Annales Mathematicae Silesianae **36** (2022), no. 2, 193–205 DOI: 10.2478/amsil-2022-0008

A FUNCTIONAL EQUATION WITH BIADDITIVE FUNCTIONS

Radosław Łukasik

Abstract. Let S, H, X be groups. For two given biadditive functions $A: S^2 \to X$, $B: H^2 \to X$ and for two unknown mappings $T: S \to H$, $g: S \to S$ we will study the functional equation

$$B(T(x), T(y)) = A(x, g(y)), \quad x, y \in S,$$

which is a generalization of the orthogonality equation in Hilbert spaces.

1. Introduction

Let H, K be unitary spaces. It is easy to check that, if $f: H \to K$ satisfies the orthogonality equation

(1.1)
$$\langle f(x)|f(y)\rangle = \langle x|y\rangle,$$

then f is a linear isometry (see, e.g. [6, Lemma 2.1.1 and the following Remark]).

The above equation was generalized in normed spaces X,Y by considering a norm derivative $\rho'_+(x,y) := ||x|| \cdot \lim_{t \to 0^+} \frac{||x+ty|| - ||x||}{t}$ instead of inner

Received: 12.01.2022. Accepted: 11.04.2022. Published online: 02.05.2022.

⁽²⁰²⁰⁾ Mathematics Subject Classification: 39B52, 20M15, 20K25, 20K30.

 $Key\ words\ and\ phrases:$ biadditive function, orthogonality equation, isometry, adjoint operator.

^{©2022} The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License CC BY (http://creativecommons.org/licenses/by/4.0/).

product, i.e.

(1.2)
$$\rho'_{+}(f(x), f(y)) = \rho'_{+}(x, y), \quad x, y \in X,$$

with an unknown function $f: X \to Y$. Note that if the norm comes from an inner product $\langle \cdot, \cdot \rangle$, we obtain $\rho'_{+}(x, y) = \langle x|y \rangle$.

The second way of generalization of the orthogonality equation in Hilbert spaces H, K is to look for the solutions of

$$\langle f(x)|g(y)\rangle = \langle x|y\rangle, \quad x, y \in H,$$

where $f, g: H \to K$ are unknown functions. Solutions of (1.2) and (1.3), can be found in the papers [1], [4], [2], [8].

In [5] authors give a natural generalization of such functional equations in the case of commutative groups. They consider biadditive mappings instead of inner products.

Another generalization of (1.3) we can find in the paper [7] where the author studies the equation

$$\langle f(x)|g(y^*)\rangle = \langle x|y^*\rangle, \quad x \in E, y^* \in E^*,$$

where $f: E \to F$, $g: E^* \to F^*$, E, F are Banach spaces, E^*, F^* are spaces dual to E and F respectively, and $\langle a|\varphi\rangle := \varphi(a)$.

In [3] we can find a different approach. Instead of taking two different functions on the left side of (1.3), we change only the right side of (1.3), so we obtain

$$\langle f(x)|f(y)\rangle = \langle x|g(y)\rangle, \quad x,y \in X,$$

with two unknown functions $f\colon X\to Y,\,g\colon X\to X.$

In this paper we generalize the above equation – we consider biadditive mappings instead of inner products.

2. Preliminaries

We start by recalling definition of multi-additive functions. By Perm(n) we denote the set of all bijections of the set $\{1, \ldots, n\}$.

DEFINITION 1. Let S be a semigroup, H be a group, $n \in \mathbb{N}$. The function $A \colon S^n \to H$ is called n-additive if

$$A(x_1, \dots, x_{i-1}, x_i + y, x_{i+1}, \dots, x_n)$$

$$= A(x_1, \dots, x_n) + A(x_1, \dots, x_{i-1}, y, x_{i+1}, \dots, x_n),$$

for all $y, x_1, ..., x_n \in S$ and $i \in \{1, ..., n\}$.

Moreover, A is called *symmetric* if

$$A(x_1,\ldots,x_n)=A(x_{\sigma(1)},\ldots,x_{\sigma(n)})$$

for all $x_1, \ldots, x_n \in S$ and $\sigma \in Perm(n)$.

Now we introduce some theory of the adjoint operator on groups.

