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A VARIANT OF D’ALEMBERT’S MATRIX
FUNCTIONAL EQUATION

Youssef Aissi, Driss Zeglami , Mohamed Ayoubi

Abstract. The aim of this paper is to characterize the solutions Φ: G →
M2(C) of the following matrix functional equations

Φ(xy) + Φ(σ(y)x)

2
= Φ(x)Φ(y), x, y ∈ G,

and

Φ(xy)− Φ(σ(y)x)

2
= Φ(x)Φ(y), x, y ∈ G,

where G is a group that need not be abelian, and σ : G → G is an involutive
automorphism of G. Our considerations are inspired by the papers [13, 14]
in which the continuous solutions of the first equation on abelian topological
groups were determined.

1. Introduction

Throughout this paper, let G be a group with neutral element e, and
σ : G → G be a homomorphism such that σ ◦ σ = id. Let M2(C) denote the
algebra of complex 2 × 2 matrices. It will represent the range space of the
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solutions in this paper. The purpose of this paper is to solve the following
matrix functional equation

(1.1)
Φ(xy) + Φ(σ(y)x)

2
= Φ(x)Φ(y), x, y ∈ G,

where Φ: G → M2(C) is the unknown function. The contribution of the
present paper to the theory of matrix d’Alembert’s functional equations lies
in the study of (1.1) on groups that need not be abelian. On abelian groups
the solutions of Eq. (1.1) are known: the matrix or even operator version (1.1)
of d’Alembert’s functional equation with σ = −id has for Φ(e) = I been
treated by Fattorini ([7]), Kurepa ([9]), Baker and Davidson ([2]), Kisyński
([8]), Székelyhidi ([17]), Chojnacki ([3]), Sinopoulos ([12]) under various con-
ditions like G = 2G or the solution being bounded on G. For a general in-
volutive automorphism σ not just σ = −id, Stetkaer ([14]) determined the
general solution Φ: G → M2(C) of (1.1). He did not need extra assumptions
on the abelian topological group G and also found the solutions of (1.1) when
Φ(e) 6= I.

In the present paper, we extend the setting of Φ from an abelian topologi-
cal group to a group that need not be abelian. So, our main contribution is a
natural extension of the previous works [13, 14] to d’Alembert’s matrix func-
tional equation. This knowledge in turn enables us to solve the symmetrized
matrix multiplicative Cauchy equation

(1.2) Φ(xy) + Φ(yx) = 2Φ(x)Φ(y), x, y ∈ G,

and the following matrix functional equation

(1.3)
Φ(xy) + Φ(σ(y)x)

2
= Φ(x) + Φ(y) + Φ(x)Φ(y), x, y ∈ G.

The 2 × 2 matrix valued solutions of (1.2) and (1.3) are given in Corollaries
6.1 and 6.2, respectively. Example 5.5 shows that solutions of (1.2) are not
generally abelian (see Notation). This is in contrast to the complex valued
solutions of (1.2) which are multiplicative ([15, Theorem 3.21]). We also show
that any continuous solution of (1.1) on a compact group is abelian.

Another main result of this paper is the solution of the functional equation

(1.4)
Φ(xy)− Φ(σ(y)x)

2
= Φ(x)Φ(y), x, y ∈M,

where M is a monoid and Φ: M → M2(C) is the unknown function. This is
the subject of the last section. The functional equation (1.4) differs from the
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functional equation (1.1) by having a minus on the left hand side instead of
a plus.

Finally, we note that results about the scalar functional equations

f(xy) + f(σ(y)x) = 2f(x)f(y), x, y ∈ G,(1.5)

f(xy) + f(σ(y)x) = 2f(x)g(y), x, y ∈ G,(1.6)

f(xy) + f(σ(y)x) = 2f(x) + 2f(y), x, y ∈ G,(1.7)

the sine addition law

(1.8) f(xy) = f(x)g(y) + f(y)g(x), x, y ∈ G,

and the symmetrized additive Cauchy equation

(1.9) f(xy) + f(yx) = 2f(x) + 2f(y) x, y ∈ G,

play important roles in finding the solutions of the functional equation (1.1).
The complex-valued solutions, where G is a semigroup, of (1.5), (1.8), and
(1.9) were studied by Stetkær in [16], [15, Chapter 4], and [15, Chapter 2],
respectively, while the complex-valued solutions, where G is a possibly non-
abelian group or monoid, of (1.6) and (1.7) were obtained by Fadli, Zeglami
and Kabbaj in [5] and [6], respectively. General results about similar scalar
functional equations on abelian groups are summarized in the monograph by
Aczél and Dhombres [1] that contains many references.

Notation. Throughout this paper we work in the following framework
and with the following notation and terminology. We use it without explicit
mentioning. G is a group that need not be abelian with neutral element e. Let
id : G → G denote the identity map, and σ : G → G a homomorphism of G
such that σ ◦ σ = id. We let M2(C) the algebra of all complex 2× 2 matrices,
I its identity matrix and GL2(C) the group of its invertible matrices. We use
the notation A(G) for the vector space of all additive maps from G to C, and
put A±(G) := {a ∈ A(G) : a ◦ σ = ±a}.

ByN (G, σ) we mean the set of the solutions θ : G→ C of the homogeneous
equation, namely

θ(xy)− θ(σ(x)y) = 0, x, y ∈ G.

