbolic if there exist λ > 1, r >
0, C > 0 such that for all n ∈ N the map fn is injective on Compx(f−n(B(fn(x), r)))
and |fn′(x)| ≥ Cλn.

5. Geometric variational pressure and equilibrium states

For φ = φt := −t log |f ′|, the variational definition of pressure, here

P (t) := Pvar(f, φt) = sup
µ∈M(f)

(
hµ(f)− t

∫

K

log |f ′| dµ
)

still makes sense by the integrability of log |f ′|, [P:93]. Moreover
∫
K

log |f ′| dµ =
χ(µ) ≥ 0 for all ergodic µ even in presence of critical points where φ = ±∞.
t 7→ P (t) is convex, monotone decreasing. We usually assume t > 0 later on.

t
t0

P (t)

−χsup

−χinf

t
t0 t+

P (t)

−χsup

−χinf

t
t0 = t+

P (t)

−χsup

−χinf

Figure 2. The geometric pressure: LyapHyp with t+ =∞,
LyapHyp with t+ <∞, and non-LyapHyp.

Here t+ is the phase transition “freezing” parameter, where t 7→ P (t) is not
analytic. P (t) is equal to several other quantities, in the complex case see [P:99]
and [PRS:04], in real [PRiv2]. E.g.

Phyp(t) := supX∈H (f,K) P (f |X ,−t log |f ′|),
Definition 5.1 (hyperbolic pressure). where H (f,K) is defined as the space of
all compact forward invariant, i.e. f(X) ⊂ X, expanding subsets of K, repellers in
R.

Figure 3. Shadowing

Definition 4.3 (Safe point). We call z ∈ K safe if z /∈ ⋃∞j=1(f j(Crit(f)))
and for every ε > 0 and all n large enough

B(z, exp(−εn)) ∩
n⋃

j=1

(f j(Crit(f))) = ∅.

Notice that this definition implies that all points except at most a set
of Hausdorff dimension 0, are safe. Hyperbolic points (see below) are e.g.
all points in invariant hyperbolic (expanding) subsets of K. Such sets are
abundant.

Definition 4.4 (Hyperbolic point). We call z ∈ K hyperbolic if there
exist λ > 1, r > 0, C > 0 such that for all n ∈ N the map fn is injective on
Compx(f−n(B(fn(x), r))) and |(fn)′(x)| ≥ Cλn.
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5. Geometric variational pressure and equilibrium states

For φ = φt := −t log |f ′|, the variational definition of pressure, here

P (t) := Pvar(f, φt) = sup
µ∈M(f)

(
hµ(f)− t

∫

K

log |f ′| dµ
)

still makes sense by the integrability of log |f ′|, [13]. Moreover
∫
K

log |f ′| dµ =
χ(µ) ≥ 0 for all ergodic µ even in presence of critical points where φ = ±∞.
t 7→ P (t) is convex, monotone decreasing. We usually assume t > 0 later on.

t
t0

P (t)

−χsup

−χinf

t
t0 t+

P (t)

−χsup

−χinf

t
t0 = t+

P (t)

−χsup

−χinf

Figure 4. The geometric pressure: LyapHyp with t+ = ∞, LyapHyp with t+ < ∞,
and non-LyapHyp

Here t+ is the phase transition “freezing” parameter, where t 7→ P (t) is
not analytic. P (t) is equal to several other quantities, in the complex case see
[15] and [22], in real [20]. E.g.

Definition 5.1 (Hyperbolic pressure).

Phyp(t) := sup
X∈H (f,K)

P (f |X ,−t log |f ′|),

where H (f,K) is defined as the space of all compact forward invariant, i.e.
f(X) ⊂ X, expanding subsets of K, repellers.

Definition 5.2 (Hyperbolic dimension).

HDhyp(K) := sup
X∈H (f,K)

HD(X).

Recall that for expanding f : X → X, t0(X) = HD(X), see (2.1). Passing
to sup we obtain:
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Proposition 5.3 (Generalized Bowen’s formula). The first zero t0 of t 7→
Phyp(K, t) is equal to HDhyp(K).

