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GENERALIZED TETRANACCI HYBRID NUMBERS

Yüksel Soykan, Erkan Taşdemir

Abstract. In this paper, we introduce the generalized Tetranacci hybrid num-
bers and, as special cases, Tetranacci and Tetranacci-Lucas hybrid numbers.
Moreover, we present Binet’s formulas, generating functions, and the summa-
tion formulas for those hybrid numbers.

1. Introduction

Hybrid numbers are a new generalization of complex, hyperbolic and dual
numbers and contain complex, dual and hyperbolic numbers as well as com-
bined and mixed states of these types of three numbers. Hybrid numbers were
introduced by Özdemir [13] (see also [14]). The set of hybrid numbers will be
denoted by K and defined by

K = {a+bi+cε+dh : a, b, c, d ∈ R, i2 = −1, ε2 = 0, h2 = 1, ih = −hi = ε+i}.

This set of numbers can be thought as a set of quadruplets. The real, complex,
dual and hyperbolic units are defined by

1←→ (1, 0, 0, 0), i←→ (0, 1, 0, 0), ε←→ (0, 0, 1, 0),h←→ (0, 0, 0, 1)

respectively. These units are called hybrid units.
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The two hybrid numbers are equal if all their components are equal, one by
one. The sum of two hybrid numbers is defined by summing their components.
Zero is the null element. With respect to the addition operation, the inverse
element of Z is −Z, which is defined as having all the components of Z changed
in their signs.

Multiplication of hybrid numbers (the Hybridian product ZW = (a1 +
b1i + c1ε + d1h)(a2 + b2i + c2ε+d2h)) can be done according to the following
Table 1:

Table 1. Multiplication Table
. 1 i ε h

1 1 i ε h

i i −1 1− h ε+ i

ε ε h+ 1 0 −ε

h h −ε− i ε 1

For the hybrid number Z = a + bi + cε + dh we list some definitions as
follows (see Özdemir [13]).
• The number a is called the scalar part and is denoted by S(Z).
• The part bi+ cε+ dh is also called the vector part and is denoted by V (Z).
• The conjugate of Z, denoted by Z, is defined by Z = S(Z) − V (Z) =
a− bi− cε− dh as in quaternions.
• The real number

C(Z) = ZZ = ZZ = a2 + (b− c)2 − c2 − d2

is called the characteristic number of Z.
• The real number

∆(Z) = −(b− c)2 + c2 + d2

is called the type number of Z.
• We say that  Z is elliptic if ∆(Z) < 0;

Z is hyperbolic if ∆(Z) > 0;
Z is parabolic if ∆(Z) = 0.

These are called the types of the hybrid numbers.
• The real number

‖Z‖ =
√
|C(Z)| =

√
|a2 + (b− c)2 − c2 − d2|

is called the norm of Z.
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• The inverse of Z is defined by

Z−1 =
Z

C(Z)

where ‖Z‖ 6= 0.

Briefly K, the set of hybrid numbers, has the following properties:
• (K,+) is an Abelian group.
• K is a non-commutative ring with respect to the addition and multiplication
operations.
• Multiplication operation in K is associative and not commutative.
• C(Z1Z2) = C(Z1)C(Z2) for Z1,Z2 ∈ K.

It is not easy to remember Table 1. Also, the lack of commutativity makes
it difficult to do multiplication. A matrix representation for a hybrid number
is especially important in order to facilitate multiplication of hybrid numbers.
By defining an isomorphism between 2 × 2 matrices and hybrid numbers, it
can be easily multiplied the hybrid numbers and prove many of their features.
On the other hand, hybrid numbers can also be defined by considering the
matrix representation.

Theorem 1.1 (Özdemir [13]). The ring of hybrid numbers K is isomorphic
to the ring of real 2× 2 matrices M2×2 with the map ϕ : K→M2×2 where

ϕ(a+ bi + cε + dh) =

(
a+ c b− c+ d

c− b+ d a− c

)
for Z = a+ bi + cε + dh ∈K.

We denote the matrix given in Theorem 1.1 byA =
(

a+ c b− c+ d
c− b+ d a− c

)
for Z = a+bi+cε+dh. The matrix ϕ(Z) = A ∈M2×2(R) is called the hybrid
matrix corresponding to the hybrid number Z. Note that we have

ϕ−1
(
a b
c d

)
=

(
a+ d

2

)
+

(
a+ b− c− d

2

)
i +

(
a− d

2

)
ε +

(
b+ c

2

)
h.