Let S be a semigroup and X be a groupoid. A function f : S → X is
multiplicative on S if f(xy) = f(x)f(y) for all x, y ∈ S. A character of G is a
multiplicative function from G into C∗. A function f : S → X is abelian, if

f(xπ(1)xπ(2) · · ·xπ(k)) = f(x1x2 · · ·xk),
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for all x1, x2, · · · , xk ∈ S, all permutations π of k elements and all k = 2, 3, · · · .
Any abelian function f is central, meaning f(xy) = f(yx) for all x, y ∈ S.

2. Auxiliary results

The following lemma presents some results that are essential for the proof
of our first main result (Theorem 5.1).

Lemma 2.1. If the pair X,Z : G→ C satisfies the functional equation

(2.1) X(xy) = X(x) +X(y) + (γ(x)− 1)Z(y) + (γ(y)− 1)Z(x), x, y ∈ G

where γ : G → C is a multiplicative function such that γ 6= 1, then X and Z
are abelian functions.

Proof. For all x, y, z ∈ G we have

X((xy)z) = X(xy) +X(z) + (γ(xy)− 1)Z(z) + (γ(z)− 1)Z(xy)

= X(x) +X(y) +X(z) + (γ(x)− 1)Z(y) + (γ(y)− 1)Z(x)

+ (γ(xy)− 1)Z(z) + (γ(z)− 1)Z(xy),

and

X(x(yz)) = X(x) +X(yz) + (γ(x)− 1)Z(yz) + (γ(yz)− 1)Z(x)

= X(x) +X(y) +X(z) + (γ(y)− 1)Z(z) + (γ(z)− 1)Z(y)

+ (γ(x)− 1)Z(yz) + (γ(yz)− 1)Z(x).

Subtracting the two previous identities we get

0 = (γ(x)− 1)[Z(y)− Z(yz)] + (γ(y)− 1)[Z(x)− Z(z)]

+ (γ(z)− 1)[Z(xy)− Z(y)] + (γ(xy)− 1)Z(z)

− (γ(yz)− 1)Z(x),(2.2)

for all x, y, z ∈ G. Putting x = z in (2.2) we obtain

(2.3) (γ(z)− 1)[Z(zy)− Z(yz)] = 0 for all y, z ∈ G.
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Let z0 ∈ G first satisfy that γ(z0) 6= 1, then we get by (2.3) that

Z(z0y) = Z(yz0) for all y ∈ G.

Let z0 ∈ G next satisfy that γ(z0) = 1. Then the identity (2.2) gives

0 = (γ(x)− 1)[Z(y)− Z(yz0)] + (γ(y)− 1)[Z(x)− Z(z0)]

+ (γ(xy)− 1)Z(z0)− (γ(yz0)− 1)Z(x),

which implies after some computations that

(γ(x)− 1)Z(yz0) = (γ(x)− 1)Z(y) + γ(y)(γ(x)− 1)Z(z0).

Since γ 6= 1, then we can deduce easily that

(2.4) Z(yz0) = Z(y) + γ(y)Z(z0).

If we put x = z0 in (2.2) we obtain

(γ(z)− 1)Z(z0y) = (γ(z)− 1)Z(y) + γ(y)(γ(z)− 1)Z(z0).

Since γ 6= 1 we get

(2.5) Z(z0y) = Z(y) + γ(y)Z(z0) for all y ∈ G.

Thus, by (2.4) and (2.5), we have also Z(z0y) = Z(yz0) for all y ∈ G. Therefore
we get

Z(zy) = Z(yz) for all y, z ∈ G.

Next, we show that X is abelian. Indeed, making the substitutions (x, yz) and
(x, zy) in (2.1), we get respectively

X(xyz) = X(x) +X(yz) + (γ(x)− 1)Z(yz) + (γ(yz)− 1)Z(x),

X(xzy) = X(x) +X(zy) + (γ(x)− 1)Z(zy) + (γ(zy)− 1)Z(x).

Subtracting the two previous identities, we get

X(xyz)−X(xzy) = [X(yz)−X(zy)] + (γ(x)− 1)[Z(yz)− Z(zy)].

Changing x and y in (2.1) we see that the function X is central. Since X
and Z are central functions, then X is abelian. From the equation (2.1) and
since γ 6= 1 we can prove that Z is also abelian. Hence we get the claimed
result. �
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3. A connection to the sine addition law

The following lemma lists pertinent basic properties of any solution
Φ: G→M2(C) of (1.1) satisfying Φ(e) = I.

Lemma 3.1. Let G be a group. If Φ: G → M2(C) satisfies (1.1) and
Φ(e) = I, then
(1) Φ ◦ σ = Φ.
(2) Φ(x)Φ(y) = Φ(y)Φ(x) for all x, y ∈ G.
(3) For any invertible matrix P ∈M2(C) the function x 7→ PΦ(x)P−1,

x ∈ G is also a solution of (1.1).

Proof. (1) Setting x = e in (1.1) gives us

Φ(y) + Φ(σ(y)) = 2Φ(y), y ∈ G,

which implies that Φ(σ(y)) = Φ(y) for all y ∈ G.
(2) Interchanging x and y in (1.1) we get

Φ(yx) + Φ(σ(x)y)

2
= Φ(y)Φ(x), x, y ∈ G,

and then replacing y by σ(y) in the last equation, we obtain by using (1) that

Φ(σ(y)x) + Φ(xy)

2
= Φ(y)Φ(x), x, y ∈ G.