DEFINITION 2. Let S, H, X be groups, $A: S^2 \to X$, $B: H^2 \to X$ be biadditive functions. Let further $T: S \to H$ and

$$D(T^*) := \{ v \in H : \exists_{y \in S} \forall_{x \in S} B(T(x), v) = A(x, y) \}.$$

A function $T^*\colon D(T^*)\to S$ is called a (B,A)-adjoint operator (to T) if and only if

$$B(T(x), v) = A(x, T^*(v)), x \in S, v \in D(T^*).$$

Remark 1. Let S,X be groups, $A\colon S^2\to X$ be a biad ditive function. We observe that

$$A(x,v) + A(x,y) + A(u,v) + A(u,y) = A(x,v+y) + A(u,v+y)$$

$$= A(x+u,v+y) = A(x+u,v) + A(x+u,y)$$

$$= A(x,v) + A(u,v) + A(x,y) + A(u,y), \quad x, y, u, v \in S,$$

so

$$A(x,y) + A(u,v) = A(u,v) + A(x,y), \quad x, y, u, v \in S.$$

Hence the group generated by the image of A is a commutative subgroup of X (so we can assume that X is commutative).

LEMMA 1 (see [5, Lemma 4]). Let S, H, X be groups, $A \colon S^2 \to X$, $B \colon H^2 \to X$ be biadditive functions. Let further $T \colon S \to H$ and $T^* \colon D(T^*) \to S$ be a (B,A)-adjoint operator to T,

$$(2.1) S_{AR} := \{ y \in S : \forall_{x \in S} A(x, y) = 0 \},$$

$$(2.2) S_{ALT^*} := \{ x \in S : \forall_{y \in \text{im } T^*} A(x, y) = 0 \},$$

$$(2.3) H_{BTR} := \{ v \in H : \forall_{u \in \text{im } T} B(u, v) = 0 \},$$

$$(2.4) H_{BLD^*} := \{ u \in H : \forall_{v \in D(T^*)} B(u, v) = 0 \}.$$

Then

- (a) S_{AR} , S_{ALT^*} are normal subgroups of S, $D(T^*)$, H_{BTR} , H_{BLD^*} are normal subgroups of H. Moreover in the case when X is torsion-free, if H is divisible, then H_{BTR} , H_{BLD^*} are divisible, if S is divisible, then S_{AR} , S_{ALT^*} are divisible, if S, H are divisible, then $D(T^*)$ is divisible;
- (b) $\forall_{x,y \in S} T(x+y) T(y) T(x) \in H_{BLD^*};$
- (c) $\forall_{x,y \in S} x y \in S_{ALT^*} \Leftrightarrow T(x) T(y) \in H_{BLD^*};$
- (d) $\forall_{u,v \in D(T^*)} T^*(u+v) T^*(v) T^*(u) \in S_{AR};$
- (e) $\forall_{u,v \in D(T^*)} u v \in H_{BTR} \Leftrightarrow T^*(u) T^*(v) \in S_{AR};$
- (f) $H_{BTR} \subset D(T^*);$
- (g) Let $\varkappa: S \to S/S_{AR}$ be a canonical homomorphism. Then the function $\widetilde{T}^*: D(T^*)/H_{BTR} \to \operatorname{im} T^*/S_{AR}$ given by

$$\widetilde{T}^*(u + H_{BTR}) = T^*(u) + S_{AR}, \quad u \in D(T^*),$$

is well-defined and it is an isomorphism.

PROOF. Proofs of (b)–(f) are in [5]. Let $v \in D(T^*)$, $x \in H$. From Remark 1 we have

$$B(T(x), x + v - x) = B(T(x), x) + B(T(x), v) - B(T(x), x)$$
$$= B(T(x), v) = B(x, T^*(v)),$$

so $D(T^*)$ is a normal subgroup of G (the rest of proofs of (a) are in [5]).

Let $u, v \in D(T^*)$ be such that $u - v \in H_{BTR}$. Then from (e) we have $T^*(u) - T^*(v) \in S_{AR}$, so $\widetilde{T^*}$ is well-defined. From (d) we obtain that $\widetilde{T^*}$ is a homomorphism. From (e) we obtain the injectiveness. Obviously $\widetilde{T^*}$ is surjective.

REMARK 2. If in the previous lemma S, H, X are linear spaces over some field \mathbb{K} and A, B are \mathbb{K} -linear, then $S_{AR}, S_{ALT^*}, D(T^*), H_{BTR}, H_{BLD^*}$ are linear spaces over \mathbb{K} .