From the above isomorphism we have the matrix representations

ϕ(1) =

(
1 0
0 1

)
, ϕ(i) =

(
0 1
−1 0

)
, ϕ(ε) =

(
1 −1
1 −1

)
, ϕ(h) =

(
0 1
1 0

)
.
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With the aid of these four matrices, the multiplication of the hybrid numbers
described above, can also be easily handled. It can easily done operations and
calculations in the hybrid numbers using the corresponding matrices

1↔
(

1 0
0 1

)
, i↔

(
0 1
−1 0

)
, ε↔

(
1 −1
1 −1

)
, h↔

(
0 1
1 0

)
.

The hybrid numbers can be classified with respect to determinant and
discriminant of the characteristic equation of the 2× 2 corresponding matrix.

The classification of hybrid numbers depends entirely on the determinant
and the trace of the 2×2 corresponding matrix (for more details, see Özdemir
[13, 14]).

Theorem 1.2 (Özdemir [13]). Let A be a 2× 2 real matrix corresponding
to the hybrid number Z. Then the followings hold.
(a) ‖Z‖ =

√
|detA|

(b) ∆(Z) =
(
trA
2

)2 − detA

(c) Z−1 exists if and only if det(A) 6= 0.

For more details about these hybrid numbers, we refer to the works of
[6, 13, 14].

A generalized Tetranacci sequence {Vn}n≥0 = {Vn(V0, V1, V2, V3)}n≥0 is
defined by the fourth-order recurrence relation

(1.1) Vn = Vn−1 + Vn−2 + Vn−3 + Vn−4

with the initial values V0 = c0, V1 = c1, V2 = c2, V3 = c3 not all being zero.
This sequence has been studied by many authors and more details can be

found in the extensive literature dedicated to these sequences, see for example
[9, 11, 12, 15, 19, 20].

The sequence {Vn}n≥0 can be extended to negative subscripts by defining

V−n = −V−(n−1) − V−(n−2) − V−(n−3) + V−(n−4)

for n = 1, 2, 3, . . .. Therefore, recurrence (1.1) holds for all integers n.
The first few generalized Tetranacci numbers with positive subscript and

negative subscript are given in the following Table 2.

Table 2. A few generalized Tetranacci numbers
n 0 1 2 3 4 5 . . .

Vn c0 c1 c2 c3 c0 + c1 + c2 + c3 c0 + 2c1 + 2c2 + 2c3 . . .

V−n c0 c3 − c2 − c1 − c0 2c2 − c3 2c1 − c2 2c0 − c1 2c3 − 2c2 − 2c1 − 3c0 . . .



Generalized Tetranacci hybrid numbers 117

If we set V0 = 0, V1 = 1, V2 = 1, V3 = 2, then {Vn} is the well-known
Tetranacci sequence and if we set V0 = 3, V1 = 1, V2 = 3, V3 = 7 then {Vn}
is the well-known Tetranacci-Lucas sequence. In other words, Tetranacci se-
quence {Mn}n≥0 and Tetranacci-Lucas sequence {Rn}n≥0 are defined by the
fourth-order recurrence relations

(1.2) Mn = Mn−1+Mn−2+Mn−3+Mn−4, M0 = 0,M1 = M2 = 1,M3 = 2

and

(1.3) Rn = Rn−1 +Rn−2 +Rn−3 +Rn−4, R0 = 4, R1 = 1, R2 = 3, R3 = 7.

The sequences {Mn}n≥0 and {Rn}n≥0 can be extended to negative subscripts
by defining

M−n = −M−(n−1) −M−(n−2) −M−(n−3) +M−(n−4)

and
R−n = −R−(n−1) −R−(n−2) −R−(n−3) +R−(n−4)

for n = 1, 2, 3, ... respectively. Therefore, recurrences (1.2) and (1.3) hold
for all integers n. Next, we present the first few values of the Tetranacci
and Tetranacci-Lucas numbers with positive and negative subscripts, in the
following Table 3.

Table 3. A few values of Tetranacci and Tetranacci-Lucas numbers
n −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9

Mn 1 −3 2 0 0 −1 1 0 0 0 1 1 2 4 8 15 29 56 108

Rn −19 15 −1 −1 −6 7 −1 −1 −1 4 1 3 7 15 26 51 99 191 367

It is well known that for all integers n, usual Tetranaci and Tetranacci-
Lucas numbers can be expressed using Binet’s formulas

Mn =
αn+2

(α− β)(α− γ)(α− δ)
+

βn+2

(β − α)(β − γ)(β − δ)

+
γn+2

(γ − α)(γ − β)(γ − δ)
+

δn+2

(δ − α)(δ − β)(δ − γ)

(see for example [9] or [21]) or

Mn =
α− 1

5α− 8
αn−1 +

β − 1

5β − 8
βn−1 +

γ − 1

5γ − 8
γn−1 +

δ − 1

5δ − 8
δn−1
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(see for example [7]) and