So Φ(x)Φ(y) = Φ(y)Φ(x) for all x, y ∈ G.
(3) can be trivially shown. �

Lemma 3.2 below derives an interesting connection between (1.1) and the
sine addition matrix functional equation, viz.

Lemma 3.2. Let Φ: G → M2(C) be a solution of the (1.1) such that
Φ(e) = I. Then Φ satisfies the sine addition matrix functional equation

Φa(xy) = Φa(x)Φ(y) + Φa(y)Φ(x), a, x, y ∈ G,

where Φa(x) := Φ(ax)− Φ(a)Φ(x).
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Proof. Making the substitutions (ax, y), (σ(y)a, x) and (a, xy) in (1.1)
we get respectively

Φ(axy) + Φ(σ(y)ax) = 2Φ(ax)Φ(y),

Φ(σ(y)ax) + Φ(σ(xy)a) = 2Φ(σ(y)a)Φ(x)

= 2[2Φ(a)Φ(y)− Φ(ay)]Φ(x)

= 4Φ(a)Φ(y)Φ(x)− 2Φ(ay)Φ(x),

Φ(axy) + Φ(σ(xy)a) = 2Φ(a)Φ(xy).

Subtracting the middle identity from the sum of the two others we get after
some simplifications that

Φ(axy)− Φ(a)Φ(xy) = [Φ(ax)− Φ(a)Φ(x)]Φ(y)

+ [Φ(ay)− Φ(a)Φ(y)]Φ(x)

+ Φ(a)[Φ(x)Φ(y)− Φ(y)Φ(x)].

Using Lemma 3.1 (2) we get

Φ(axy)− Φ(a)Φ(xy) = [Φ(ax)− Φ(a)Φ(x)]Φ(y) + [Φ(ay)− Φ(a)Φ(y)]Φ(x),

which, with the notation Φa(x) := Φ(ax) − Φ(a)Φ(x), shows that the func-
tional equation (1.1) is connected with the sine addition matrix functional
equation as follows:

Φa(xy) = Φa(x)Φ(y) + Φa(y)Φ(x) for all a, x, y ∈ G. �

4. Simultaneous triangularization

To set the stage let Φ: G→M2(C) be a solution of the functional equation
(1.1), namely

Φ(xy) + Φ(σ(y)x)

2
= Φ(x)Φ(y), x, y ∈ G.
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Suppose that Φ(e) = I. In view of Lemma 3.1 (2) the elements of the set
{Φ(x), x ∈ G} commute pairwise. Then it is easy to verify after some com-
putations that the elements of the following bigger set E = {Φ(x),Φa(x) |
x, a ∈ G} also commute pairwise, so by linear algebra all elements Φ(x),Φa(x)
of E can be brought into upper triangular form. Therefore there exist six func-
tions φ1, φ2, ψ1, l1,a, l2,a, l3,a : G→ C, and a matrix P ∈ GL2(C) such that

C(x) := P−1Φ(x)P =

(
φ1(x) ψ1(x)

0 φ2(x)

)
for all x ∈ G,

and

P−1Φa(x)P =

(
l1,a(x) l3,a(x)

0 l2,a(x)

)
for all a, x ∈ G.

According to Lemma 3.1 the function x 7→ C(x) = P−1Φ(x)P, x ∈ G
is also a solution of (1.1), so its components satisfy the following system of
functional equations

(4.1)


φ1(xy) + φ1(σ(y)x) = 2φ1(x)φ1(y),

φ2(xy) + φ2(σ(y)x) = 2φ2(x)φ2(y),

ψ1(xy) + ψ1(σ(y)x) = 2φ1(x)ψ1(y) + 2ψ1(x)φ2(y).

Likewise, the component functions of Φa, a ∈ G satisfy the following system
of equations

(4.2)


l1,a(xy) = l1,a(x)φ1(y) + l1,a(y)φ1(x),

l2,a(xy) = l2,a(x)φ2(y) + l2,a(y)φ2(x),

l3,a(xy) = l1,a(x)ψ1(y) + l3,a(x)φ2(y)

+l1,a(y)ψ1(x) + l3,a(y)φ2(x).

By the definition of Φa, the functions l1,a, l2,a and l3,a can be expressed in
terms of φ1, φ2 and ψ1 as follows:

l1,a(x) = φ1(ax)− φ1(a)φ1(x),

l2,a(x) = φ2(ax)− φ2(a)φ2(x),

l3,a(x) = ψ1(ax)− φ1(a)ψ1(x)− ψ1(a)φ2(x), a, x ∈ G.(4.3)

Furthermore, if φ1 6= φ2 then there is x0 ∈ G such that Φ(x0) is diagonalizable.
Since Φ(x)Φ(x0) = Φ(x0)Φ(x) for all x ∈ G then the elements of the set
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{Φ(x) | x ∈ G} can be simultaneously diagonalized and so we may assume
that ψ1 = 0. Thus the system (4.2) becomes as follows:

l1,a(xy) = l1,a(x)φ1(y) + l1,a(y)φ1(x),

l2,a(xy) = l2,a(x)φ2(y) + l2,a(y)φ2(x),

l3,a(xy) = l3,a(x)φ2(y) + l3,a(y)φ2(x).