DEFINITION 3. Let S, H, X be groups, $A: S^2 \to X, B: H^2 \to X$ be biadditive functions, $T: S \to H$. A function T is called an (A, B)-quasi isometry if

(2.5)
$$B(T(x), T(y)) = A(x, y), \quad x, y \in S.$$

A function T is called an (A, B)-isometry if T is bijective and satisfies (2.5).

LEMMA 2. Let H, X be groups, \widetilde{H} be a normal subgroup of $H, B: H^2 \to X$ be a biadditive function, the sets \widetilde{H}_{BL} , \widetilde{H}_{BR} be given by formulas

(2.6)
$$\widetilde{H}_{BL} = \{ x \in \widetilde{H} : \forall_{u \in \widetilde{H}} \ B(x, y) = 0 \},$$

$$\widetilde{H}_{BR} = \{ y \in \widetilde{H} : \forall_{x \in \widetilde{H}} \ B(x, y) = 0 \},$$

$$(2.8) \widetilde{H}_{B0} := \widetilde{H}_{BL} \cap \widetilde{H}_{BR}.$$

Then \widetilde{H}_{BL} , \widetilde{H}_{BR} , and \widetilde{H}_{B0} are normal subgroups of \widetilde{H} , the function $\widetilde{B}: (\widetilde{H}/\widetilde{H}_{B0})^2 \to X$ given by the formula

(2.9)
$$\widetilde{B}(x + \widetilde{H}_{B0}, y + \widetilde{H}_{B0}) := B(x, y), \quad x, y \in \widetilde{H},$$

is well-defined and it is biadditive.

PROOF. It is easy to observe that \widetilde{H}_{BL} , \widetilde{H}_{BR} , \widetilde{H}_{B0} are normal subgroups of \widetilde{H} . Let $x_1, x_2, y_1, y_2 \in \widetilde{H}$ be such that $x_2 - x_1, y_2 - y_1 \in \widetilde{H}_{B0}$. Then

$$B(x_2, y_2) = B(x_2 - x_1, y_2) + B(x_1, y_2) = B(x_1, y_2)$$
$$= B(x_1, y_2 - y_1) + B(x_1, y_1) = B(x_1, y_1),$$

so \widetilde{B} is well-defined. It is easy to observe that \widetilde{B} is biadditive.

Of course each (A,B)-isometry is an (A,B)-quasi isometry. The following result shows that for any (A,B)-quasi isometry there exists some $(\widetilde{A},\widetilde{B})$ -isometry connected with it.

THEOREM 1. Let S, H, X are groups, $A: S^2 \to X$, $B: H^2 \to X$ be biadditive functions, $T: S \to H$ be an (A, B)-quasi isometry, $\widetilde{H} = \langle \operatorname{im} T \rangle$. Let further \widetilde{H}_{B0} , S_{AR} be defined by (2.8) and (2.1),

$$S_{AL} := \{ x \in S : \forall_{y \in S} \ A(x, y) = 0 \},$$

 $S_{A0} = S_{AL} \cap S_{AR}.$

Then S_{AL} , S_{A0} are normal subgroups of S, the function $\widetilde{T}: S/S_{A0} \to \widetilde{H}/\widetilde{H}_{B0}$ given by the formula

$$\widetilde{T}(x+S_{A0}) := T(x) + \widetilde{H}_{B0}, \ x \in S,$$

is well-defined and it is an $(\widetilde{A}, \widetilde{B})$ -isometry, where \widetilde{A} , \widetilde{B} are defined by (2.9) (for \widetilde{A} we take B = A, $\widetilde{H} = S$ in the previous lemma).

PROOF. It is easy to observe that S_{AL} , S_{A0} are normal subgroups of S. Let $x, y \in S$. We observe that

$$A(x - y, z) = A(x, z) - A(y, z) = B(T(x), T(z)) - B(T(y), T(z))$$
$$= B(T(x) - T(y), T(z)),$$

so $x - y \in S_{AL} \Leftrightarrow T(x) - T(y) \in \widetilde{H}_{BL}$. In analogical way we can obtain that $x - y \in S_{AR} \Leftrightarrow T(x) - T(y) \in \widetilde{H}_{BR}$. Hence $x - y \in S_{A0} \Leftrightarrow T(x) - T(y) \in \widetilde{H}_{B0}$, so \widetilde{T} is well-defined and it is injective.