It may happen HDhyp(J(f)) < HD(J(f)) = 2 for f quadratic polynomi-
als, Avila & Lyubich.

Theorem 5.4 (Przytycki, Rivera-Letelier, the real case, [20]). Let (f,K) ∈
A 3

+, f -periodic orbits in K be hyperbolic repelling. Then
• t 7→ P (t) is real analytic on an open interval (t−, t+) with −∞ ≤ t− <

0 < t+ ≤ ∞ defined by P (t) > supν∈M(f)−t
∫

log |f ′| dν. For t ≥ t0 P (t) is
affine.
• For each t in this interval there is a unique invariant equilibrium state µφt

.
It is ergodic and absolutely continuous with respect to an adequate conformal
measure mφt

with dµφt
/dmφt

≥ Const > 0 a.e.
• If furthermore f is topologically exact on K (that is for every V an open
subset of K there exists n ≥ 0 such that fn(V ) = K), then this measure is
mixing, has exponential decay of correrations and satisfies CLT for Lips-
chitz observables.

This generalizes results by Bruin, Iommi, Pesin, Senti, Todd.

Theorem 5.5 (Przytycki, Rivera-Letelier, the complex case, [19]). The
assertion is the same. One assumes a very weak expansion: the existence
of arbitrarily small nice, or pleasant, couples and hyperbolicity away from
critical points.

Remark. For real f satisfying LyapHyp and K = Î, we have the unique
zero of pressure t0 = 1 and for − log |f ′| we conclude that a unique equi-
librium state exists which is absolutely continuous with respect to Lebesgue
measure (probability), acip. In general for K = I it holds assumed only e.g.
|(fn)′(f(c))| → ∞ for all c ∈ Crit(f), see [2]. For t > t+ for f LyapHyp,
equilibria do not exist, see [9].

Proofs use inducing (and Lai-Sang Young towers), compare Theorem 3.1
though here we find nice sets (pairs) geometrically, independently of equilibria.
For a different proof, the real case, see a recent [5].

Lasota–Yorke Theorem

Sometimes to find an absolutely continuous invariant measure (probabil-
ity) it is sufficient to find a function u : I → R invariant for the transfer
operator (Perron–Frobenius) directly for f rather than for a return map via
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inducing as above. Then u ·Leb will be acip. This is so in the classical Lasota–
Yorke Theorem.

Theorem 5.6 (Lasota, Yorke, [10]). Let f : [0, 1]→ R be a piecewise con-
tinuous and piecewise C2 (with finitely many pieces) and inf |f ′| > 1. Then
there exists a measure absolutely continuous with respect to Lebesgue (acip).

Proof. We find u := lim 1
n

∑n−1
k=0 P

k(φ), where φ is an arbitrary function
of class C1, may be 11. The convergence follows from the conditional weak
compactness of the family PNk(φ), where the Perron–Frobenius operator P
is defined by P (φ)(x) :=

∑
f(y)=x φ(y)/|f ′(y)|.

The weak compactness follows for φ with bounded variation, for α > 0,
β < 1, k = 0, 1, ..., and some N , from

VarPN(k+1)(φ) ≤ α||φ||1 + βVar(PNk(φ)). �

This estimate with the use of two (semi)norms allows even to prove an
exponential convergence to u (Ionescu–Tulcea, Marinescu).

Dimension spectrum

Pvar(t) allows the study dimension spectrum for Lyapunov exponent via
the Legendre transformation, proving in particular for α > 0

HD({x ∈ K : χ(x) = α}) =
1

α
inf
t∈R

(P (t) + αt) .

Proof of ≥: Given α consider t where inf is attained. The tangent to P (t)
at t is parallel to −αt and for µt the equilibrium, it is hµt(f) − tχ(µt). So
the infimum is hµt(f), see Fig. (By the variational definition, P (t) and hµ
are mutual Legendre type transforms.) Dividing by α gives ≥ using Mañé’s
equality

(5.1) HD(µ) = hµ(f)/χ(µ).