Otherwise we have φ := φ1 = φ2 and l0,a := l1,a = l2,a where a ∈ G. Then by
(4.2) combined with (4.3) we get:

(4.4)

{
l0,a(xy) = l0,a(x)φ(y) + l0,a(y)φ(x),

l3,a(xy) = l0,a(x)ψ1(y) + l3,a(x)φ(y) + l0,a(y)ψ1(x) + l3,a(y)φ(x),

for all a, x, y ∈ G.

5. Main results

Putting x = y = e in (1.1) we get Φ(e)2 = Φ(e), from which we see that
Φ(e) : C2 → C2 is a projection, so there are only the following three cases:
Φ(e) = 0, Φ(e) = I or Φ(e) is a 1-dimensional projection.

The first case implies that

Φ(x) = Φ(x)Φ(e) = 0 for all x ∈ G.

So from now on we are going to focus only on the other two cases.
The first main theorem of the present paper concerns the second case: it

highlights the form of the solutions Φ of the matrix functional equation (1.1)
for which Φ(e) = I. It reads as follows:

Theorem 5.1. The solutions Φ: G → M2(C) of the matrix functional
equation (1.1) satisfying Φ(e) = I are the matrix valued functions of the three
forms below in which P ranges over GL2(C):
(1)

(5.1) Φ = P

χ1 + χ1 ◦ σ
2

0

0
χ2 + χ2 ◦ σ

2

P−1,

where χ1 and χ2 are characters of G.
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(2)

(5.2) Φ = P

χ+ χ ◦ σ
2

χ+ χ ◦ σ
2

a+ +
χ− χ ◦ σ

2
a−

0
χ+ χ ◦ σ

2

P−1,

where χ is a character of G such that χ 6= χ ◦ σ and a± ∈ A±(G).
(3)

(5.3) Φ = χP

(
1 S + ψ
0 1

)
P−1,

where χ is a character of G such that χ = χ ◦ σ, ψ is a solution of the
symmetrized additive Cauchy equation (1.9) such that ψ ∈ N (G, σ) and
S : G→ C is a map of the form S(x) = B(x, x), x ∈ G, where B : G×G→
C is a bi-additive function of G such that B(x, σ(y)) = −B(y, x).

Proof. It is easy to verify with simple computations that all formulas
above for Φ define solutions of (1.1). So it remains to show the other direction.
So we assume that Φ: G → M2(C) is a solution of (1.1) such that Φ(e) = I.
With the notation from Section 4, we have two cases:

Case 1: Suppose that φ1 6= φ2. Since there is x0 ∈ G such that Φ(x0) is
diagonalizable and Φ(x)Φ(x0) = Φ(x0)Φ(x) for all x ∈ G then the elements of
the set {Φ(x) | x ∈ G} can be simultaneously diagonalized. So we may assume
that ψ1 = 0. According to (4.1) the functions φ1 and φ2 are solutions of the
variant of d’Alembert’s functional equation (1.5) with φ1(e) = φ2(e) = 1, so
by [16, Theorem 2.1] there exist characters χ1 and χ2 of G such that

φ1 =
χ1 + χ1 ◦ σ

2
and φ2 =

χ2 + χ2 ◦ σ
2

.

So we are in case (1) of our statement.
Case 2: Suppose that φ1 = φ2 = φ, then for every a ∈ G we have l1,a =

l2,a =: l0,a. Since φ is a solution of (1.5), then from [16, Theorem 2.1] there
exists a character χ of G such that

φ =
χ+ χ ◦ σ

2
.

Now, we are going to distinguish between two subcases:
Subcase 2.1: If χ = χ ◦ σ, then we get φ = χ. From (4.1) ψ1 is a solution

of the following equation:

(5.4) ψ1(xy) + ψ1(σ(y)x) = 2χ(x)ψ1(y) + 2ψ1(x)χ(y), x, y ∈ G.
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Dividing (5.4) by χ(x)χ(y) and putting Γ := ψ1/χ, then we see that Γ is a
solution of the variant of the quadratic functional equation

Γ(xy) + Γ(σ(y)x) = 2Γ(x) + 2Γ(y), x, y ∈ G,

which shows, according to [6, Theorem 5.4], that

Γ(x) = B(x, x) + ψ(x), x ∈ G,

where B : G × G → C is a bi-additive function of G such that B(x, σ(y)) =
−B(y, x) for all x, y ∈ G, and ψ is a solution of the symmetrized additive
Cauchy equation (1.9) such that ψ ∈ N (G, σ). Hence we get

ψ1(x) = χ(x)(B(x, x) + ψ(x)), x ∈ G.

So we are in case (3) of our statement.
Subcase 2.2: Here χ 6= χ ◦ σ. We will start by showing that Φ is abelian.

According to (4.4) (l0,a, φ), a ∈ G is a solution of the sine addition law, then
from [15, Theorem 4.1] there exist αa ∈ C∗ such that

l0,a =
χ− χ ◦ σ

2αa
, a ∈ G.