Let $v \in \widetilde{H}$, then there exist $k_1, \ldots, k_n \in \mathbb{Z}$, $x_1, \ldots, x_n \in S$ such that $v = \sum_{i=1}^n k_i T(x_i)$. Since for $x, y, z \in S$ we have

$$\begin{split} 0 &= A(x+y-y-x,z) = A(x+y,z) - A(y,z) - A(x,z) \\ &= B(T(x+y),T(z)) - B(T(y),T(z)) - B(T(x),T(z)) \\ &= B(T(x+y)-T(y)-T(x),T(z)), \\ 0 &= A(z,x+y-y-x) = A(z,x+y) - A(z,y) - A(z,x) \\ &= B(T(z),T(x+y)) - B(T(z),T(y)) - B(T(z),T(x)) \\ &= B(T(z),T(x+y)-T(y)-T(x)), \end{split}$$

then $T(x+y) - T(y) - T(x) \in \widetilde{H}_{B0}$. Hence we have

$$v + \widetilde{H}_{B0} = \sum_{i=1}^{n} k_i T(x_i) + \widetilde{H}_{B0} = T\left(\sum_{i=1}^{n} k_i x_i\right) + \widetilde{H}_{B0} = \widetilde{T}\left(\sum_{i=1}^{n} k_i x_i + S_{A0}\right),$$

which means that \widetilde{T} is surjective.

3. Main results

In this section we assume that S, H, X are groups, $A: S^2 \to X$, $B: H^2 \to X$ are biadditive functions, \widetilde{H} is a normal subgroup of $H, \widetilde{H}_{BL}, \widetilde{H}_{BR}, \widetilde{H}_{B0}, S_{AR}$ are given resp. by (2.6), (2.7), (2.8), (2.1).

Remark 3. Let $T: S \to H$, $g: S \to S$ satisfy the equation

(3.1)
$$B(T(x), T(y)) = A(x, g(y)), \quad x, y \in S.$$

Then we can assume that H is generated by im T.

THEOREM 2. Let $T: S \to H$, $g: S \to S$ satisfy equation (3.1), $\widetilde{H} := \langle \operatorname{im} T \rangle$, $T^*: H \to S$ be a (B, A)-adjoint operator to T. Then $\widetilde{H} \subset D(T^*)$,

$$T^*(T(y)) - g(y) \in S_{AR}, \quad y \in S.$$

Moreover, if $H = \widetilde{H}$ then $H_{BLD^*} = \widetilde{H}_{BL}$, $H_{BTR} = \widetilde{H}_{BR}$, where H_{BTR} , H_{BLD^*} are given respectively by (2.3), (2.4).

PROOF. From (3.1) we obtain that im $T \subset D(T^*)$, so $\widetilde{H} \subset D(T^*)$ and

$$\begin{split} A(x,T^*(T(y))-g(y)) &= A(x,T^*(T(y))) - A(x,g(y)) \\ &= B(T(x),T(y)) - B(T(x),T(y)) = 0, \quad x,y \in S. \end{split}$$

Hence $T^*(T(y)) - g(y) \in S_{AR}$.

Assume that $H = \widetilde{H}$. We notice that $H_{BR} \subset H_{BTR}$ and since $H = D(T^*)$, we get $H_{BL} = H_{BLD^*}$. Let $v \in H_{BTR}$. For $u \in H$ there exist $x_1, \ldots, x_n \in S$ and $k_1, \ldots, k_n \in \mathbb{Z}$ such that $u = \sum_{i=1}^n k_i T(x_i)$. Then

$$B(u,v) = B\left(\sum_{i=1}^{n} k_i T(x_i), v\right) = \sum_{i=1}^{n} k_i B(T(x_i), v) = 0,$$

so
$$v \in H_{BR}$$
.

Theorem 3. Let $T\colon S\to H$, $g\colon S\to S$ satisfy equation (3.1), $\widetilde{H}:=\langle \operatorname{im} T\rangle,\ T^*\colon H\to S$ be a (B,A)-adjoint operator to $T,\ \widetilde{H}_{BL}\subset \widetilde{H}_{BR}$. Then

$$(3.2) S_{ALT^*} \subset S_{ALg} := \{ x \in S : \forall_{y \in S} A(x, g(y)) = 0 \},$$

(3.3)
$$g(x+y) - g(y) - g(x) \in S_{AR}, \quad x, y \in S,$$
$$g(S_{ALT^*}) \subset S_{AR},$$

and T is an (A_1, B) -quasi isometry, where S_{ALT^*} is given by (2.2) and $A_1: S^2 \to X$ is given by the formula

(3.4)
$$A_1(x,y) = A(x,g(y)), \quad x,y \in S.$$

Moreover, if $\widetilde{H} = H$, then $S_{ALT^*} = S_{ALg}$.

