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FAMILIES OF COMMUTING FORMAL POWER SERIES
AND FORMAL FUNCTIONAL EQUATIONS

Harald Fripertinger , Ludwig Reich

Dedicated to Zygfryd Kominek on the occasion of his 75th birthday

Abstract. In this paper we describe families of commuting invertible formal
power series in one indeterminate over C, using the method of formal functional
equations. We give a characterization of such families where the set of multipli-
ers (first coefficients) σ of its members F (x) = σx+ . . . is infinite, in particular
of such families which are maximal with respect to inclusion, so called fami-
lies of type I. The description of these families is based on Aczél–Jabotinsky
differential equations, iteration groups, and on some results on normal forms
of invertible series with respect to conjugation.

1. Introduction: Basic concepts and formulation
of the main problem

In this paper we want to describe families of commuting invertible formal
power series in one indeterminate over C, using the method of formal func-
tional equations. We give a characterization of such families where the set of
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multipliers (first coefficients) σ of its members F (x) = σx + . . . is infinite,
in particular of such families which are maximal with respect to inclusion, so
called families of type I. The description of these families is based on Aczél–
Jabotinsky differential equations, iteration groups, and on some results on
normal forms of invertible series with respect to conjugation. The study of
families of commuting formal series started with [21].

The method of formal functional equations was so far applied to the con-
struction of iteration groups of formal series and for solving the (associated)
system of cocycle equations (see [3, 4, 5, 6, 7]). The basic idea of this method
is to replace the coefficient functions by certain polynomials in one ore more
variables.

The situation of maximal families of commuting power series where the set
of multipliers is finite, is technically more complicate and will be considered
in a separate paper, also using the method of formal functional equations.

Now we proceed by giving basic notations and results, in some places with
indications of proofs, for the convenience of the reader.

Let C[[x]] be the ring of formal power series in one indeterminate x over
C. For a detailed introduction to formal power series we refer the reader to
[1] and [8]. Together with addition + and multiplication · the set C[[x]] forms
a commutative ring. If F 6= 0, then the order of F (x) =

∑
n≥0 cnx

n ∈ C[[x]],
cn ∈ C, is defined as ord(F ) = min{n ≥ 0 | cn 6= 0}. Moreover, ord(0) = ∞.
According to the order topology in C[[x]], the series F,G ∈ C[[x]] are “close” if
ord(F − G) is “large”. For F,G ∈ C[[x]], F (x) =

∑
n≥0 cnx

n, ord(G) ≥ 1, the
composition ◦ of formal series is defined as

(F ◦G)(x) = F (G(x)) = lim
n→∞

n∑
ν=0

cν [G(x)]ν

which exists in the order topology. Substitution of a fixed G ∈ C[[x]] yields a
homomorphism C[[x]]→ C[[x]]. The composition of formal series is associative,
F ◦ (G ◦ H) = (F ◦ G) ◦ H, F,G,H ∈ C[[x]], ord(G), ord(H) ≥ 1. With
Γ = (Γ, ◦) we denote the group of invertible formal power series with respect
to composition, thus

Γ = {F ∈ C[[x]] | ord(F ) = 1} = {F ∈ C[[x]] | F (x) = c1x+ . . . , c1 6= 0}.

Let Γ1 be the subgroup of Γ with c1 = 1,

Γ1 = {F ∈ C[[x]] | F (x) = x+ c2x
2 + . . .}.

The group Γ is not abelian, e.g., for F (x) = −x and G(x) = x + x2 we have
(F ◦G)(x) = −x− x2 and (G ◦ F )(x) = −x+ x2, thus F ◦G 6= G ◦ F .
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Let C[[x, y]] := (C[[x]])[[y]] be the ring of formal power series in two in-
determinates over C, then C[[x, y]] = C[[y, x]]. An element of C[[x, y]] can be
written as

F (x, y) =
∑
ν,µ≥0

cνµx
νyµ =

∑
µ≥0

(∑
ν≥0

cνµx
ν
)
yµ.

We will also need the ring C[[x, y, z]] in three indeterminates, and use the fact
that (C[y])[[x]] < C[[x, y]].

Differentiation is a formal process in C[[x]]. Let F (x) =
∑
n≥0 cnx

n, then

d

dx
F (x) = F ′(x) =

∑
n≥1

ncnx
n−1 =

∑
n≥0

(n+ 1)cn+1x
n.

Differentiation satisfies the chain rule (F ◦G)′(x) = F ′(G(x)) ·G′(x).
Considering a family (F (t, x))t∈C of formal power series

F (t, x) =
∑
n≥0

cn(t)xn, t ∈ C,

where all the coefficient functions cn are holomorphic in a neighborhood U(0)
of 0, we define

∂

∂t
F (t, x) =

∑
n≥0

c′n(t)xn, t ∈ U(0).

In this situation the mixed chain rule

∂

∂t
F (G(t, x)) = F ′(G(t, x)) · ∂

∂t
G(t, x), t ∈ U(0),

holds true.
We also consider formal partial differentiation in C[[x, y]]. Each F (x, y) ∈

C[[x, y]] can be written as

F (x, y) =
∑
n≥0

Pn(y)xn ∈ (C[[y]])[[x]]

and

∂

∂y
F (x, y) =

∑
n≥0

P ′n(y)xn.
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Two formal power series F,G ∈ Γ are conjugate if there exists some S ∈ Γ
such that

G = S−1 ◦ F ◦ S.

Let E be the group of complex roots of 1. It is a subgroup of the multiplicative
group C∗.

Remark 1. Let F (x) = ρx + c2x
2 + . . . ∈ Γ, ρ 6∈ E . Then there exists

a unique series S ∈ Γ1 such that

(S−1 ◦ F ◦ S)(x) = ρx =: Lρ(x).

We say that F can be linearized, or F is linearizable.

Proof. We determine all solutions S ∈ Γ1 of Schröder’s equation

(S) F (S(x)) = S(ρx).

