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A FUNCTIONAL EQUATION
WITH BIADDITIVE FUNCTIONS

RADOSELAW L UKASIK

Abstract. Let S, H, X be groups. For two given biadditive functions A: §? —
X, B: H?> - X and for two unknown mappings T: S — H, g: S — S we will
study the functional equation

B(T(z),T(y)) = A(z,9(y)), =,y €S,

which is a generalization of the orthogonality equation in Hilbert spaces.

1. Introduction

Let H, K be unitary spaces. It is easy to check that, if f: H — K satisfies
the orthogonality equation

(1.1) (f@)]f(y) = (zly),

then f is a linear isometry (see, e.g. [0, Lemma 2.1.1 and the following Re-
mark]).

The above equation was generalized in normed spaces X,Y by consid-

. . . . tyll— . .
ering a norm derivative p/, (z,y) = |lz|| - lim w instead of inner

t—0+
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product, i.e.

(12) pif—(f(x%f(y)) :pii-(xvy)’ z,y € X,

with an unknown function f: X — Y. Note that if the norm comes from an
inner product (-, -), we obtain p/, (z,y) = (z|y).

The second way of generalization of the orthogonality equation in Hilbert
spaces H, K is to look for the solutions of

(1.3) (f(@)lg(y)) = (zly), w,y€H,

where f,g: H — K are unknown functions. Solutions of and (1.3]), can
be found in the papers [1, [4], [2], [8].

In [5] authors give a natural generalization of such functional equations in
the case of commutative groups. They consider biadditive mappings instead
of inner products.

Another generalization of we can find in the paper [7] where the
author studies the equation

(f(@)lg(y")) = (zly*), x€E,y" €k,

where f: E — F, g: E* — F*, E, F are Banach spaces, E*, F* are spaces
dual to F and F respectively, and (a|p) := ¢(a).

In [3] we can find a different approach. Instead of taking two different
functions on the left side of , we change only the right side of , SO
we obtain

(f@)|f(y) = (=lg(y)), =y€X,

with two unknown functions f: X - Y, g: X — X.
In this paper we generalize the above equation — we consider biadditive
mappings instead of inner products.

2. Preliminaries

We start by recalling definition of multi-additive functions. By Perm(n)
we denote the set of all bijections of the set {1,...,n}.
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DEFINITION 1. Let S be a semigroup, H be a group, n € N. The function
A: S™ — H is called n-additive if

A(l‘h e s Lj—1,T4 + Y, Ti41,--- ,l‘n)
= A(.:Cl, s 7xn) +A(£L'1,. sy Li—1, Y Tit1, - - ,I’n),

for all y,x1,...,2, € Sand i € {1,...,n}.
Moreover, A is called symmetric if

Az, .. ) = A(To(1), -+ Ton))
for all z,...,z, € S and o € Perm(n).
Now we introduce some theory of the adjoint operator on groups.

DEFINITION 2. Let S,H,X be groups, A: S> — X, B: H> — X be
biadditive functions. Let further 7: S — H and

D(T*) :={ve H: JyecsVres B(T(x),v) = A(z,y)}.

A function T*: D(T*) — S is called a (B, A)-adjoint operator (to T) if and
only if

B(T(z),v) = A(z, T*(v)), = € S, v e D(T*).

REMARK 1. Let S, X be groups, A: S? — X be a biadditive function. We
observe that

A(z,v) + A(z,y) + A(u,v) + A(u,y) = Az, v +y) + A(u,v + )
= Az +u,v+y) = Az +u,v)+ Az + u,y)
= A(z,v) + A(u,v) + A(z,y) + A(u,y), z,y,u,v €S,
S0
A(z,y) + A(u,v) = A(u,v) + A(z,y), x,y,u,v € S.