Rn = αn + βn + γn + δn,

respectively, where α, β, γ and δ are the roots of the equation x4 − x3 − x2 −
x− 1 = 0. Moreover,

α =
1

4
+

1

2
ω +

1

2

√
11

4
− ω2 +

13

4
ω−1,

β =
1

4
+

1

2
ω − 1

2

√
11

4
− ω2 +

13

4
ω−1,

γ =
1

4
− 1

2
ω +

1

2

√
11

4
− ω2 − 13

4
ω−1,

δ =
1

4
− 1

2
ω − 1

2

√
11

4
− ω2 − 13

4
ω−1,

where

ω =

√√√√11

12
+

(
−65

54
+

√
563

108

)1/3

+

(
−65

54
−
√

563

108

)1/3

.

We present Binet’s formula of the generalized Tetranacci sequence.

Corollary 1.3. The Binet’s formula of the generalized Tetranacci se-
quence {Vn} is given as

Vn = Aαn−6 +Bβn−6 + Cγn−6 +Dδn−6,

where

A =
α− 1

5α− 8
(V3α

3 + (V0 + V1 + V2)α2 + (V1 + V2)α+ V2),

B =
β − 1

5β − 8
(V3β

3 + (V0 + V1 + V2)β2 + (V1 + V2)β + V2),

C =
γ − 1

5γ − 8
(V3γ

3 + (V0 + V1 + V2)γ2 + (V1 + V2)γ + V2),

D =
δ − 1

5δ − 8
(V3δ

3 + (V0 + V1 + V2)δ2 + (V1 + V2)δ + V2).
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Proof. For a proof see [16, Corollary 1.3]. Some other proofs can be found
in the literature. Note that the usual Binet formula of generalized Fibonacci
numbers (which includes generalized Tetranacci numbers) is largely studied
in the literature (see for example [2, 3, 4, 8] and references therein). �

In fact, Corollary 1.3 is a special case of a result in [1, Remark 2.3].
Note that the Binet form of a sequence satisfying (1.1) for non-negative

integers is valid for all integers n, for a proof of this result see [10]. This result
of Howard and Saidak [10] is even true in the case of higher-order recurrence
relations.

Next, we give the ordinary generating function
∞∑

n=0
Vnx

n of the sequence Vn.

Lemma 1.4. Suppose that fVn
(x) =

∞∑
n=0

Vnx
n is the ordinary generat-

ing function of the generalized Tetranacci sequence {Vn}n≥0.Then fVn(x) is
given by

(1.4) fVn(x)=
V0 + (V1 − V0)x+ (V2 − V1 − V0)x2 + (V3 − V2 − V1 − V0)x3

1− x− x2 − x3 − x4
.

Proof. Using (1.1) and some calculation, we obtain

fVn(x)− xfVn(x)− x2fVn(x)− x3fVn(x)− x4fVn(x)

= V0 + (V1 − V0)x+ (V2 − V1 − V0)x2 + (V3 − V2 − V1 − V0)x3

which gives (1.4). �

The previous Lemma gives the following results as particular examples:
generating function of the Tetranacci sequence Mn is

fMn(x) =
∞∑

n=0

Mnx
n =

x

1− x− x2 − x3 − x4

and generating function of the Tetranacci-Lucas sequence Rn is

fRn(x) =

∞∑
n=0

Rnx
n =

4− 3x− 2x2 − x3

1− x− x2 − x3 − x4
.
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2. Generalized Tetranacci hybrid numbers and their generating
functions, Binet’s formulas and summations formulas

In this section, we define generalized Tetranacci hybrid numbers and give
generating functions, Binet formulas, summations formulas for them. As spe-
cial cases, we present generating functions, Binet formulas, summations for-
mulas for Tetranacci and Tetranacci-Lucas hybrid numbers.

First, we give some information about hybrid number sequences from the
literature. Szynal-Liana [17] introduced nth Horadam hybrid numbers as

Hn = Wn + iWn+1 + εWn+2 + hWn+3

where Wn are the Horadam numbers given by the second order recurrence
relation Wn = pWn−1 − qWn−2 with initial values W0,W1 and p, q, n are
integers. Szynal-Liana and Włoch [18] and Cerda-Morales [5] also studied
Horadam types hybrid numbers.

We now define generalized Tetranacci hybrid numbers over the hybridian
algebra K.

Definition 2.1. The nth generalized Tetranacci hybrid number is

(2.1) HVn = Vn + Vn+1i + Vn+2ε + Vn+3h.