The left hand side can be expanded as

F (S(x)) = ρS(x) +
∑
n≥2

cn[S(x)]n

= ρx+ (ρs2 + c2)x2 + (ρs3 + 2c2s2ρ+ c3)x3 + . . .

= ρx+
∑
n≥2

(ρsn + pn(ρ, s2, . . . , sn−1, c2, . . . , cn))xn

with polynomials pn(t, u2,. . . ,un−1, v2, . . . , vn) ∈ C[t, u2, . . . , un−1, v2, . . . , vn],
n ≥ 2. The right hand side equals ρx+

∑
n≥2 snρ

nxn. Since ρ is not a complex
root of unity, ρn 6= ρ for all n ≥ 2, and comparison of coefficients yields:
(ρ2 − ρ)s2 = c2, whence s2 is uniquely determined. In general for n ≥ 2 we
obtain inductively

(ρn − ρ)sn = pn(ρ, s2, . . . , sn−1, c2, . . . , cn)

and sn is uniquely determined. �

Remark 2. Assume that ρ 6∈ E , F̂ (x) = σx+ . . . ∈ Γ, and Lρ◦ F̂ = F̂ ◦Lρ.
Then F̂ (x) = σx. If F (x) = ρx + . . ., F (x) = S(ρS−1(x)) for some S ∈ Γ,
F̂ (x) = σx+ . . . ∈ Γ, and F ◦ F̂ = F̂ ◦ F , then F̂ (x) = S(σS−1(x)).
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Proof. The first assertion is obtained by direct calculation. F commutes
with F̂ if and only if S ◦ Lρ ◦ S−1 ◦ F̂ = F̂ ◦ S ◦ Lρ ◦ S−1 which is equivalent
to Lρ ◦ S−1 ◦ F̂ ◦ S = S−1 ◦ F̂ ◦ S ◦Lρ and the assertion follows from the first
part. �

Consider some σ = e2πi`/m ∈ E , gcd(`,m) = 1, m ≥ 1. Then

N(x) = σx+
∑
n≥1

dnm+1x
nm+1

is a semicanonical form with respect to σ.

Remark 3. Let σ ∈ E be primitive of orderm>1, and F (x) = σx+. . .∈Γ.
There exists some S ∈ Γ1 such that

(S−1 ◦ F ◦ S)(x) = σx+
∑
n≥1

dnm+1x
nm+1,

i.e. a semicanonical form with respect to σ. In general, S is not uniquely
determined. (Cf. [20, Section 2].)

Proof. When σ is a root of unity primitive of order m > 1, then in
general (S) cannot be satisfied by choosing coefficients in a suitable way, since
in the comparison of coefficients of xn for n ≡ 1 mod m the term σn − σ
vanishes, which means that pn(σ, s2, . . . , sn−1, c2, . . . , cn) must vanish, and sn
is not determined by this equation. Therefore, we study the equation

F (S(x)) = S(σx+
∑
n≥1

dnm+1x
nm+1).

Its left hand side is σx +
∑
n≥2(σsn + pn(σ, s2, . . . , sn−1, c2, . . . , cn))xn as in

the proof of Remark 1. The right hand side can be expanded as

σx+
∑
n≥2

(σnsn + qn(σ, s2, . . . , sn−1, dm+1, . . . , db(n−1)/mcm+1))xn

with polynomials qn(t, u2, . . . , un−1, v1, . . . , vb(n−1)/mc) ∈ C[t, u2, . . . , un−1,
v1, . . . , vb(n−1)/mc], n ≥ 2. In particular qνm+1(t, u2, . . . , uνm, v1, . . . , vν) =
vν + q̃νm+1(t, u2, . . . , uνm, v1, . . . , vν−1), ν ≥ 1. Comparison of coefficients
yields

(*) (σn − σ)sn = pn(. . .)− qn(. . .), n ≥ 2.
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Inductively for n ≥ 2, either sn is uniquely determined by (*), or (in the
case that n ≡ 1 mod m) the coefficient sn is not determined, whence it
can be arbitrarily chosen, and equation (*) determines dn via the condition
pn(. . .)− q̃n(. . .) = dn. �

If F 6= Lσ, then in a semicanonical form (S−1 ◦ F ◦ S)(x) = σx +
dn0m+1x

n0m+1 + . . . with dn0m+1 6= 0 the index n0 is unique. According to
[22, Lemma 3] n0 is an invariant.

Remark 4. Let σ ∈ E be primitive of order m > 1, and assume that
N(x) = σx + . . . is a semicanonical form with respect to σ. Let G ∈ Γ
and assume that G ◦ N = N ◦ G. Then G has the structure similar to a
semicanonical form with respect to σ, i.e.

G(x) = ρx+
∑
n≥1

dnm+1x
nm+1, ρ ∈ C∗.

This class of formal power series is characterized by

G(σx) = σG(x), G ∈ Γ.

Comparing coefficients of xm proves

Remark 5. Let F (x) = ρx + . . . ∈ Γ, ρ 6∈ E , G(x) = x + dmx
m + . . .,

m ≥ 2, dm 6= 0. Then

F ◦G 6= G ◦ F.

The main problem: Describe the families of commuting formal power
series (F (t, x))t∈C, F (t, x) ∈ Γ for all t ∈ C, that is the families such that

(C) F (t, F (s, x)) = F (s, F (t, x)), s, t ∈ C.