(Notice that this equality is related to (2.1).)
The proof of ≤ uses conformal measures.
Using of the Legendre transform of P (t), see Fig. 5 allows us to also give

formulae for Hausdorff dimension of (irregular) sets of points with given lower
and upper Lyapunov exponent

HD({χ(x) = α, χ(x) = β})

for β > 0, see [6] and [7].
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t

P(t)

HD

hµtα
(f )

−χ(µtα) = −α

Figure: Legendre transformFigure 5. Legendre transform

More on Lyapunov exponents

In analogy to χ(µ) ≥ 0 one has:

Theorem 5.7 (Levin, Przytycki, Shen, [11]). If for a rational function
f : C→ C there is only one critical point c in J(f) and no parabolic periodic
orbits, then χ(f(c)) ≥ 0.

For S-unimodal maps of interval this was proved much earlier by T. Now-
icki and D. Sands.

6. Other definitions of geometric pressure

Definition 6.1 (Tree pressure). For every z ∈ K and t ∈ R define

(6.1) Ptree(z, t) = lim sup
n→∞

1

n
log

∑

fn(x)=z, x∈K
|(fn)′(x)|−t.

Theorem 6.2. Ptree(z, t) does not depend on z for z safe.

• In the complex case to prove Ptree(z1, t) = Ptree(z2, t) one joins z1 to z2

with a curve not fast accumulated by critical trajectories, see [15] and [22].
• In the real case there is no room for such curves. Instead, one relies on the
topological transitivity. See [16] and [20].
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• For φ = −t log |f ′| pressure via separated sets does not make sense. Indeed,
in presence of critical points for f , for t > 0, it is equal to +∞. So it is
replaced by Ptree.
• One can consider however spanning geometric pressure Pspan(t) using (n, ε)-
spanning sets (in place of separated) and infimum. Assumed weak backward
Lyapunov stability, wbls (see the definition below) it is indeed equal to P (t)
in the complex case, see [16]. This is however not so in the real case, where
wbls always holds if all periodic orbits are hyperbolic repelling. It happens
that Pspan(t) =∞ for t > 0, if some x with big |(fn)′(x)|−1 is well isolated
in the metrics ρn in Definition 1.3. See Fig. 6.

0 f 2(c) f (c)c 1

K ⊂ Î1 ∪ Î2
Î1 Î2

f ni

gaps
f 2

Figure 6. Pspan(t) =∞. The fold of fni

on (−εni , εni) is in the gap between Î1
and Î2 except a tiny neighbourhood of
its tip

Definition 6.3 (Weak backward Lyapunov stability, wbls). f is weakly
backward Lyapunov stable if for every δ > 0 and ε > 0 for all n large enough
and every disc B = B(x, exp−δn) centered at x ∈ K, for every 0 ≤ j ≤ n
and every component V of f−j(B) intersecting K, it holds that diamV ≤ ε.

Question. Does wbls hold for all rational maps?
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7. Boundary dichotomy

Let f : C → C be a rational map with deg(f) ≥ 2 and let Ω = Ωp(f)
be a simply connected immediate basin of attraction to a fixed point p (that
is the component of the (open) set attracted to p containing it), see Fig. 7.
Let R : D → Ω be a Riemann map R(0) = p and g : D → D defined by
g := R−1 ◦ f ◦ R, extended conformally beyond the boundary ∂D (Schwarz
symmetry), thus expanding on ∂D.

R

R∗
l ω

D Ω

g = R−1 ◦ f ◦ R f

p

Figure 7. A Riemann map and its radial limit

Consider harmonic measure ω = R∗(l), where l is normalized length mea-
sure on ∂D and R is radial limit, defined l-a.e. Since 0 is a fixed point for g,
l is g-invariant, hence ω is f -invariant. Denote by H1 Hausdorff measure in
dimension 1.