As special cases, the nth Tetranacci hybrid number and the nth Tetranacci-
Lucas hybrid number are given as

HMn = Mn +Mn+1i +Mn+2ε +Mn+3h

and
HRn = Rn +Rn+1i +Rn+2ε +Rn+3h

respectively.
Note that, by definition, HVn is well-defined. It can be easily shown that

{HVn}n≥0 can also be defined by the recurrence relation:

(2.2) HVn = HVn−1 + HVn−2 + HVn−3 + HVn−4

with the intial conditions HV0, HV1, HV2, HV3 (see Table 4).
Note that the sequence {HVn}n≥0 can be extended to negative subscripts

by defining

HV−n = −HV−(n−1) −HV−(n−2) −HV−(n−3) + HV−(n−4)

for n = 1, 2, 3, .... Therefore, recurrence (2.2) holds for all integers n.
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The first few generalized Tetranacci hybrid numbers with positive sub-
script and negative subscript are given in the following Table 4:

Table 4. Generalized Tetranacci hybrid numbers
n HVn

−5 (2c3 − 2c2 − 2c1 − 3c0) + (2c0 − c1)i+ (2c1 − c2)ε+ (2c2 − c3)h

−4 (2c0 − c1) + (2c1 − c2)i+ (2c2 − c3)ε+ h(c3 − c2 − c1 − c0)

−3 (2c1 − c2) + (2c2 − c3)i+ (c3 − c2 − c1 − c0)ε+ c0h

−2 (2c2 − c3) + (c3 − c2 − c1 − c0)i+ c0ε+ c1h

−1 (c3 − c2 − c1 − c0) + c0i+ c1ε+ c2h

0 c0 + c1i+ c2ε+ c3h

1 c1 + c2i+ c3ε+ (c0 + c1 + c2 + c3)h

2 c2 + c3i+ (c0 + c1 + c2 + c3)ε+ (c0 + c1 + c2 + c3)h

3 c3 + (c0 + c1 + c2 + c3)i+ (c0 + 2c1 + 2c2 + 2c3)ε+ (2c0 + 3c1 + 4c2 + 4c3)h

4 (c0 + c1 + c2 + c3) + (c0 + 2c1 + 2c2 + 2c3)i+ (2c0 + 3c1 + 4c2 + 4c3)ε

+(4c0 + 6c1 + 7c2 + 8c3)h

5 (c0 + 2c1 + 2c2 + 2c3) + (2c0 + 3c1 + 4c2 + 4c3)i+ (4c0 + 6c1 + 7c2 + 8c3)ε

+(8c0 + 12c1 + 14c2 + 15c3)h

The first few Tetranacci and Tetranacci-Lucas hybrid numbers with posi-
tive subscript and negative subscript are given in Table 5 and Table 6.

Table 5. Tetranacci hybrid numbers
n HMn HM−n

0 i+ ε+ 2h i+ ε+ 2h
1 1 + i+ 2ε+ 4h ε+ h
2 1 + 2i+ 4ε+ 8h h
3 2 + 4i+ 8ε+ 15h 1
4 4 + 8i+ 15ε+ 29h −1 + i
5 8 + 15i+ 29ε+ 56h −i+ ε
6 15 + 29i+ 56ε+ 108h −ε+ h
7 29 + 56i+ 108ε+ 208h 2− h

For two generalized Tetranacci hybrid numbers HVn and HVk, the addition
and substraction are defined as componentwise, i.e.,

HVn+ HVk = (Vn+ Vk) + (Vn+1+ Vk+1)i + (Vn+2+ Vk+2)ε + (Vn+3+ Vk+3)h,

HVn−HVk = (Vn− Vk) + (Vn+1− Vk+1)i + (Vn+2− Vk+2)ε + (Vn+3− Vk+3)h,

respectively.
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Table 6. Tetranacci-Lucas hybrid numbers
n HRn HR−n

0 4 + i+ 3ε+ 7h 4 + i+ 3ε+ 7h
1 1 + 3i+ 7 + 15h −1 + 4i+ ε+ 3h
2 3 + 7i+ 15ε+ 26h −1− i+ 4ε+ h
3 7 + 15i+ 26ε+ 51h −1− i− ε+ 4h
4 15 + 26i+ 51ε+ 99h 7− i− ε− h
5 26 + 51i+ 99ε+ 191h −6 + 7i− ε− h
6 51 + 99i+ 191ε+ 367h −1− 6i+ 7ε− h
7 99 + 191i+ 367ε+ 708h −1− i− 6ε+ 7h

Now, we will state Binet’s formula for the generalized Tetranacci hybrid
numbers and in the rest of the paper we fix the following notations:

α̂ = 1 + αi + α2ε + α3h,

β̂ = 1 + βi + β2ε + β3h,

γ̂ = 1 + γi + γ2ε + γ3h,

δ̂ = 1 + δi + δ2ε + δ3h.