Without loss of generality we always take the index set C.
(C) is a “weak functional equation”, weak because of the freedom in choos-

ing the index set and the parameterization.
If we write Ft(x) = F (t, x) =

∑
n≥1 cn(t)xn, c1(t) 6= 0 for all t ∈ C, then

(C) is rewritten as

(C) Ft ◦ Fs = Fs ◦ Ft, s, t ∈ C.
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Important special cases are:
1. Finite subgroups of Γ. In fact, in Remark 7 we prove that each finite sub-

group of Γ is cyclic whence abelian.
2. Cyclic subgroups 〈F 〉, F ∈ Γ.
3. One-parameter groups (iteration groups).
4. {Fn | n ≥ 1}, F ∈ Γ, F 1 = F , Fn = F ◦ Fn−1, n ≥ 2.
5. Maximal families of commuting formal power series (maximal with respect

to inclusion). These families are maximal abelian subgroups of Γ. Each
maximal abelian subgroup of Γ can be written as a maximal family of
commuting formal power series. (Since C has the cardinality ℵ1 also C[[x]]
has this cardinality and each subset of C[[x]] can be parameterized as a
family of formal power series of the form (F (t, x))t∈C.)

Here we comment briefly on case 3. Let (G,+) be an abelian group. A one-
parameter group (iteration group) is a homomorphism θ : (G,+)→ (Γ, ◦). For
t ∈ G, θ(t)(x) ∈ Γ, θ(t)(x) = θ(t, x) = θt(x). As a homomorphism it satisfies
the translation equation

(T) θ(t+ s, x) = θ(t, θ(s, x)), s, t ∈ G.

Here we discuss (G,+) = (C,+). The case of general G is more complicate.
We distinguish the following types of one-parameter groups.
type 0: θ(t, x) = x, t ∈ C.
type I: θ(t, x) = c1(t)x+ . . ., t ∈ C, where c1(t) 6= 0 for all t ∈ C and c1 6= 1.

Then

c1(s+ t) = c1(s)c1(t), s, t ∈ C,

thus c1 is a generalized exponential function. If c1 6= 1, then it takes
infinitely many values.

type II: θ(t, x) = x+ ck(t)xk + . . ., t ∈ C, k ≥ 2, ck 6= 0. Then

ck(t+ s) = ck(t) + ck(s), s, t ∈ C,

and ck is a non-trivial additive function, thus it takes infinitely many
values.

Iteration groups were studied e.g. in D.N. Lewis [16], S. Sternberg [26],
K.-T. Chen [2], St. Scheinberg [25] E. Peschl and L. Reich [18], L. Reich and
J. Schwaiger [23] or [24], G. Mehring [17], C. Praagman [19], H. Fripertinger
and L. Reich [3, 4], and W. Jabłoński [12, 13, 11, 14].

A possible approach for obtaining results concerning the structure of these
iteration groups and the explicit form of the coefficient functions is the method
of formal functional equations [7].



62 Harald Fripertinger, Ludwig Reich

From Remark 2 we deduce

Remark 6. The set {Lρ | ρ ∈ C∗} is a maximal abelian subgroup of Γ.
For each S ∈ Γ the set {S ◦Lρ ◦S−1 | ρ ∈ C∗} is a maximal abelian subgroup
of Γ.

A consequence of properties of normal forms is:

Remark 7. A finite subgroup F of Γ of order m ≥ 2 has the form
〈S−1(σS(x))〉 where σ = e2πi/m, S ∈ Γ. Conversely, each group 〈S−1(σS(x))〉,
S ∈ Γ1, σ = e2πi/m, m ≥ 1, is a finite subgroup of Γ.

Proof. Define a mapping π : F → C∗, F (x) = ρx + . . . 7→ ρ. Then π
is a homomorphism and π(F) is a finite subgroup of C∗, whence π(F) is
cyclic, thus of the form {1, σ, . . . , σm−1} and σ = e2πi/m. The mapping π is
injective, hence it is an isomorphism between F and π(F). In order to show
that π is injective assume that there are power series F1 6= F2 in F such that
π(F1) = π(F2) = ρ. Thus F1(x) = ρx+c

(1)
2 x2+. . . and F2(x) = ρx+c

(2)
2 x2+. . ..

Then F−11 ◦ F2 ∈ F and (F−11 ◦ F2)(x) = x+ dnx
n + . . ., n ≥ 2, dn 6= 0. But

then (F−11 ◦F2)`(x) = x+ `dnx
`−1+n + . . . ∈ F for ` ∈ N, hence F is infinite,

which is a contradiction. Thus F is isomorphic to π(F), a finite cyclic group,
hence abelian.

Assume that F = 〈F (x)〉 with F (x) = σx+ . . ., then by Remark 3 there is
a semicanonical form F = S−1◦N ◦S, where N(x) = σx+

∑
n≥1 dnm+1x

nm+1.
If N(x) 6= x, then there exists some n0 ≥ 1 such that dn0m+1 6= 0 and N(x) =
σx+dn0m+1x

n0m+1 + . . .. But then N `(x) = σ`x`+ `σ`−1dn0m+1x
`+n0m+ . . .

for ` ∈ N, which gives infinitely manyN ` and infinitely many elements F ` ∈ F ,
a contradiction. �

Remark 8. Amaximal family F of commuting power series in Γ is infinite.

Proof. Assume that F is finite. Since it is a group by Remark 7 it is
a finite cyclic group 〈F (x)〉, where F (x) = σx + . . . can be linearized, σ =
e2πi/m. Thus F (x) = S−1(σS(x)) which is contained in the abelian group
{S−1(ρS(x)) | ρ ∈ C∗}. The latter is already maximal. �

In order to investigate maximal abelian subgroups of Γ we consider two
types of families of commuting formal power series. We consider only
families F = (F (t, x))t∈C, F (t, x) = c1(t)x+ . . ., t ∈ C, of formal power series
in Γ satisfying (C) which are, as sets, infinite. If c1 takes infinitely many
values, then F is of type I, otherwise of type II. Iteration groups of type I or
type II are families of commuting formal power series of type I resp. type II.
In the present paper we study families of type I.
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We finish the Introduction by describing our results briefly. In Proposi-
tion 9 we associate, applying the method of formal functional equations, with
each family F = (F (t, x))t∈C of commuting formal power series of type I,
F (t, x) = c1(t)x+c2(t)x2+. . . a formal object G(y, x) = yx+