Replacing φ and l0,a into (4.4), then we get

l3,a(xy) = χ(x)H(y) +H(x)χ(y) + χ ◦ σ(x)L(y)(5.5)

+ L(x)χ ◦ σ(y), x, y ∈ G,

where

H(x) =
l3,a(x)

2
+
ψ1(x)

2αa
and L(x) =

l3,a(x)

2
− ψ1(x)

2αa
, a, x ∈ G.

Dividing (5.5) by χ(x)χ(y) gives us

(5.6) X(xy) = Y (x) + Y (y) + γ(x)Z(y) + γ(y)Z(x), x, y ∈ G,

where

X :=
l3,a
χ
, Y :=

H

χ
, Z :=

L

χ
, and γ :=

χ ◦ σ
χ

.
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Since Φ(e) = I, then we have φ(e) = 1 and ψ1(e) = 0 which imply that

Y (e) =
H(e)

χ(e)
= H(e) =

l3,a(e)

2
+
ψ1(e)

2αa
= 0,

because by (4.3)

l3,a(e) = ψ1(a)− φ(a)ψ1(e)− ψ1(a)φ(e) = 0.

Similarly we can deduce easily that Z(e) = 0. Putting y = e in (5.6), we
obtain

X(x) = Y (x) + Z(x) for all x ∈ G.

So the functional equation (5.6) becomes

X(xy) = X(x) +X(y) + (γ(x)− 1)Z(y) + (γ(y)− 1)Z(x), x, y ∈ G,

where γ 6= 1, because χ 6= χ ◦ σ. From Lemma 2.1 we get that X and Z are
abelian. Then so are l3,a = χX and L = χZ. From

L =
l3,a
2
− ψ1

2αa
,

we infer that ψ1 is also abelian. Therefore

Φ = PCP−1 = P

(
φ ψ1

0 φ

)
P−1

is abelian.
Furthermore, since χ 6= χ ◦ σ, there exists x0 ∈ G such that

χ(x0) − χ ◦ σ(x0) 6= 0. As φ(x20) − φ(σ(x0)x0) are the diagonal elements of
C(x20)− C(σ(x0)x0), and

φ(x20)− φ(σ(x0)x0) =
χ(x20) + χ ◦ σ(x20)

2
− χ(σ(x0)x0) + χ ◦ σ(σ(x0)x0)

2

=
χ(x0)2 + χ ◦ σ(x0)2

2
− χ(x0)χ ◦ σ(x0)

=
(χ(x0)− χ ◦ σ(x0))2

2
6= 0,

then the matrix Ω := C(x20) − C(σ(x0)x0) is invertible. Since the matrix
1
2(C(x20) − C(σ(x0)x0))−1 is invertible, it has a square root K, which is
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a polynomial in Ω (see, e.g., [4, Chapter VII, Section 1]). Now C(x) com-
mutes with Ω, so C(x) commutes with any polynomial in Ω, and in particular
it commutes with K. Since C(x) for any x ∈ G is an upper triangular matrix,
so is Ω. It follows that K, being a polynomial in Ω, is also upper triangular.
In a similar fashion as in the case of an abelian topological group ([13]), we
introduce another function, this time N , as

N(x) := C(x0x)− C(σ(x0)x), x ∈ G,

in order that the function M , defined by

M(x) := C(x) +KN(x), x ∈ G,

satisfies M(xy) = M(x)M(y). Indeed, as in the computations on pp. 220-221
of [1] we can prove that

M(x)M(y)−M(xy)

= [C(xy)− C(σ(y)x)]
(
K2[C(x20)− C(σ(x0)x0)]− 1

2
I
)

= 0,

which means that the function M is multiplicative. Moreover, using Lemma
3.1, we get

(5.7) C(x) =
M(x) +M ◦ σ(x)

2
, x ∈ G.

Since the matrix-valued functions C(x), K and N(x), x ∈ G are upper tri-
angular, where the diagonal elements of each function are equal, then by

using the definition of M we may put M =

(
m m12

0 m

)
. From (5.7) we get

m + m ◦ σ = χ + χ ◦ σ, which implies by the linear independence of group
homomorphisms from G into C∗ that

m = χ or m = χ ◦ σ.

As it is possible to exchange χ and χ ◦ σ then we may assume that m = χ.
Since M is a multiplicative function, then we get

χ(xy)

(
1

m12

χ
(xy)

0 1

)
= M(xy) = M(x)M(y)

= χ(x)χ(y)

(
1

m12

χ
(x)

0 1

)(
1

m12

χ
(y)

0 1

)
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= χ(xy)

(
1

m12

χ
(x) +

m12

χ
(y)

0 1

)
.