Theorem 2.2 (Binet’s Formula). For any integer n, the nth generalized
Tetranacci hybrid number is

(2.3) HVn = Aα̂αn−6 +Bβ̂βn−6 + Cγ̂γn−6 +Dδ̂δn−6

where A,B,C and D are as in Corollary 1.3.

Proof. Using Binet’s formula of the generalized Tetranacci numbers, we
obtain

HVn = Vn + Vn+1i + Vn+2ε + Vn+3h

= Aαn−6 +Bβn−6 + Cγn−6 +Dδn−6

+ (Aαn−5 +Bβn−5 + Cγn−5 +Dδn−5)i

+ (Aαn−4 +Bβn−4 + Cγn−4 +Dδn−4)ε

+ (Aαn−3 +Bβn−3 + Cγn−3 +Dδn−3)k

= Aα̂αn−6 +Bβ̂βn−6 + Cγ̂γn−6 +Dδ̂δn−6.

This proves (2.3). �
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As special cases, for any integer n, the Binet’s Formula of nth Tetranacci
hybrid number is

HMn =
α− 1

5α− 8
α̂αn−1 +

β − 1

5β − 8
β̂βn−1 +

γ − 1

5γ − 8
γ̂γn−1 +

δ − 1

5δ − 8
δ̂δn−1

and the Binet’s Formula of nth Tetranacci-Lucas hybrid number is

HRn = α̂αn + β̂βn + γ̂γn + δ̂δn.

Next, we present generating functions.

Theorem 2.3. The generating function for the generalized Tetranacci hy-
brid numbers is

∞∑
n=0

HVnxn =
HV0 + (HV1 −HV0)x+ (HV2 −HV1 −HV0)x2 + HV−1x3

1− x− x2 − x3 − x4
.

Proof. Let
g(x) =

∞∑
n=0

HVnxn

be generating function of the generalized Tetranacci hybrid numbers. Then
using the definition of the Tetranacci hybrid numbers, and substracting xg(x),
x2g(x), x3g(x) and x4g(x) from g(x) and using the recurrence relation HVn =
HVn−1 + HVn−2 + HVn−3 + HVn−4, we obtain

(1− x− x2 − x3 − x4)g(x) = HV0 + (HV1 −HV0)x+ (HV2 −HV1 −HV0)x2

+ (HV3 −HV2 −HV1 −HV0)x3.

Rearranging above equation and using HV3 = HV2 + HV1 + HV0 + HV−1,
we get

g(x) =
HV0 + (HV1 −HV0)x+ (HV2 −HV1 −HV0)x2 + HV−1x3

1− x− x2 − x3 − x4
. �

As special cases, the generating functions for the Tetranacci and Tetranacci-
Lucas hybrid numbers are

∞∑
n=0

HMnx
n =

(i + ε + 2h) + (1 + ε + 2h)x+ (ε + 2h)x2 + (ε + h)x3

1− x− x2 − x3 − x4
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and

∞∑
n=0

HRnx
n =

(4 + i + 3ε + 7h) + (−3 + 2i + 4ε + 8h)x

1− x− x2 − x3 − x4

+
(−2 + 3i + 5ε + 4h)x2 + (−1 + 4i + ε + 3h)x3

1− x− x2 − x3 − x4
,

respectively.
Next we present some summation formulas of generalized Tetranacci num-

bers.

Lemma 2.4. For n ≥ 1, we have the following formulas:

(a)
n∑

p=1

Vp =
1

3
(Vn+2 + 2Vn + Vn−1 − V0 + V1 − V3),

(b)
n∑

p=1

V2p+1 =
1

3
(2V2n+2 + V2n − V2n−1 − 2V0 − V1 − 3V2 + V3),

(c)
n∑

p=1

V2p =
1

3
(2V2n+1 + V2n−1 − V2n−2 + V0 − V1 + 3V2 − 2V3).

The above Lemma is given in Soykan [16, Theorem 2.6].
Note that from the above Lemma we have

n∑
p=0

Vp = V0 +

n∑
p=1

Vp = V0 +
1

3
(Vn+2 + 2Vn + Vn−1 − V0 + V1 − V3)

=
1

3
(Vn+2 + 2Vn + Vn−1 + 2V0 + V1 − V3),

n∑
p=0

V2p+1 = V1 +
n∑

p=1

V2p+1

= V1 +
1

3
(2V2n+2 + V2n − V2n−1 − 2V0 − V1 − 3V2 + V3)

=
1

3
(2V2n+2 + V2n − V2n−1 − 2V0 + 2V1 − 3V2 + V3),(2.4)

and
n∑

p=0

V2p = V0 +

n∑
p=1

V2p

= V0 +
1

3
(2V2n+1 + V2n−1 − V2n−2 + V0 − V1 + 3V2 − 2V3)

=
1

3
(2V2n+1 + V2n−1 − V2n−2 + 4V0 − V1 + 3V2 − 2V3).(2.5)
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In the following Theorem, we give some summation formulas of generalized
Tetranacci hybrid numbers.