∑
n≥2 Pn(y)xn ∈

(C[y])[[x]] such that F (t, x) = G(c1(t), x), t ∈ C, G(1, x) = x, and both

(Cformal) G(y,G(z, x)) = G(z,G(y, x))

and

(Tformal) G(y,G(z, x)) = G(yz, x)

hold true in (C[y, z])[[x]]. In order to determine G(y, x) and to describe it in de-
tail we introduce in Proposition 10 the generator H(x) = ∂

∂y G(y, x)|y=1 of F
(and of G(y, x)) and we show that each F (t, x) satisfies the Aczél–Jabotinsky
differential equation

(AJ,H) H(x)
∂

∂x
F (t, x) = H(F (t, x)),

and also the formal Aczél–Jabotinsky differential equation

(AJformal,H) H(x)
∂

∂x
G(y, x) = H(G(y, x))

and the formal partial differential equation

(PDformal) H(x)
∂

∂x
G(y, x) = y

∂

∂y
G(y, x)

hold true. It is known from previous papers (e.g. [3]) that for givenH(x) = x+
h2x

2 + . . . the formal Aczél–Jabotinsky differential equation (AJformal,H) has
a unique solution G(y, x) = yx+

∑
n≥2 Pn(y)xn ∈ (C[y])[[x]] with G(1, x) = x

which satisfies (Cformal). This is recalled in Proposition 11. In Theorem 12 we
show that for a given series H(x) = x + h2x

2 + . . . the set of all solutions
of the Aczél–Jabotinsky equation (AJ,H) in Γ is a maximal abelian subgroup
of Γ whose generator is H(x) by Proposition 10. Theorem 12 is proved by
applying the method of formal functional equations. In Theorem 13 we show
the standard form of a family of type I. To each family F = (F (t, x))t∈C
of type I there exists a unique S ∈ Γ1 such that F (t, x) = S−1(c1(t)S(x)),
t ∈ C. If G(y, x) is the formal object associated with F by Proposition 9, then
G(y, x) = S−1(yS(x)).

In Proposition 15 and Proposition 16 we deal with the problem whether a
given F (x) = ρx+c2x

2 + . . . ∈ Γ is contained in a maximal family of type I. If
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ρ 6∈ E , there is exactly one maximal abelian subgroup of Γ of type I containing
F which can be constructed as an analytic embedding of F . If ρ ∈ E , ρ 6= 1,
then F is contained in a family of commuting power series of type I if and only
if it is linearizable. We describe the maximal abelian subgroups of Γ containing
F in terms of the generators and of T ∈ Γ1 for which F (x) = T−1(ρT (x)).

Proposition 17 shows, in the same context, that a family of commuting for-
mal power series of type I is contained in a unique maximal abelian subgroup of
Γ of type I, and Proposition 18 gives a further description of maximal families
of type I as iteration groups and as families (F (t, x))t∈C, F (t, x) = c1(t)x+. . .,
t ∈ C, of type I for which Im(c1) = C∗. Theorem 19 deals with a universal
representation of the formal objects G(y, x) associated with families of type I
in terms of the coefficients of their generators. In Theorem 20 we summarize
the results of the paper.

2. Families of commuting power series of type I and
maximal abelian subgroups Γ of type I

A family (F (t, x))t∈C of commuting formal power series of type I, consists
of power series of the form F (t, x) = c1(t)x + . . . ∈ Γ, t ∈ C, satisfying (C),
where c1 takes infinitely many values.

Proposition 9. Let (F (t, x))t∈C be a family of commuting formal power
series of type I.
1. Then there exists a unique

G(y, x) ∈ (C[y])[[x]], G(y, x) = yx+
∑
n≥2

Pn(y)xn,

with polynomials Pn such that

(Cformal) G(y,G(z, x)) = G(z,G(y, x)) in (C[y, z])[[x]]

is satisfied and F (t, x) = c1(t)x +
∑
n≥2 Pn(c1(t))xn = G(c1(t), x), t ∈ C.

Moreover, Pn(1) = 0 for n ≥ 2.
2. If a series ψ(x) = ρx + d2x

2 + . . . ∈ Γ commutes with each F (t, x),
then ψ(x) = G(ρ, x). Hence ψ(G(y, x)) = G(y, ψ(x)) in (C[y])[[x]] and
ψ(G(σ, x)) = G(σ, ψ(x)) for all σ ∈ C∗.
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3. G(y, x) satisfies

(Tformal) G(y,G(z, x)) = G(yz, x),

and G(ρ,G(σ, x)) = G(ρσ, x) for all ρ, σ ∈ C∗.

Proof. 1. Consider a family (F (t, x))t∈C of formal power series F (t, x) =∑
n≥1 cn(t)xn, t ∈ C. Comparison of coefficients of xn in (C) yields for n = 2

c1(t)c2(s) + c2(t)c1(s)2 = c1(s)c2(t) + c2(s)c1(t)2, t, s ∈ C,

and in general for n ≥ 2

c1(t)cn(s) + cn(t)c1(s)n

+ ψn(c2(t), . . . , cn−1(t); c1(s), . . . , cn−1(s)) = c1(s)cn(t) + cn(s)c1(t)n

+ ψn(c2(s), . . . , cn−1(s); c1(t), . . . , cn−1(t)), t, s ∈ C,

with polynomials ψn. Therefore, (F (t, x))t∈C satisfies (C), if and only if

(1) An(c1(t), . . . , cn(t); c1(s), . . . , cn(s))

= An(c1(s), . . . , cn(s); c1(t), . . . , cn(t)), t, s ∈ C,

for n ≥ 2, where An are polynomials over C. Due to the above form of An
this is equivalent to

(2) (c1(s)n − c1(s))cn(t)

= Φn(c1(t), . . . , cn−1(t); c1(s), . . . , cn(s)), s, t ∈ C,

for n ≥ 2, where Φn are polynomials over C.
If there exists some s∗ ∈ C such that c1(s∗) 6∈ E , then c1(s∗)n− c1(s∗) 6= 0

for n ≥ 2. If for each s ∈ C, c1(s) ∈ E , then ord(c1(s)) is not bounded from
above since there are infinitely many different values of c1(s). Hence for each
n there exists sn ∈ C such that c1(sn)n − c1(sn) 6= 0. This is also true in the
first case for sn = s∗.