Hence the group generated by the image of A is a commutative subgroup of X
(so we can assume that X is commutative).
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LEMMA 1 (see [5, Lemma 4]). Let S, H, X be groups, A: S* — X, B: H> —
X be biadditive functions. Let further T: S — H and T*: D(T*) — S be
a (B, A)-adjoint operator to T,

(2.1) Sar:={y €S : Vyes A(z,y) = 0},

(2.2) Sarrs =={z €S : Vycimr A(z,y) = 0},
(2.3) Hprr :={v € H: VYycimr B(u,v) =0},
(2.4) Hprp- :={u € H : Vyepr-) B(u,v) = 0}.
Then

(a) Sar, Sarr+ are normal subgroups of S, D(T*), Herr, Hgrp~ are nor-
mal subgroups of H. Moreover in the case when X is torsion-free, if H
is divisible, then Hprr, Hprp~ are divisible, if S is divisible, then SR,
Sapr+ are divisible, if S, H are divisible, then D(T*) is divisible;

) VayesT(z+y) —T(y) —T(x) € Hprp-;

) Vowest —y € Sarr- < T(x) —T(y) € Hprp-;

d) quD(T*)T (u+wv) =T*(v) = T*(u) € Sar;

) w,vED(T*) U*UEHBTR@T*( ) T*<’U>€SAR,'

; HBTR C D(T*)

T D(T )/Hprr — imT*/Sagr given by
T*(u+ Hprg) = T*(u) + Sar, u € D(T*),
1s well-defined and it is an isomorphism.

PROOF. Proofs of (b)—(f) are in [5].
Let v € D(T*), z € H. From Remark [I| we have

B(T(z),z+v—2x)=B(T(z),z) + B(T(z),v) — B(T(z), x)
= B(T(z),v) = B(x, T*(v)),

so D(T*) is a normal subgroup of G (the rest of proofs of (] are in [5]).
Let u,v € D(T*) be such that w — v € Hprr. Then from @ we have

T*(u) — T*(v) € Sag, so T* is well-defined. From (d) we obtain that T+

is a homomorphism. From @ we obtain the injectiveness. Obviously T is
surjective. O
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REMARK 2. If in the previous lemma S, H, X are linear spaces over some
field K and A, B are K-linear, then Sagr, Sarr+«, D(T*), Hgrr, Hprp~ are
linear spaces over K.

DEFINITION 3. Let S, H, X be groups, A: S? — X, B: H> — X be biad-
ditive functions, T': S — H. A function T is called an (A, B)-quasi isometry if

(2.5) B(T(x),T(y)) = Az,y), =y€S.
A function T is called an (A, B)-isometry if T is bijective and satisfies (2.5)).

LEMMA 2. Let H, X be groups,j:f be a normal subgroup of H,B: H?> -+ X
be a biadditive function, the sets Hgy,, Hpr be given by formulas

(2.6) Hpy={xeH: VY, g B(zy) =0}
(2.7) I:’BR ={y e H: Vmeg B(z,y) = 0},
(2.8) Hpo := Hpr, N Hpg.

Then I:TNBL, fIBR, and I;TBO are normal subgroups of I:T, the function
B: (H/Hpo)?> — X given by the formula

(2.9) E(m+ﬁ30,y+ﬁ30) := B(x,y), z,y€H,
is well-defined and it is biadditive.

PROOF. It is easy to observe that Hp L, Hp R, H Bo are normal subgroups
of H. Let T1,T2,Y1,Y2 € H be such that To — X1,Ys — Y1 € HBO Then

B(z2,y2) = B(x2 — 21,y2) + B(w1,y2) = B(71,y2)
= B(z1,y2 —y1) + B(z1,y1) = B(x1,11),
so B is well-defined. It is easy to observe that B is biadditive. O

Of course each (A, B)-isometry is an (A, B)-quasi isometry. The following
result shows that for any (A, B)-quasi isometry there exists some (A, B)-
isometry connected with it.
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THEOREM 1. Let S, H,X are groups, A: S* — X, B: Ilf — X be biad-
ditive functions, T: S — H be an (A, B)-quasi isometry, H = (imT). Let
further Hpo, Sagr be defined by (2.8) and (2.1),

SAL = {1} €S: Vygg A(x,y) = 0},
Sao = Sar N Sar.

Then Sar, Sag are normal subgroups of S, the function T: S/Sa0 — ﬁ/ﬁBo
given by the formula

T(z + Sao) :==T(x) + Hpo, x € S,

is well-defined and it is an (A B) -isometry, where A B are defined by .
(for A we take B= A, H = S in the previous lemma,).