Theorem 2.5. For n ≥ 0, we have the following formulas:
(a)

(2.6)
n∑

p=0

HVp =
1

3
(HVn+2 + 2HVn + HVn−1 + c),

where

c = 2V0 + V1 − V3 + (−V0 + V1 − V3)i

+ (−V0 − 2V1 − V3)ε + (−V0 − 2V1 − 3V2 − V3)h.

(b) n∑
p=0

HV2p+1 =
1

3
(2HV2n+2 + HV2n −HV2n−1 + d),

where

d = (−2V0 + 2V1 − 3V2 + V3) + (V0 − V1 + 3V2 − 2V3)i

+ (−2V0 − V1 − 3V2 + V3)ε + (V0 − V1 − 2V3)h.

(c)
n∑

p=0

HV2p =
1

3
(2HV2n+1 + HV2n−1 −HV2n−2 + e),

where

e = (4V0 − V1 + 3V2 − 2V3) + (−2V0 + 2V1 − 3V2 + V3)i

+ (V0 − V1 + 3V2 − 2V3)ε + (−2V0 − V1 − 3V2 + V3)h.

Proof. (a) Using (2.1), we obtain

n∑
p=0

HVp =
n∑

p=0

Vp + i
n∑

p=0

Vp+1 + ε
n∑

p=0

Vp+2 + h
n∑

p=0

Vp+3

= (V0 + ...+ Vn) + i(V1 + ...+ Vn+1)

+ ε(V2 + ...+ Vn+2) + h(V3 + ...+ Vn+3),

and so,

3

n∑
p=0

HVp = (Vn+2 + 2Vn + Vn−1 + 2V0 + V1 − V3)

+ i(Vn+3 + 2Vn+1 + Vn + 2V0 + V1 − V3 − 3V0)
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+ ε(Vn+4 + 2Vn+2 + Vn+1 + 2V0 + V1 − V3 − 3(V0 + V1))

+ k(Vn+5 + 2Vn+3 + Vn+2 + 2V0 + V1 − V3 − 3(V0 + V1 + V2))

= HVn+2 + 2HVn + HVn−1 + c,

where

c = 2V0 + V1 − V3 + i(2V0 + V1 − V3 − 3V0)

+ ε(2V0 + V1 − V3 − 3(V0 + V1)) + h(2V0 + V1 − V3 − 3(V0 + V1 + V2))

= 2V0 + V1 − V3 + i(−V0 + V1 − V3)

+ ε(−V0 − 2V1 − V3) + h(−V0 − 2V1 − 3V2 − V3).

Hence
n∑

p=0

HVp =
1

3
(HVn+2 + 2HVn + HVn−1 + c).

This proves (2.6).
(b) and (c) follows from the identities (2.4) and (2.5). �

As special cases, we have the following two corollaries.

Corollary 2.6. For n ≥ 0, we have the following formulas:

(a)
n∑

p=0

HMp =
1

3
(HMn+2 + 2HMn + HMn−1 − (1 + i + 4ε + 7h)),

(b)
n∑

p=0

HM2p+1 =
1

3
(2HM2n+2 + HM2n −HM2n−1 + (1− 2i− 2ε− 5h)),

(c)
n∑

p=0

HM2p =
1

3
(2HM2n+1 + HM2n−1 −HM2n−2 − (2− i + 2ε + 2h)).

Corollary 2.7. For n ≥ 0, we have the following formulas:

(a)
n∑

p=0

HRp =
1

3
(HRn+2 + 2HRn + HRn−1 + (2− 10i− 13ε− 22h)),

(b)
n∑

p=0

HR2p+1 =
1

3
(2HR2n+2 + HR2n −HR2n−1 − (8 + 2i + 11ε + 11h)),

(c)
n∑

p=0

HR2p =
1

3
(2HR2n+1 + HR2n−1 −HR2n−2 + (10− 8i− 2ε− 11h)).
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3. Some properties of generalized Tetranacci hybrid numbers

In this section we give some properties of generalized Tetranacci hybrid
numbers and as special cases, we present some properties of Tetranacci and
Tetranacci-Lucas hybrid numbers.

Note that

α̂+ β̂ + γ̂ + δ̂ = 4 + i + 3ε + 7h.