From (2) it follows that

(3) cn(t) = (c1(sn)n − c1(sn))−1Φn(c1(t), . . . , cn−1(t); c1(sn), . . . , cn(sn)),

t ∈ C, for n ≥ 2.
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From (3) it follows by induction that there exists exactly one family
(Pn(y))n≥1 of polynomials Pn ∈ C[y], P1(y) = y, with cn(t) = Pn(c1(t)),
t ∈ C, n ≥ 1, thus

F (t, x) = c1(t)x+
∑
n≥2

Pn(c1(t))xn, t ∈ C.

Reformulation of (1) yields

(4) An(c1(t), P2(c1(t)), . . . , Pn(c1(t)); c1(s), P2(c1(s)), . . . , Pn(c1(s)))

=An(c1(s), P2(c1(s)), . . . , Pn(c1(s)); c1(t), P2(c1(t)), . . . , Pn(c1(t))), t, s ∈ C.

Define

G(y, x) := yx+
∑
n≥2

Pn(y)xn ∈ (C[y])[[x]].

Since in (4) c1(t) and c1(s) run independently through infinitely many values
from (4) we obtain

(5) An(y, P2(y), . . . , Pn(y); z, P2(z), . . . , Pn(z))

= An(z, P2(z), . . . , Pn(z); y, P2(y), . . . , Pn(y))

in C[y, z]. By the meaning of An from (1) we get from (5) that G satisfies
(Cformal). Substituting y = 1 and z = ρ 6∈ E in (Cformal) we get G(1, G(ρ, x)) =
G(ρ,G(1, x)), thus by Remark 2 G(1, x) = x, and equivalently Pn(1) = 0,
n ≥ 2.

2. The series ψ(x) = ρx + d2x
2 + . . . commutes with F (t, x) = c1(t)x +

c2(t)x2 + . . . for all t ∈ C if and only if, analogously to (4),

An(c1(t), P2(c1(t)), . . . , Pn(c1(t)); ρ, d2, . . . , dn)

= An(ρ, d2, . . . , dn; c1(t), P2(c1(t)), . . . , Pn(c1(t))), t ∈ C,

holds true, where the polynomials An have the same meaning as in (4). By
the method of formal functional equations we get

An(y, P2(y), . . . , Pn(y); ρ, d2, . . . , dn) = An(ρ, d2, . . . , dn; y, P2(y), . . . , Pn(y)),

which is the same as G(y, ψ(x)) = ψ(G(y, x)) and consequently

G(σ, ψ(x)) = ψ(G(σ, x))
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for all σ ∈ C∗. Therefore, also ψ−1(G(σ, x)) = G(σ, ψ−1(x)) for all σ ∈ C∗.
We choose a fixed σ 6∈ E . Since G(σ,G(ρ, x)) = G(ρ,G(σ, x)) we have

G(σ,G(ρ, ψ−1(x))) = G(ρ,G(σ, ψ−1(x))) = G(ρ, ψ−1(G(σ, x))),

i.e. G(ρ, ψ−1(x)) commutes with G(σ, x). But G(ρ, ψ−1(x)) = x + . . . ∈ Γ1,
hence by Remark 5 G(ρ, ψ−1(x)) = x, thus ψ(x) = G(ρ, x) which we have to
prove.

3. Let ρ, σ ∈ C∗. Then the series G(ρ, x) and G(σ, x) commute with each
G(τ, x), τ ∈ C∗, and hence also G(ρ,G(σ, x)) commutes with each G(τ, x),
τ ∈ C∗, or with each series G(c1(t), x), i.e. with F . Hence by 2. there ex-
ists some ω ∈ C∗ such that G(ω, x) = G(ρ,G(σ, x)). But G(ρ,G(σ, x)) =
ρσx +

∑
n≥2 Pn(ω)xn, and G(ω, x) = ωx +

∑
n≥2 Pn(ω)xn, whence, ω = ρσ.

This is true for all ρ, σ ∈ C∗, therefore, by the method of formal functional
equations (Tformal) is true. (It is the formal translation equation which has
been introduced in [3] to study iteration groups in Γ.) �

Proposition 10. Let F = (F (t, x))t∈C be a family of commuting for-
mal power series of type I and let G(y, x) ∈ (C[y])[[x]] be associated with F
according to Proposition 9. Then the following is true:
1. There exists a unique H(x) = x+ h2x

2 + . . . ∈ C[[x]] such that

(AJ,H) H(F (t, x)) = H(x)
∂

∂x
F (t, x), t ∈ C,

and in (C[y])[[x]] we have

(AJformal,H) H(G(y, x)) = H(x)
∂

∂x
G(y, x).

These are the Aczél–Jabotinsky equations. Here

H(x) =
∂

∂y
G(y, x)|y=1

is called the generator of both (F (t, x))t∈C and G(y, x).
2. G(y, x) and H(x) also satisfy

(PDformal) H(x)
∂

∂x
G(y, x) = y

∂

∂y
G(y, x).

It is possible that (AJ,H) has more solutions in Γ than (F (t, x))t∈C.
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Proof. 1. Since G(y, x) satisfies (Cformal) we obtain

∂

∂y
G(y,G(z, x)) =

∂

∂x
G(z, x)|x=G(y,x)

∂

∂y
G(y, x).