Hence, a := m12/χ is an additive function. By using (5.7) we obtain

ψ1(x) =
χ(x)a(x) + χ ◦ σ(x)a ◦ σ(x)

2
,

which is equivalent to

ψ1(x) =
χ(x) + χ ◦ σ(x)

2
a+(x) +

χ(x)− χ ◦ σ(x)

2
a−(x), x ∈ G,

where a± := a±a◦σ
2 ∈ A±(G). So we are in case (2) of our statement, which

completes the proof. �

Remark 5.2. If we assume that G is a topological group and that the
function Φ: G → M2(C) is a continuous solution of (1.1) then the functions
χ, χ1, χ2, a

+, a−, S and ψ in Theorem 5.1 are continuous. Indeed, using [15,
Theorem 3.18 (d)], it is easy to see that the characters in Theorem 5.1 are
continuous. For the case (3) of Theorem 5.1, we have that g1 := S + ψ by
assumption is continuous. Hence so is g2(x) := g1(x2), x ∈ G. But g2− 2g1 =
2S, so S is continuous. ψ is also continuous, because ψ = g1 − S. If we are in
case (2) of Theorem 5.1, we can prove that a+ and a− are continuous. In fact,
we have x 7→ N(x) = C(x0x) − C(σ(x0)x) and N ◦ σ = −N are continuous.
These yield that M = C + KN and M ◦ σ = C ◦ σ + N ◦ σ = C − KN
are continuous. Since a = m12/χ, we can deduce easily that a+ and a− are
continuous.

The second main theorem of the present paper concerns the third case:
It describes the complete solutions Φ of (1.1) when Φ(e) is a 1-dimensional
projection. It reads as follows:

Theorem 5.3. The solutions Φ: G → M2(C) of (1.1), such that Φ(e) is
a 1-dimensional projection, are the matrix valued functions of the two forms
below in which P ∈ GL2(C):

Φ = P

 χ+ χ ◦ σ
2

0

β
χ− χ ◦ σ

2
0

P−1 if χ 6= χ ◦ σ,(5.8)

Φ = χP

(
1 0
a− 0

)
P−1 if χ = χ ◦ σ,(5.9)

where χ is a character, β ∈ C and a− ∈ A−(G).
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Proof. Let Φ: G → M2(C) be a solution of (1.1) such that Φ(e) is a 1-
dimensional projection. Then there exists P ∈ GL2(C) such that P−1Φ(e)P =(

1 0
0 0

)
. We write

(
φ1 φ3
φ2 φ4

)
:= P−1ΦP. If we put y = e in (1.1), then we get

that

(5.10) Φ(x) = Φ(x)Φ(e), x ∈ G.

From (5.10) it is easy to show that φ3 = φ4 = 0, so that we have Φ =

P

(
φ1 0
φ2 0

)
P−1. Then simple computations show that φ1 and φ2 satisfy the

following system of functional equations

(5.11)

{
φ1(xy) + φ1(σ(y)x) = 2φ1(x)φ1(y),

φ2(xy) + φ2(σ(y)x) = 2φ2(x)φ1(y).

Thus from [5, Theorem 3.6] there exists a character χ of G such that

φ1 =
χ+ χ ◦ σ

2
and

{
φ2 = α

χ+ χ ◦ σ
2

+ β
χ− χ ◦ σ

2
, if χ 6= χ ◦ σ,

φ2 = (α+ a−)χ, if χ = χ ◦ σ,

where α, β ∈ C and a− ∈ A−(G). Since φ2(e) = 0, then we get

φ1 =
χ+ χ ◦ σ

2
and

{
φ2 = β

χ− χ ◦ σ
2

, if χ 6= χ ◦ σ,
φ2 = a−χ, if χ = χ ◦ σ.

And so we get the desired result. Conversely, it is easy to verify that any
function Φ of the form (5.8) or (5.9) is a solution of (1.1) such that Φ(e) is a
1-dimensional projection. �

Remark 5.4. It is known that the scalar valued solutions Φ: S → C of
the variant of d’Alembert’s functional equation (1.5), where S is a semigroup,
are always abelian [16, Theorem 2.1]. While here, we see that the solutions
Φ: G → M2(C) of (1.1) presented in case (3) of Theorem 5.1 are not always
central, and therefore not abelian as shown in Example 5.5.

Example 5.5. For non-abelian continuous solutions of the equation (1.1)
on a topological group, we consider the 3-dimensional Heisenberg group

G = H3(R) :=


1 x z

0 1 y
0 0 1

 : x, y, z ∈ R

 ,
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and we take the identity map id : G→ G as the involutive automorphism σ in
(1.1). It is known that the continuous characters on H3(R) are the functions1 x z

0 1 y
0 0 1

→ eax+by, x, y, z ∈ R,

where a and b range over C (see e.g., [15, Example 3.14]). We consider the
functions of the form

Φ

1 x z
0 1 y
0 0 1

 = eax+byP

(
1 c(2z − xy)
0 1

)
P−1, x, y, z ∈ R,

where a, b, c ∈ C, c 6= 0, and P ∈ GL2(C). It is elementary to check that these
functions are non-abelian solutions of (1.1) on H3(R) in which σ = id because
the complex-valued function1 x z

0 1 y
0 0 1

 7→ 2z − xy,

is a solution of the symmetrized additive Cauchy equation (1.9) on H3(R) and
is not even central (see [15, Example 12.4]).

6. Applications

By applying Theorems 5.1 and 5.3 we describe the matrix valued solutions
of the symmetrized multiplicative Cauchy equation on groups.

Corollary 6.1. The non-zero solutions Φ: G → M2(C) of the matrix
functional equation

(6.1) Φ(xy) + Φ(yx) = 2Φ(x)Φ(y), x, y ∈ G,

are the matrix valued functions of the three forms below in which P ranges
over GL2(C):

Φ = P

(
χ1 0
0 χ2

)
P−1, Φ = χP

(
1 ψ
0 1

)
P−1 or Φ = χP

(
1 0
0 0

)
P−1,
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where χ1, χ2, χ are characters of G, and ψ is a solution of the symmetrized
additive Cauchy equation (1.9).