PROOF. Using previous theorem we get $\langle \operatorname{im} g \rangle + S_{AR} \subset \langle \operatorname{im} T^* \rangle + S_{AR}$, so $S_{ALT^*} \subset S_{ALg}$ (when $\widetilde{H} = H$ we have $\langle \operatorname{im} g \rangle + S_{AR} = \langle \operatorname{im} T^* \rangle + S_{AR}$, so $S_{ALT^*} = S_{ALg}$).

Using Lemma 1 (b) we have also

$$A(z, g(x+y)-g(y) - g(x)) = A(z, g(x+y)) - A(z, g(y)) - A(z, g(x))$$

$$= B(T(z), T(x+y)) - B(T(z), T(y)) - B(T(z), T(x))$$

$$= B(T(z), T(x+y) - T(y) - T(x)) = 0, \quad x, y, z \in S.$$

Hence $g(x+y) - g(y) - g(x) \in S_{AR}$ for $x, y \in S$.

Let $x \in S$, $y \in S_{ALT^*}$. Then in view of Lemma 1 (c) we get $T(y) \in H_{BLD^*}$, so $T(y) \in \widetilde{H}_{BL} \subset \widetilde{H}_{BR}$. Hence we have

$$A(x, g(y)) = B(T(x), T(y)) = 0,$$

which means that $g(y) \in S_{AR}$.

For $x, y \in S$ we have

$$B(T(x), T(y)) = A(x, g(y)) = A_1(x, y),$$

which ends the proof.

The following example shows that the assumption $\widetilde{H}_{BL} \subset \widetilde{H}_{BR}$ is important in the previous theorem.

EXAMPLE 1. Let $S = H = \mathbb{Q}^2$, $X = \mathbb{Q}$, $g = (g_1, g_2) \colon S \to S$ be an arbitrary function, $f \colon S \to H$ be a function given by the formula

$$f(x) = (x_1 + x_2, g_2(x)), \quad x = (x_1, x_2) \in \mathbb{Q}^2.$$

Let further $B: H^2 \to X$, $A: S^2 \to X$ be functions given by formulas

$$B((x_1, x_2), (y_1, y_2)) = x_1 y_2, \quad x_1, x_2, y_1, y_2 \in \mathbb{Q},$$

$$A((x_1, x_2), (y_1, y_2)) = (x_1 + x_2) y_2, \quad x_1, x_2, y_1, y_2 \in \mathbb{Q}.$$

It is easy to see that A, B are biadditive and $S_{AR} = \mathbb{Q} \times 0$.

We have also

$$A(x,g(y)) = (x_1 + x_2)g_2(y) = B((x_1 + x_2, g_2(x)), (y_1 + y_2, g_2(y)))$$
$$= B(f(x), f(y)), \quad x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{Q}^2.$$

Hence (3.1) holds. Of course g_2 can be nonadditive, so there exist $x, y \in S$ such that $g(x+y) - g(y) - g(x) \notin S_{AR}$.

It is a natural question whether given a function T there exists a function g such that (T,g) satisfies equation (3.1). The lemma below gives us an answer for this question.

LEMMA 3. Let $T: S \to H$ be such that $\operatorname{im} T \subset D(T^*)$, where T^* is a (B,A)-adjoint operator to T. Then (T,g) satisfies equation (3.1), where $g = T^* \circ T: S \to S$.

Proof. We observe that

$$B(T(x), T(y)) = A(x, T^*(T(y))) = A(x, g(y)), \quad x, y \in S,$$

which ends the proof.

The second natural question is whether given a function g there exists a function T such that (T, g) satisfies equation (3.1).

LEMMA 4. Let $g: S \to S$ satisfies conditions (3.3), $g(S_{ALg}) \subset S_{AR}$ and there exists a subgroup \widetilde{H} of H such that there exists an (A_1, B) -quasi isometry $T: S \to \widetilde{H}$ where A_1 , S_{ALg} are given resp. by (3.4), (3.2). Then (T, g) satisfies (3.1).