Substituting y = 1 we have H(G(z, x)) = H(x) ∂∂xG(z, x) for H(x) =
∂
∂y G(y, x)|y=1. This H(x) = x + . . . satisfies (AJformal,H). Consider H̃(x) =

x+ . . . satisfying H̃(G(z, x)) = H̃(x) ∂∂x G(z, x). Then

H̃(G(z, x))

H(G(z, x))
=
H̃(x) ∂∂x G(z, x)

H(x) ∂∂x G(z, x)
,

thusK(G(z, x)) = K(x) forK(x) = H̃(x)/H(x) = 1+. . .. We claimK(x) = 1,
since otherwise K(x) = 1 + knx

n + . . . with n ≥ 1 and kn 6= 0. But then
K(G(z, x)) contains the summand knz

nxn which does not occur in K(x).
Consequently, K = 1, and H = H̃ is uniquely determined.

Moreover, F (t, x) satisfies (AJ,H) for all t ∈ C if and only if

H(G(c1(t), x)) = H(x)
∂

∂x
G(c1(t), x)

holds true for all t ∈ C, which meansH(G(y, x)) = H(x) ∂∂x G(y, x) in (C[y])[[x]].
2. From (Tformal) we get, by differentiating with respect to z and putting

z = 1, the linear partial differential equation (PDformal). It was discussed in
[3, Section 2.1]. �

In a similar way it can be shown that under the assumptions of Proposi-
tion 10 the series G(y, x) and H(x) satisfy

(Dformal) y
∂

∂y
G(y, x) = H(G(y, x)).

It was discussed in [3, Section 2.2].
A deeper study of families F = (F (t, x))t∈C of commuting power series of

type I and in particular of maximal abelian subgroups of type I, is based on
the above two Aczél–Jabotinsky equations.

Proposition 11. Let H(x) = x + h2x
2 + . . . ∈ C[[x]]. Then the formal

Aczél–Jabotinsky equation (AJformal,H) has exactly one solution of the form
G(y, x) = yx+ . . . ∈ (C[y])[[x]]. It satisfies (Cformal).

Moreover, the solutions Φ ∈ Γ of the Aczél–Jabotinsky equation

(AJ,H) H(Φ(x)) = H(x)Φ′(x)

are given by Φ(x) = G(ρ, x), ρ ∈ C∗, where H is the generator of G.
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Proof. For the first assertion see [3, Theorem 12]. Introducing coefficients
for Φ(x) =

∑
n≥1 cnx

n, it is easy to deduce, that for any c1 6= 0 we can find
uniquely determined cn, n ≥ 2, depending on c1, which satisfy H(Φ(x)) =
H(x)Φ′(x). Since G(c1, x) satisfies (AJ,H), Φ(x) = G(c1, x), c1 ∈ C∗. �

Theorem 12. Let H(x) = x + h2x
2 + . . . ∈ C[[x]]. The set FH of all

solutions of (AJ,H) in Γ is a maximal abelian subgroup of Γ.

Proof. The set of solutions of (AJ,H) is FH = {G(ρ, x) | ρ ∈ C∗} and
the mapping FH → C∗, G(ρ, x) 7→ ρ, ρ ∈ C∗, is an isomorphism. This proves
that FH is an abelian subgroup of Γ. In order to show that it is a maximal
abelian subgroup, consider some ψ(x) =

∑
n≥1 cnx

n ∈ Γ commuting with all
Φ ∈ FH . Then by Proposition 11

G(ρ, ψ(x)) = ψ(G(ρ, x)), ρ ∈ C∗.

Comparing coefficients, this is equivalent to Bn(ρ, c1, . . . , cn) = 0, n ≥ 1, for
certain polynomials Bn over C. Since these polynomial relations hold true for
infinitely many ρ they can be replaced by Bn(y, c1, . . . , cn) = 0, n ≥ 1, y
an indeterminate. This is the method of formal functional equations, and we
obtain

G(y, ψ(x)) = ψ(G(y, x)) in (C[y])[[x]].

Therefore

∂

∂y
G(y, ψ(x)) = ψ′(G(y, x))

∂

∂y
G(y, x)

and by substituting y = 1 we obtain the Aczél–Jabotinsky equation

H(ψ(x)) = H(x)ψ′(x),

whence ψ ∈ FH . �

By conjugation we obtain the standard form of a family of commuting
formal power series of type I:

Theorem 13. To each family F of commuting formal power series of
type I, in particular to each one-parameter group (F (t, x))t∈C of type I,
F (t, x) = c1(t)x+ . . ., t ∈ C, there exists a unique S ∈ Γ1 such that

(ST) F (t, x) = S−1(c1(t)S(x)), t ∈ C.
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For the associated formal series G(y, x) ∈ (C[y])[[x]] we also have

G(y, x) = S−1(yS(x)).

(ST) is the standard form of the family F .

Proof. Let G(y, x) = yx+
∑
n≥2 Pn(y)xn be the formal object associated

with F according to Proposition 9. Let ρ ∈ C∗ \ E . Then by Remark 1, there
exists a unique S ∈ Γ1 such that G(ρ, x) = S−1(ρS(X)). By Proposition 9
(Cformal) holds true and substituting ρ for y and an arbitrary σ ∈ C∗ for
z we deduce G(ρ,G(σ, x)) = G(σ,G(ρ, x)), hence by Remark 2 G(σ, x) =
S−1(σS(x)) for all σ ∈ C∗, in particular F (t, x) = S−1(c1(t)S(x)), t ∈ C,
the standard form for F . G(σ, x) = S−1(σS(x)) leads by performing the
substitutions to G(σ, x) = σx+

∑
n≥2Qn(σ)xn, σ ∈ C∗, with polynomials Qn.

Hence we have Pn(y) = Qn(y), n ≥ 2, in C[[y]], which gives by the meaning of
the polynomials Qn that also G(y, x) = S−1(yS(x)) in (C[y])[[x]]. �

Remark 14. Since the standard form is often used we present two fur-
ther possibilities to prove Theorem 13. If G(y, x) is the formal series as-
sociated with F , then we determine S ∈ Γ1 such that the generator of
S(G(y, S−1(x))) is x which is achieved by solving a Briot–Bouquet differ-
ential equation (see [15, Section 5.2], [9, Section 11.1], and [10, Section 12.6]).
This implies that S(G(y, S−1(x))) = yx, the standard form of G(y, x).