For the generalized Tetranacci hybrid number HVn = Vn+Vn+1i+Vn+2ε+
Vn+3h, we list some definitions as follows.
• The scalar part is S(Z) = Vn and the vector part is V (HVn) = Vn+1i +
Vn+2ε + Vn+3h.
• The conjugate of HVn, is HVn = S(HVn)−V (HVn) = Vn−Vn+1i−εVn+2−
Vn+3h.
• The characteristic number of HVn is

C(HVn) = HVnHVn = HVnHVn

= V 2
n + (Vn+1 − Vn+2)2 − V 2

n+2 − V 2
n+3

= V 2
n + V 2

n+1 − 2Vn+2Vn+1 − V 2
n+3.

• The type number of HVn is

∆(HVn) = −(Vn+1 − Vn+2)2 + V 2
n+2 + V 2

n+3

= −V 2
n+1 + 2Vn+2Vn+1 + V 2

n+3.

• The types of the generalized Tetranacci hybrid numbers are
HVn is elliptic if 2Vn+2Vn+1 + V 2

n+3 < V 2
n+1;

HVn is hyperbolic if 2Vn+2Vn+1 + V 2
n+3 > V 2

n+1;

HVn is parabolic if 2Vn+2Vn+1 + V 2
n+3 = V 2

n+1.

• The norm of HVn is

‖HVn‖ =
√
|C(HVn)| =

√∣∣V 2
n + V 2

n+1 − 2Vn+2Vn+1 − V 2
n+3

∣∣.
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• The inverse of HVn is

HV −1n =
HVn
C(HVn)

=
Vn − Vn+1i− εVn+2 − Vn+3h

V 2
n + V 2

n+1 − 2Vn+2Vn+1 − V 2
n+3

where ‖HVn‖ 6= 0.

Using the Binet’s formula of the generalized Tetranacci hybrid sequence
{HVn}, the following theorem immediately follows.

Theorem 3.1. For any integer n, we have the following:
(a) HVn + HVn+1 = Aα̂αn−6(1 + α) + Bβ̂βn−6(1 + β) + Cγ̂γn−6(1 + γ) +

Dδ̂δn−6(1 + δ),

(b) HVn − HVn+1 = Aα̂αn−6(1 − α) + Bβ̂βn−6(1 − β) + Cγ̂γn−6(1 − γ) +

Dδ̂δn−6(1− δ),
where A,B,C and D are as in Corollary 1.3.

As special cases, for Tetranacci hybrid number and Tetranacci-Lucas hy-
brid number, we obtain

HMn + HMn+1 =
α2 − 1

5α− 8
α̂αn−1 +

β2 − 1

5β − 8
β̂βn−1

+
γ2 − 1

5γ − 8
γ̂γn−1 +

δ2 − 1

5δ − 8
δ̂δn−1,

HMn −HMn+1 = −(α− 1)
2

5α− 8
α̂αn−1 − (β − 1)

2

5β − 8
β̂βn−1

− (γ − 1)
2

5γ − 8
γ̂γn−1 − (δ − 1)

2

5δ − 8
δ̂δn−1

and

HRn + HRn+1 = α̂αn(α+ 1) + β̂βn(β + 1) + γ̂γn(γ + 1) + δ̂δn(δ + 1),

HRn −HRn+1 = α̂αn(1− α) + β̂βn(1− β) + γ̂γn(1− γ) + δ̂δn(1− δ).

From Theorem 1.1, we know that

ϕ(a+ bi + cε + dh) =

(
a+ c b− c+ d

c− b+ d a− c

)
= A.

So, for HVn = Vn + Vn+1i + Vn+2ε + Vn+3h we have

ϕ(HVn) =

(
Vn + Vn+2 Vn+1 − Vn+2 + Vn+3

Vn+2 − Vn+1 + Vn+3 Vn − Vn+2

)
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and as special cases we obtain

ϕ(HMn) =

(
Mn +Mn+2 Mn+1 −Mn+2 +Mn+3

Mn+2 −Mn+1 +Mn+3 Mn −Mn+2

)
and

ϕ(HRn) =

(
Rn +Rn+2 Rn+1 −Rn+2 +Rn+3

Rn+2 −Rn+1 +Rn+3 Rn −Rn+2

)
.

As basic examples, for HM1 = 1 + i + 2ε + 4h and HR1 = 1 + 3i + 7 + 15h
we obtain

ϕ(HM1) =

(
3 3
5 −1

)
and

ϕ(HR1) =

(
8 11
19 −6

)
.

Note that

ϕ(HVn)ϕ(HVn) = (V 2
n + V 2

n+1 − 2Vn+1Vn+2 − V 2
n+3)

(
1 0
0 1

)
.

From Theorem 1.2, we have the following result.

Theorem 3.2. Let A be a 2×2 real matrix corresponding to the generalized
Tetranacci hybrid number HVn. Then the followings hold.
(a) ‖HVn‖ =

√
|detA|

(b) ∆(HVn) =
(
trA
2

)2 − detA

(c) HV −1n exists if and only if det(A) 6= 0.