PROOF. Let $x, y \in S$. Then

$$B(T(x), T(y)) = A_1(x, y) = A(x, g(y)),$$

which ends the proof.

In the previous lemma, in the case when S, H are unitary spaces and A, B are inner products, instead assuming the existence of an (A_1, B) -quasi isometry we can assume that g is positive and symmetric and there exists an isometry from S to some subspace of H (see [3, Theorem 8]). In general we do not have a similar result but we can write here the following

THEOREM 4. Let $g,h: S \to S$ be such that $\operatorname{im} h \subset D(h^*)$ and $g(x) - (h^* \circ h)(x) \in S_{AR}$ for $x \in S$, where $h^*: D(h^*) \to S$ is an (A,A)-adjoint operator to h. Assume that $\operatorname{im} h$ is (B,A)-isometric with some subset of H, i.e. there exists $I: S \to H$ such that

$$B(I(h(x)), I(h(y))) = A(h(x), h(y)), \quad x, y \in S.$$

Then (T,g) satisfies (3.1) with $T := I \circ h$.

Proof. We observe that

$$B(T(x), T(y)) = B(I(h(x)), I(h(y))) = A(h(x), h(y))$$

= $A(x, (h^* \circ h)(y)) = A(x, q(y)), \quad x, y \in S.$

The following example shows that we cannot reverse the previous theorem.

EXAMPLE 2. Let $S=H=X=\mathbb{Q}, A\colon S^2\to X, B\colon H^2\to X, g\colon S\to S,$ $T\colon S\to H$ be maps given by formulas

$$A(x,y) = xy, \quad x,y \in S, \quad B(x,y) = -xy, \quad x,y \in S,$$

$$g(x) = -x, \quad x \in S, \quad T(x) = x, \quad x \in S.$$

Then it is easy to see that (T,g) satisfies (3.1). Suppose that there exists a map $h: S \to S$ such that im $h \subset D(h^*)$, $g(x) - h^* \circ h(x) \in S_{AR}$, where $h^*: D(h^*) \to S$ is (A, A)-adjoint operator to h. Then

$$0 \le h(x)^2 = A(h(x), h(x)) = A(x, (h^* \circ h)(x))$$
$$= A(x, g(x)) = A(x, -x) = -x^2, \quad x \in S,$$

which gives us a contradiction.

We can also say something about the family of functions T which satisfy equation (3.1) with the same q.

THEOREM 5. Let $T_1, T: S \to H$, $g: S \to S$, (T,g) satisfies (3.1), $\widetilde{H} := \langle \operatorname{im} T_1 \rangle$. Then (T_1,g) satisfies (3.1) if and only if there exists a $(B|_{\langle \operatorname{im} T \rangle^2}, B)$ -quasi isometry $I: \langle \operatorname{im} T \rangle \to \langle \operatorname{im} T_1 \rangle$ such that $T_1(x) - I(T(x)) \in \widetilde{H}_{B0}$ for $x \in S$.

PROOF. Assume that (T_1, g) satisfies (3.1). For $x \in \langle \operatorname{im} T \rangle$ let $\varphi(x)$ be an arbitrary element of the set $x + \widetilde{H}_{B0}$. We define $I : \langle \operatorname{im} T \rangle \to \widetilde{H}$ by the formula

$$I\left(\sum_{i=1}^{n} k_i T(x_i)\right) := \varphi\left(\sum_{i=1}^{n} k_i T_1(x_i) + \widetilde{H}_{B0}\right), \quad k_1, \dots, k_n \in \mathbb{Z}, \ x_1, \dots, x_n \in S.$$