Theorem 7.1 (Przytycki, Urbański, Zdunik: 1985 – 2006). For f,Ω as
above, HD(ω) = 1. One of two cases holds:
1) ω⊥H1, which implies HDhyp(Fr Ω) > 1;
2) ω � H1 and f is a finite Blaschke product or a two-to-one holomorphic

factor of a Blaschke product with Fr Ω being an interval, in some holomor-
phic coordinates on C.

Consider ψ := log |g′|−log |f ′|◦R. Notice that
∫
∂D ψ dl = 0, hence HD(ω) =

1 as R∗ does not change entropy [12] and using (5.1).
HD(ω) = 1 was proved in 1985 by Makarov without assuming existence

of f .
Consider the asymptotic variance σ2 = σ2

l (ψ) := limn→∞ 1
n

∫
∂D(Snψ)2 dl.

Then ω⊥H1 is equivalent to σ2 > 0 and equivalent to ψ not being cohomolo-
gous to 0 (not of the form u ◦ f − u).
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Theorem 7.2 (LIL-refined-HD for harmonic measure, Przytycki,Urbański,
Zdunik, [26] and [27]). For f,Ω with σ2 > 0, there exists c(Ω) > 0, such that
for αc(r) := r exp(c

√
log 1/r log log log 1/r)

i) ω⊥Hαc for the gauge function αc, for all 0 < c < c(Ω);
ii) µ� Hαc for all c > c(Ω).

This theorem applies also e.g. to snowflake-type Ω’s.

Proofs. To prove HD(Ωhyp) > 1 in Theorem 7.1, we can find X with
HD(X) ≥ HD(ω) − ε by A. Katok’s method and using HD = h/χ, see (5.1).
This is not enough. However we can do better:

σ2 > 0 yields by CLT large fluctuations of the sums
∑n−1
j=0 ψ ◦ ςj from 0,

allowing to find expanding X with HD(X) > HD(ω). One builds an iterated
function system, for which X is the limit set. A special care is needed to get
X ⊂ Fr Ω.

Substituting in LIL n ∼ (log 1/rn)/χ(ω) for rn = |(fn)′(x)|−n, comparing
log |(gn)′| − log |(fn)′| ◦R with

√
2σ2n log log n for a sequence of n’s, we get

Lemma 7.3 (Refined Volume Lemma). For ω-a.e. x

lim sup
n→∞

ω(B(x, rn))

αc(rn)
=

{
∞, for 0 < c < c(ω),

0, for c > c(ω).

yielding Theorem 7.1. Using R = f−n ◦R ◦ gn one obtains

Theorem 7.4 (Radial growth). For Lebesgue a.e. ζ ∈ ∂D

G+(ζ) := lim sup
r↗1

log |R′(rζ)|√
log(1/1− r) log log log(1/1− r)

= c(Ω).

Similarly

G−(ζ) := lim inf
r↗1

log |R′(rζ)|√
log(1/1− r) log log log(1/1− r)

= −c(Ω).

The above theorems hold for every connected, simply connected open
Ω ⊂ C, different from C, without existence of f . Of course one should add
ess sup over ζ ∈ ∂D and over z ∈ Fr Ω in Refined Volume Lemma and re-
formulate the case i). There is a universal Makarov’s upper bound CM < ∞
for all c(Ω), CM ≤ 1.2326 (Hedenmalm, Kayumov, 2007, [8]). In 1989 I gave
a weaker estimate.
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Geometric coding trees, g.c.t.

Above theorems hold in an abstract setting of a geometric coding tree T
in f(U) for f : U → C, f(U) ⊃ U proper. We obtain a coding from the
left shift space, see Introduction, π : Σd → Λ of the limit set Λ (in place of
R : ∂D → Fr Ω). If f extends holomorphically beyond cl Λ we call Λ a quasi-
repeller.

More precisely, given z ∈ f(U) and curves γj : [0, 1]→ f(U), j = 1, . . . , d,
joining z to zj ∈ f−1(z), see Fig. 8, we define a graph T consisting of the set
of vertices f−n(z) and edges f−n(γj), n = 0, 1, ... and j = 1, ..., d, such that
denoting the edges in f−n(γj) by γn(α) for all α ∈ Σd the following conditions
hold

γ0(α) := γα0 , f ◦ γn(α) = γn−1(ς(α)), γn(α)(0) = γn−1(α)(1).