References

[1] J.B. Bacani and J.F.T. Rabago, On generalized Fibonacci numbers, Applied Mathe-
matical Sciences 9 (2015), no. 73, 3611–3622.

[2] R. Ben Taher and M. Rachidi, Explicit formulas for the constituent matrices. Appli-
cation to the matrix functions, Spec. Matrices 3 (2015), 43–52.

[3] R. Ben Taher and M. Rachidi, Solving some generalized Vandermonde systems and
inverse of their associate matrices via new approaches for the Binet formula, Appl.
Math. Comput. 290 (2016), 267–280.



130 Yüksel Soykan, Erkan Taşdemir

[4] B. Bernoussi, M. Rachidi, and O. Saeki, Factorial Binet formula and distributional
moment formulation of generalized Fibonacci sequences, Fibonacci Quart. 42 (2004),
no. 4, 320–329.

[5] G. Cerda-Morales, Investigation of generalized hybrid Fibonacci numbers and their
properties, arXiv preprint. Available at arXiv: 1806.02231v1.

[6] G. Dattoli, S. Licciardi, R.M. Pidatella, and E. Sabia, Hybrid complex numbers: the
matrix version, Adv. Appl. Clifford Algebr. 28 (2018), no. 3, Paper No. 58, 17 pp.

[7] G.P.B. Dresden and Z. Du, A simplified Binet formula for k-generalized Fibonacci
numbers, J. Integer Seq. 17 (2014), no. 4, Artlicle 14.4.7, 9 pp.

[8] F. Dubeau, W. Motta, and M. Rachidi, O. Saeki, On weighted r-generalized Fibonacci
sequences, Fibonacci Quart. 35 (1997), no. 2, 102–110.

[9] G.S. Hathiwala and D.V. Shah, Binet–type formula for the sequence of Tetranacci
numbers by alternate methods, Mathematical Journal of Interdisciplinary Sciences 6
(2017), no. 1, 37–48.

[10] F.T. Howard and F. Saidak, Zhou’s theory of constructing identities, Congr. Numer.
200 (2010), 225–237.

[11] R.S. Melham, Some analogs of the identity F 2
n + F 2

n+1 = F 2
2n+1, Fibonacci Quart. 37

(1999), no. 4, 305–311.
[12] L.R. Natividad, On solving Fibonacci-like sequences of fourth, fifth and sixth order,

Int. J. Math. Sci. Comput. 3 (2013), no. 2, 38–40.
[13] M. Özdemir, Introduction to hybrid numbers, Adv. Appl. Clifford Algebr. 28 (2018),

no. 1, Paper No. 11, 32 pp.
[14] M. Özdemir, Finding n-th roots of a 2×2 real matrix using de Moivre’s formula, Adv.

Appl. Clifford Algebr. 29 (2019), no. 1, Paper No. 2, 25 pp.
[15] B. Singh, P. Bhadouria, O. Sikhwal, and K. Sisodiya, A formula for Tetranacci-like

sequence, Gen. Math. Notes 20 (2014), no. 2, 136–141.
[16] Y. Soykan, Gaussian generalized Tetranacci numbers, Journal of Advances in Mathe-

matics and Computer Science 31 (2019), no. 3, Article no. JAMCS.48063, 21 pp.
[17] A. Szynal-Liana, The Horadam hybrid numbers, Discuss. Math. Gen. Algebra Appl. 38

(2018), no. 1, 91–98.
[18] A. Szynal-Liana and I. Włoch, On Jacobsthal and Jacobsthal-Lucas hybrid numbers,

Ann. Math. Sil. 33 (2019), 276–283.
[19] M.E. Waddill, The Tetranacci sequence and generalizations, Fibonacci Quart. 30

(1992), no. 1, 9–20.
[20] M.E. Waddill and L. Sacks, Another generalized Fibonacci sequence, Fibonacci

Quart. 5 (1967), no. 3, 209–222.
[21] M.N. Zaveri and J.K. Patel, Binet’s formula for the Tetranacci sequence, International

Journal of Science and Research (IJSR) 5 (2016), no. 12, 1911–1914.

Yüksel Soykan
Department of Mathematics
Art and Science Faculty
Zonguldak Bülent Ecevit University
67100, Zonguldak
Turkey
e-mail: yuksel_soykan@hotmail.com

Erkan Taşdemir
Pınarhisar Vocational School of Higher Education
Kırklareli University
39300, Kırklareli
Turkey
e-mail: erkantasdemir@hotmail.com

https://arxiv.org/abs/1806.02231

	1. Introduction
	2. Generalized Tetranacci hybrid numbers and their generating functions, Binet's formulas and summations formulas
	3. Some properties of generalized Tetranacci hybrid numbers
	References