Another possibility to prove Theorem 13 is based on the linear partial dif-
ferential equation (PDformal) forG(y, x). If we substituteG(y, x)=S−1(yS(x))
into (PDformal), then we arrive at a Briot–Bouquet differential equation for
S. Together with a uniqueness result for (PDformal) this leads to the standard
form for G(y, x).

If the multiplier ρ of a formal series F ∈ Γ is not a complex root of
one, then F can be linearized by Remark 1, i.e. there exists some S ∈ Γ1

such that F (x) = S(ρS−1(x)). Consider some λ ∈ C such that eλ = ρ, then
(θ(t, x))t∈C, θ(t, x) = S(eλtS−1(x)), t ∈ C, is an analytic iteration group of
type I, satisfying θ(0, x) = x and θ(1, x) = F (x). We call it an embedding of
F into an analytic iteration group.

Proposition 15. Each series F (x) = ρx + c2x
2 + . . ., ρ 6= 0, ρ 6∈ E, is

contained in exactly one maximal abelian subgroup of Γ of type I. It can be
constructed as the embedding of F into an analytic iteration group (θ(t, x))t∈C
such that θ(t, x) = eλtx+ . . . where eλ = ρ.

Proof. There exists exactly one S ∈ Γ1 such that S ◦ F ◦ S−1 = Lρ.
According to Remark 2 the series F̂ (x) = σx + . . . ∈ Γ commutes with F if
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and only if F̂ = S ◦ Lσ ◦ S−1. Thus {S ◦ Lσ ◦ S−1 | σ ∈ C∗} is the unique
maximal abelian subgroup of Γ containing F . It can be parameterized as an
analytic embedding (θ(t, x))t∈C of F . �

Proposition 16. Let Φ(x) = σx + . . ., σ = e2πi`/m ∈ E, gcd(`,m) = 1,
m ≥ 2. Then the following holds true:
1. Φ is contained in a family of commuting series of type I if and only if Φ is

linearizable, i.e. there exists S ∈ Γ1 such that Φ(x) = S−1(σS(x)).
2. If Φ(x) = S−1(σS(x)), then the families of type I containing Φ are given

by F = {T−1(ρT (x)) | ρ ∈ I} where I is an infinite subset of C∗ containing
σ and T = U ◦ S, with

U(x) = x+
∑
n≥1

unm+1x
nm+1.

F is maximal if and only if I = C∗.
3. Let Φ(x) = S−1(σS(x)), S ∈ Γ1. Then Φ belongs to a family of type I if

the generator H of F has the form

H(x) =
H∗(S(x))

S′(x)
, where H∗(x) = x+

∑
n≥1

h∗nm+1x
nm+1 ∈ Γ1.

If the family F has the generator H(x) = H∗(S(x))
S′(x) with H∗(x) as above and

if F contains a series with multiplier σ (which is true if F is maximal) then
Φ belongs to F .

This means that if Φ is linearizable, then it can be embedded into a
continuum of maximal abelian subgroups of type I, namely into each group
{S−1(ρS(x)) | ρ ∈ C∗}, if Φ(x) = S−1(σS(x)).

Proof. 1. If Φ(x) = S−1(σS(x)), S ∈ Γ1, then Φ ∈ {S−1(ρS(x)) |
ρ ∈ C∗} =: F which is a maximal family of commuting formal power se-
ries of type I.

Assume that Φ ∈ F , where F is a family of commuting formal power series
of type I. Then by Theorem 13 F has the standard form {S−1(c1(t)S(x)) |
t ∈ C} with S ∈ Γ1, whence, Φ(x) = S−1(c1(t0)S(x)) for some t0 ∈ C such
that c1(t0) = σ.

2. Assume that Φ(x) = S−1(σS(x)), S ∈ Γ1, σ = e2πi`/m, gcd(`,m) = 1,
m ≥ 2, and U(x) = x +

∑
n≥2 unx

n. Then simple computations show that
U(σx) = σU(x) if and only if U(x) = x +

∑
n≥1 unm+1x

nm+1. Assume that
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U is of this form, then U(σx) = σU(x), or Lσ = U−1 ◦ Lσ ◦ U , hence with
T = U ◦ S we obtain

T−1(σT (x)) = (S−1 ◦ U−1 ◦ Lσ ◦ U ◦ S)(x) = S−1(σS(x)) = Φ(x).

Hence F = {T−1(ρT (x)) | ρ ∈ I} with infinite I ⊆ C∗ and σ ∈ I is a family
of commuting formal power series of type I containing Φ.

Assume conversely, that F is a family of commuting formal power series
of type I containing Φ(x) = S−1(σS(x)). By Theorem 13 F has the standard
form F = {T−1(ρT (x)) | ρ ∈ I} for some T ∈ Γ1. The family F contains a
series with multiplier σ, namely Φ, and this is exactly the series T−1(σT (x)).
So we have T−1(σT (x)) = S−1(σS(x)), or equivalently, (S ◦ T−1) ◦ Lσ ◦
(S ◦T−1)−1 = Lσ, hence T = U ◦S for some U(x) = x+

∑
n≥1 unm+1x

nm+1.
3. Let Φ(x) = S−1(σS(x)) for some S ∈ Γ1. If Φ belongs to a fam-

ily of commuting formal power series of type I with generator H, then the
Aczél–Jabotinsky equation reads as H(S−1(σS(x))) = H(x) ddxS

−1(σS(x))

which is the same as H(S−1(σS(x))) = H(x)(S−1)′(σS(x))σS′(x). Substitut-
ing S−1(x) for x we obtain

H(S−1(σx)) = H(S−1(x))(S−1)′(σx)σS′(S−1(x))

or

H(S−1(σx))

(S−1)′(σx)
= σ

H(S−1(x))

(S−1)′(x)
, i.e.