The vertices are defined as the ends of γn(α), denoted then zn(α) and zn−1(α).

. . . b(α)

z1

z2
z3

z

γ1

γ2
γ3

γ0(α)
γ1(α)

γ2(α)

Figure 8. A geometric coding tree

For every α ∈ Σd the subgraph composed of z, zn(α) and γn(α) for all
n ≥ 0 is called an infinite geometric branch and denoted by b(α). It is called
convergent if the sequence γn(α) is convergent to a point in clU . This conver-
gence holds for all a except a thin set, see [24]. Λ is defined as the set of limits
of all convergent infinite branches.

For a Hölder potential φ : Σd → R (in place of − log |g′|) and Gibbs mea-
sure µφ one gets dichotomies for µ := π∗(µφ) on Λ, analogous to the ones in
Theorems 7.1 and 7.2.

For a constant potential, µ = µmax is a measure of maximal entropy on
Julia set J(f) for f : C→ C rational. Then
1) If σ2 > 0 then HDhyp(J(f)) > HD(µmax).
2) If σ2 = 0 then for each x, y ∈ J(f) not postcritical, if z = fn(x) = fm(y)

for some positive integers n,m, the orders of criticality of fn at x and fm
at y coincide. In particular all critical points in J(f) are pre-periodic, f is
postcritically finite with parabolic orbifold, in particular zd, Chebyshev or
some Lattès maps, (Zdunik, 1990, [31]).
In the Ω version it is sufficient to assume f is defined only in a neighbour-

hood of ∂Ω repelling on the side of Ω, called RB-domain.
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This applies to f polynomial and simply connected Ω = Ω∞ giving again
the dichotomy on Fr Ω = J(f).

Integral mean spectrum

For a simply connected domain Ω ⊂ C one considers the integral means
spectrum:

βΩ(t) := lim sup
r↗1

1

| log(1− r)| log

∫

ζ∈∂D
|R′(rζ)|t |dζ|.

This, in presence of f , e.g. for an RB-domain Ω and for φ = − log |f ′| on Fr Ω,
for g(z) = zd, e.g. Ω being a simply connected basin of ∞ for a polynomial of
degree d, satisfies

βΩ(t) = t− 1 +
P (tφ)

log d
. (N. Makarov, F. Przytycki & S. Rohde)

One considers

σ2(logR′) := lim sup
r↗1

∫
∂D | logR′(rζ)|2 |dζ|
−2π| log(1− r)| .

It holds σ2(logR′) = 2d
2βΩ(t))
dt2 |t=0 (O. Ivrii). It is related to the Weil–Petersson

metric (McMullen).
Recall that σ2

µ(tφ) = d2P (f,tφ)
dt2 for µ Gibbs in expanding case, see [28]

and [25].

8. Accessibility

Theorem 8.1 (Douady, Eremenko, Levin, Petersen on accessibility of pe-
riodic sources; Przytycki on accessibility of more points, [14]). Let Λ be a limit
set for a g.c.t. T for holomorphic f : U → C. Assume uniform shrinking, that
is diam(γn(α))→ 0, as n→∞ uniformly with respect to α ∈ Σd. Then every
good q ∈ cl Λ is a limit of a convergent infinite branch b(α), i.e. q ∈ Λ. In
particular, this holds for every q with χ(q) > 0 and satisfying a local backward
invariance of U .
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Corollary 8.2 (Lifting of measure, [14] and [17]). Consider a g.c.t. T
as above, uniformly shrinking, with no self-intersections, and a non-atomic
hyperbolic probability measure µ on cl Λ, i.e. satisfying χ(µ) > 0. Assume µ-
a.e. local backward invariance of U . Then µ is the π∗ image of a probability
ς-invariant measure ν on Σd.

In particular a lift ν exists for every completely invariant RB-domain, e.g.
for every hyperbolic µ on Fr Ω∞ for f polynomial.
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