Let $k_1, \ldots, k_n, r_1, \ldots, r_n \in \mathbb{Z}, y, x_1, \ldots, x_n \in S$ and $\sum_{i=1}^n k_i T(x_i) = \sum_{i=1}^n r_i T(x_i)$. Then

$$0 = B\left(\sum_{i=1}^{n} k_i T(x_i) - \sum_{i=1}^{n} r_i T(x_i), T(y)\right)$$

$$= \sum_{i=1}^{n} k_i B\left(T(x_i), T(y)\right) - \sum_{i=1}^{n} r_i B\left(T(x_i), T(y)\right)$$

$$= \sum_{i=1}^{n} k_i A\left(x_i, g(y)\right) - \sum_{i=1}^{n} r_i A\left(x_i, g(y)\right)$$

$$= \sum_{i=1}^{n} k_i B\left(T_1(x_i), T_1(y)\right) - \sum_{i=1}^{n} r_i B\left(T_1(x_i), T_1(y)\right)$$

$$= B\left(\sum_{i=1}^{n} k_i T_1(x_i) - \sum_{i=1}^{n} r_i T_1(x_i), T_1(y)\right),$$

so $\sum_{i=1}^n k_i T_1(x_i) - \sum_{i=1}^n r_i T_1(x_i) \in \widetilde{H}_{BL}$. In analogical way we can prove that

$$\sum_{i=1}^{n} k_i T_1(x_i) - \sum_{i=1}^{n} r_i T_1(x_i) \in \widetilde{H}_{BR}.$$

Hence $\sum_{i=1}^{n} k_i T_1(x_i) - \sum_{i=1}^{n} r_i T_1(x_i) \in \widetilde{H}_0$, so I is well-defined. We have also

$$B\left(\sum_{i=1}^{n} k_{i} T(x_{i}), \sum_{j=1}^{n} r_{j} T(x_{j})\right) = \sum_{i=1}^{n} k_{i} \sum_{j=1}^{n} r_{j} B\left(T(x_{i}), T(x_{j})\right)$$

$$= \sum_{i=1}^{n} k_{i} \sum_{j=1}^{n} r_{j} B\left(T_{1}(x_{i}), T_{1}(x_{j})\right)$$

$$= B\left(\sum_{i=1}^{n} k_{i} T_{1}(x_{i}), \sum_{j=1}^{n} r_{j} T_{1}(x_{j})\right)$$

$$= B\left(\varphi\left(\sum_{i=1}^{n} k_{i} T_{1}(x_{i})\right), \varphi\left(\sum_{i=1}^{n} r_{j} T_{1}(x_{j})\right)\right),$$

so I is a $(B|_{(\operatorname{im} T)^2}, B)$ -quasi isometry. We have also

$$I(T(x)) + \widetilde{H}_{B0} = \varphi(T_1(x) + \widetilde{H}_{B0}) + \widetilde{H}_{B0} = T_1(x) + \widetilde{H}_{B0}, \quad x \in S,$$

so $T_1(x) - I(T(x)) \in \widetilde{H}_{B0}$ for $x \in S$.

Let $I: \langle \operatorname{im} T \rangle \to \widetilde{H}$ be a $(B|_{\langle \operatorname{im} T \rangle^2}, B)$ -quasi isometry such that $T_1(x) - I(T(x)) \in \widetilde{H}_{B0}$ for $x \in S$. Then

$$B(T_1(x), T_1(y)) = B(I(T(x)), I(T(y)))$$

= $B(T(x), T(y)) = A(x, g(y)), \quad x, y \in S,$

which ends the proof.

References

- [1] J. Chmieliński, Orthogonality equation with two unknown functions, Aequationes Math. **90** (2016), no. 1, 11–23.
- [2] R. Łukasik, A note on the orthogonality equation with two functions, Aequationes Math. 90 (2016), no. 5, 961–965.
- [3] R. Łukasik, Some orthogonality equation with two functions, Miskolc Math. Notes 18 (2017), no. 2, 953–960.
- [4] R. Łukasik and P. Wójcik, Decomposition of two functions in the orthogonality equation, Aequationes Math. 90 (2016), no. 3, 495–499.
- [5] R. Łukasik and P. Wójcik, Functions preserving the biadditivity, Results Math. 75 (2020), no. 3, Paper No. 82, 17 pp.
- [6] W. Mlak, Hilbert Spaces and Operator Theory, PWN-Polish Scientific Publishers, Warsaw, Kluwer Academic Publishers Group, Dordrecht, 1991.
- [7] M.M. Sadr, Decomposition of functions between Banach spaces in the orthogonality equation, Aequationes Math. 91 (2017), no. 4, 739–743.
- [8] P. Wójcik, On an orthogonality equation in normed spaces, Funct. Anal. Appl. 52 (2018), no. 3, 224–227.

Institute of Mathematics University of Silesia in Katowice Bankowa 14 40-007 Katowice Poland

e-mail: radoslaw.lukasik@us.edu.pl