Proof. The proof follows from Theorems 5.1 and 5.3. �

As another application of our results we give, in the following corollary, a
complete description of the solutions of the equation (1.3), that is

Φ(xy) + Φ(σ(y)x)

2
= Φ(x) + Φ(y) + Φ(x)Φ(y), x, y ∈ G,

where the unknown function takes its values in the complex 2 × 2 matrices.
Setting x = y = e in (1.3), we get Φ2(e) = −Φ(e), which means that −Φ(e)
(or equivalently I + Φ(e)) is a projection.

Corollary 6.2. The solutions Φ: G→M2(C) of (1.3) are the functions
of the following forms:
(1) If Φ(e) = −I, then Φ = −I.
(2) If Φ(e) = 0, then Φ has one of the following three forms below in which

P ranges over GL2(C):

Φ = P

χ1 + χ1 ◦ σ
2

− 1 0

0
χ2 + χ2 ◦ σ

2
− 1

P−1,

where χ1 and χ2 are characters of G.

Φ = P

χ+ χ ◦ σ
2

− 1
χ+ χ ◦ σ

2
a+ +

χ− χ ◦ σ
2

a−

0
χ+ χ ◦ σ

2
− 1

P−1,

where χ is a character of G such that χ 6= χ ◦ σ and a± ∈ A±(G).

Φ = P

(
χ− 1 χ(S + ψ)

0 χ− 1

)
P−1,

where χ is a character of G such that χ = χ ◦ σ, ψ is a solution of the
symmetrized additive Cauchy equation (1.9)such that ψ ∈ N (G, σ) and
S : G→ C is a map of the form S(x) = B(x, x), x ∈ G, where B : G×G→
C is a bi-additive function of G such that B(x, σ(y)) = −B(y, x).
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(3) If I+Φ(e) is a 1-dimensional projection, then Φ has one of the two forms:

Φ = P

χ+ χ ◦ σ
2

− 1 0

β
χ− χ ◦ σ

2
−1

P−1, if χ 6= χ ◦ σ,

Φ = P

(
χ− 1 0
χa− −1

)
P−1, if χ = χ ◦ σ,

where χ is a character of G, P ∈ GL2(C), β ∈ C and a− ∈ A−(G).

Proof. Let Φ: G→M2(C) be a solution of (1.3). If we add the identity
matrix in the two sides of (1.3), we get that

Ψ(xy) + Ψ(σ(y)x)

2
= Ψ(x)Ψ(y), x, y ∈ G,

where Ψ := Φ+I. So, by applying Theorems 5.1 and 5.3 we obtain the claimed
result.

Conversely, simple computations show that the above forms of Φ are so-
lutions of (1.3). �

Now, we derive formulas for the continuous solutions of (1.1) on compact
groups.

Corollary 6.3. The non-zero continuous solutions Φ: G → M2(C) of
(1.1), on a compact group, are the functions of the following two forms:

Φ = P

χ1 + χ1 ◦ σ
2

0

0
χ2 + χ2 ◦ σ

2

P−1,

Φ = P

 χ+ χ ◦ σ
2

0

β
χ− χ ◦ σ

2
0

P−1,

where P ∈ GL2(C), χ, χ1, χ2 are continuous characters of G and β ∈ C.

Proof. Let Φ: G → M2(C) be a non-zero continuous solution of (1.1)
on a compact group. It is easy to see that the functions a−, χ in Theorem
5.3 are continuous and in view of Remark 5.2 the functions a+, a−, S, ψ and
the characters in Theorem 5.1 are also continuous. Hence a+, a− and S are
bounded becauseG is compact. So by [15, Exercise 2.5] we deduce that a± ≡ 0.



A variant of d’Alembert’s matrix functional equation 39

We may use the same argument as in [15, Exercise 2.5] to show that S ≡
0. From [15, Proposition 2.17] and [15, Corollary 12.6] we can prove that
any continuous solution of (1.9) on a compact group will vanish. So the first
direction deduces easily from Theorems 5.1 and 5.3.

Conversely, it is elementary to show that the above forms of Φ are solutions
of (1.1). �

Remark 6.4. Corollary 6.3 above implies that any continuous solution
Φ: G→M2(C) of (1.1) on a compact group is abelian.

Remark 6.5. On a compact group if Φ: G → M2(C) is a continuous
solution of (6.1), then it is a multiplicative function. Example 5.5 shows that
this result is not generally true in any group.

The following corollary writes down the non-zero solutions of the matrix
functional equation

(6.2)
Φ(xσ(y)) + Φ(yx)

2
= Φ(x)Φ(y), x, y ∈ G.

Corollary 6.6. The non-zero solutions Φ: G → M2(C) of (6.2)are the
functions of the following five forms (5.1), (5.2), (5.3), (5.8) and (5.9).

Proof. Putting x = y = e in (6.2), we get Φ(e)2 = Φ(e) from which we
see that Φ(e) = 0, Φ(e) = I or Φ(e) is a 1-dimensional projection. If Φ(e) = 0
then Φ ≡ 0. This case is excluded by assumption.