H ◦ S−1

(S−1)′
(σx) = σ

H ◦ S−1

(S−1)′
(x),

since S′(S−1(x))·(S−1)′(x) = 1. Because of the fact that Ĥ(x) := H◦S−1

(S−1)′ (x) ∈
Γ1 satisfies Ĥ(σx) = σĤ(x), it is of the form H∗(x) = x+

∑
n≥1 h

∗
nm+1x

nm+1

or, equivalently, H(x) = H∗(S(x))
S′(x) . �

Any Φ(x) = σx + . . ., σ ∈ E , which cannot be linearized does not belong
to a maximal family of commuting power series of type I.

A direct consequence of Proposition 10 and Theorem 12 is

Proposition 17. A family (F (t, x))t∈C of commuting formal power series
of type I is contained in exactly one maximal abelian subgroup F of Γ of type I.
If H(x) = x+ h2x

2 + . . . is the generator of (F (t, x))t∈C, then F is the set of
solutions Φ ∈ Γ of (AJ,H).
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In other words, the maximal abelian subgroup of Γ containing the fam-
ily F = (F (t, x))t∈C of commuting formal power series of type I is {G(ρ, x) |
ρ ∈ C∗} where G(y, x) = yx+. . . ∈ (C[y])[[x]] is associated with F as in Propo-
sition 9. Since analytic iteration groups of type I have a coefficient function
c1(s) = eλs for some λ 6= 0 we obtain the second assertion of

Proposition 18. 1. A family (F (t, x))t∈C, F (t, x) = c1(t)x + . . ., t ∈ C,
of type I is a maximal abelian subgroup of Γ of type I if and only if the
image Im(c1) = C∗.

2. Each analytic iteration group of type I is a maximal family of commuting
power series.

There exists a universal representation of the coefficients of a solution of
(AJformal,H). From the second part of [3, Theorem 12] we deduce

Theorem 19. For each n ≥ 2 there is a polynomial P̃n(y, u2, . . . , un) ∈
C[y, u2, . . . , un] such that the solution G(y, x) ∈ (C[y])[[x]] of (AJformal,H) with
H(x) = x+ h2x

2 + . . . is given by

G(y, x) = yx+
∑
n≥2

P̃n(y, h2, . . . , hn)xn,

i.e. the polynomials from Proposition 9 can be written as Pn(y) =

P̃n(y, h2, . . . , hn), n ≥ 2.

We summarize the main results concerning maximal abelian subgroups
of Γ in

Theorem 20. 1. To each maximal abelian subgroup F of Γ of type I there
exists a unique H(x) = x + h2x

2 + . . . ∈ C[[x]] (the generator of F) such
that F is the set of solutions Φ ∈ Γ of (AJ,H), i.e.

(AJ,H) H(x)Φ′(x) = H(Φ(x)).

2. Conversely, if H(x) = x + h2x
2 + . . . ∈ C[[x]] is given, then the set of

solutions Φ ∈ Γ of (AJ,H) is a maximal abelian subgroup of Γ of type I.
The generator of F is H.

3. To each maximal abelian subgroup F of Γ of type I there exists a unique
S ∈ Γ1 such that

F = {S−1(ρS(x)) | ρ ∈ C∗}.

The generator of {ρx | ρ ∈ C∗} is x.
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4. Each maximal abelian subgroup F of Γ of type I can be parameterized as
an iteration group of type I, i.e. it has the form F = (F (t, x))t∈C, where

F (t, x) = c1(t) +
∑
n≥2

P̃n(c1(t), h2, . . . , hn)xn,

where c1 is a generalized exponential function with c1(C) = C∗, and for
n ≥ 2 the P̃n(y, u2, . . . , un) ∈ C[y, u2, . . . , un], are (universal) polynomials.
The series H(x) = x+ h2x

2 + . . . is the generator of F .
5. Each series F (x) = ρx + c2x

2 + . . ., ρ 6= 0, ρ 6∈ E, belongs to exactly
one maximal abelian subgroup of Γ of type I. It can be constructed as the
embedding of F into an analytic iteration group.

6. A series F (x) = σx+ . . ., σ ∈ E, belongs to a maximal abelian subgroup of
Γ of type I if and only if it can be linearized, i.e. F (x) = S−1(σS(x)) for
some S ∈ Γ. If so, there is a continuum of maximal abelian subgroups of
Γ of type I containing F , each one determined by the conjugating series S
as {S−1(ρS(x)) | ρ ∈ C∗}.

7. Each family (F (t, x))t∈C of commuting formal power series of type I is
contained in exactly one maximal abelian subgroup F of Γ of type I. If
H(x) = x+h2x

2 + . . . is the generator of (F (t, x))t∈C, then F is the set of
solutions Φ ∈ Γ of (AJ,H).

8. To each family (F (t, x))t∈C, F (t, x) =
∑
n≥1 cn(t)xn, t ∈ C, of commuting

formal power series of type I there exists a power series G(y, x) = yx +∑
n≥2 Pn(y)xn ∈ (C[y])[[x]] such that cn(t) = Pn(c1(t)), t ∈ C, n ≥ 2, and

both

(Cformal) G(y,G(z, x)) = G(z,G(y, x))

and

(Tformal) G(y,G(z, x)) = G(yz, x)

hold true in (C[y, z])[[x]]. Furthermore, if H(x) = ∂
∂y G(y, x)|y=1, then we

have in (C[y])[[x]]

(AJformal,H) H(G(y, x)) = H(x) · ∂
∂x

G(y, x)

and

(PDformal) H(x)
∂

∂x
G(y, x) = y

∂

∂y
G(y, x)
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hold true. The series G(y, x) is the unique solution of (AJformal,H) under
the assumption that G(y, x) = yx + . . ., and it is the unique solution of
(PDformal) under the assumption that G(1, x) = x.
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