Suppose now that Φ(e) = I. Putting x = e in (6.2) then we get

Φ(σ(y)) + Φ(y) = 2Φ(y) for all y ∈ G

which implies that Φ ◦ σ = Φ. Replacing y by σ(y) in (6.2) we obtain the
equation (1.1). So the desired result can be deduced by using Theorem 5.1.

Finally, suppose that Φ(e) is a 1-dimensional projection and there exists

P ∈ GL2(C) such that P−1ΦP =:

(
φ1 φ3
φ2 φ4

)
. We can follow the same proce-

dure as in the proof of Theorem 5.3 to show that φ3 = φ4 = 0, and φ1, φ2
satisfy the following system of equations

(6.3)

{
φ1(xσ(y)) + φ1(yx) = 2φ1(x)φ1(y),

φ2(xσ(y)) + φ2(yx) = 2φ2(x)φ1(y), x, y ∈ G.

Since φ1(e) = 1 (otherwise we find φ1 = φ2 = 0 i.e. Φ ≡ 0 and this case does
not occur here) then we obtain by putting x = e in (6.3) that φ1 ◦ σ = φ1.
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And so if we replace y by σ(y) in (6.3), then we get (5.11). Consequently we
can deduce the desired result by using the proof of Theorem 5.3. Conversely
the formulas (5.1), (5.2), (5.3), (5.8) and (5.9) define solutions of (6.2). �

7. Solution of Eq. (1.4)

As another main result of this paper, we solve the matrix functional equa-
tion

(7.1)
Φ(xy)− Φ(σ(y)x)

2
= Φ(x)Φ(y), x, y ∈M,

where M is a monoid, the function Φ to be determined takes its values in
M2(C), and σ : M →M is a homomorphism such that σ ◦ σ = id.

Putting x = y = e in (7.1), we get that Φ(e) is nilpotent with index less
than 2, then we have only the two possibilities: Φ(e) = 0 or Φ(e) is a nilpotent
matrix with index 2.

The following lemma will be useful to find the solutions of (7.1) satisfying
Φ(e) = 0.

Lemma 7.1. Let M be a monoid. If Φ: M → M2(C) satisfies (7.1) such
that Φ(e) = 0, then
(1) Φ ◦ σ = Φ.
(2) Φ(x)Φ(y) = −Φ(y)Φ(x) for all x, y ∈M .
(3) Φ(x)2 = 0 for all x ∈M .

Proof. (1) When we set x = e in (7.1), then we get Φ ◦ σ = Φ.
(2) Interchanging x and y in (7.1) gives us

Φ(yx)− Φ(σ(x)y)

2
= Φ(y)Φ(x), x, y ∈M,

and then replacing y by σ(y) and using (1), thus we get (2).
(3) Putting x = y in (2) we obtain easily (3). �

In the following theorem we express the solutions of (7.1) in terms of the
complex-valued solutions of the variant of the homogeneous equation, namely

(7.2) θ(xy)− θ(σ(y)x) = 0, x, y ∈M.
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Theorem 7.2. The solutions Φ: M → M2(C) of the matrix functional
equation (7.1), are the matrix valued functions of the form

(7.3) Φ = P

(
0 θ
0 0

)
P−1,

where P ranges over GL2(C) and θ is a solution of (7.2).

Proof. It is easy to prove with simple computations that the above for-
mula for Φ defines solutions of (7.1). So it remains to show the other direction.
For that we are going to distinguish between two cases:

Case 1: If Φ(e) = 0, then we can prove that each commutator of the form
Φ(x)Φ(y)−Φ(y)Φ(x), x, y ∈M is nilpotent. Indeed, by using Lemma 7.1 (2)
and (3), we get

(Φ(x)Φ(y)− Φ(y)Φ(x))2 = 0 for all x, y ∈M.

So from [10, Theorem 1.3.2] the matrices Φ(x), x ∈M can be simultaneously
trigonalized, thus there exist P ∈ GL2(C) and a function ψ : M → C such
that

P−1Φ(x)P =

(
0 ψ(x)
0 0

)
, x ∈M.

We can prove after some computations that the function ψ is a solution of
(7.2). And so we get the desired form.

Case 2: If Φ(e) is a nilpotent matrix with index 2. So up to similarity we

may assume that Φ(e) has the form Φ(e) =

(
0 1
0 0

)
. Writing Φ =:

(
φ1 φ3
φ2 φ4

)
and so putting y = e in (7.1) we get Φ(x)Φ(e) = 0 for all x ∈M , which implies

that φ1 = φ2 = 0. So Φ =

(
0 φ3
0 φ4

)
and the functions φ3 and φ4 satisfy the

following system of equations{
φ3(xy)− φ3(σ(y)x) = 2φ3(x)φ4(y),

φ4(xy)− φ4(σ(y)x) = 2φ4(x)φ4(y), x, y ∈M.

From [11, Theorem 3.1] we get that φ4 = 0 and so φ3 is a solution of (7.2).
Finally we have the desired form. �

By the same procedure as in the proof of Theorem 7.2 we can prove the
following result
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Remark 7.3. The solutions Φ: M →M2(C) of the following matrix func-
tional equation

Φ(xσ(y))− Φ(yx)

2
= Φ(x)Φ(y), x, y ∈M,

are the matrix valued functions of the form (7.3).
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