PROOF. It is easy to observe that Sy, Sa¢ are normal subgroups of S.
Let z,y € S. We observe that

Az —y,2) = Az, 2) — Ay, 2) = B(T(2),T(2)) = B(T(y),T(2))
= B(T(z) = T(y), T(2)),

sor—y€ Sar < T(x)— T(y) € Hpy. In analogical way we can obtain that
z—y € Sap e T(x)—T(y) € Hpg. Hence z—y € Sao < T(x)—T(y) € Hpo,
so T is well-defined and it is injective.

Let v € f[, then there exist ki,...,k, € Z, x1,...,x, € S such that

n
v= > k;T(x;). Since for x,y,z € S we have
i=1

A

r+y—y—ux,2)=Alxr+y,z2)— Aly,z) — Az, 2)
T(z+y),T(z)) — B(T(y), T(z)) — B(T(x),T(z))
T(x+y) —T(y) —T(x),T(2)),

(
B(
B(
(zyz+y—y—a)=Alz,z+y) — Alz,y) — Az, 2)
B(
B(

| \
X

T(z),T(z +y)) - B(T(2),T(y)) — B(T(2),T(x))
T(z),T(x +y) - T(y) - T(x)),
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then T'(x + y) — T(y) — T(x) € Hpo. Hence we have
'U—f—ﬁBo = Zle(xZ) +ﬁ30 = T(Zkle> +EBO :f<ZkZLI)Z +SAO),
i=1 i=1 i=1

which means that 7 is surjective. ([

3. Main results

In this section we assume that S, H, X are groups, A: S? - X,
B: H? — X are biadditive functions, H is a normal subgroup of H, Hpy,

ﬁBR, I:TBO, Sagr are given resp. by , , , .

REMARK 3. Let T: S — H, g: S — S satisfy the equation
(3.1) B(T(z), T(y)) = Az,9(y)), =zy€S.
Then we can assume that H is generated by im 7.

THEOREM 2. Let T: S — H, g: S — S satisfy equation (3.1)),
H:=({mT),T*: H— S be a (B, A)-adjoint operator toT. Then H C D(T*),

T*(T(y)) — g(y) € Sar, y€S.

Moreover, if H = H then Hprp~ = ﬁBL, Hprr = ﬁBR, where Hprg,

Hprp~ are given respectively by (2.3)), (2.4).
PROOF. From (B.1)) we obtain that im7 C D(T*), so H C D(T*) and

Az, T*(T(y)) — 9(y)) = A(z, T*(T'(y))) — Az, 9(y))
= B(T'(x),T(y)) = B(T(z),T(y)) =0, z,y€S.

Hence T*(T'(y)) — g(y) € Sar.
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Assume that H = H. We notice that Hpr C Hprg and since H = D(T™),
we get Hgy, = Hppp~. Let v € Hgrgr. For uw € H there exist x1,...,2, € S
n

and kq,...,k, € Z such that u = k;T(z;). Then
i=1

B(u,v) = B(ZkiT(a:i),v) = Z k;B(T(z;),v) =0,

sov € Hppg. O

THEOREM 3. Let T: S — H, g: S — S satisfy equation (3.1)),
H := (imT), T*: H — S be a (B, A)-adjoint operator to T, Hg, C Hpg.
Then

(3.2) Sarrs C Sapg :={x € 5: Vyes Az, g(y)) = 0},
(3.3) g(x+y)—g(y) —g(z) € Sar, =,y€S,
9(Sarr+) C Sar,

and T is an (A, B)-quasi isometry, where Sapr- is given by (2.2) and
Aq: S? — X is given by the formula

(3.4) Ay(z,y) = Az, 9(y)), z,y€S.
Moreover, zfﬁ] = H, then Sarr+ = Sarg-

PROOF. Using previous theorem we get (img) + Sag C (imT™*) 4+ Sag,
so Sarr+ C Sarg (when H = H we have (img) + Sar = (imT*) + Sag, so

Sarr = SaLg)-
Using Lemma (]ED we have also

Az, 9(z +y)—g(y) — g(z)) = Az, 9(z +y)) — A2, 9(y)) — A(=, 9(2))
=B(T'(2),T(z+y)) — B(T(2),T(y)) — B(T(2),T(x))
=B(T(2), T(x+y)—T(y) —T(x)) =0, =z,y,z€ 5.

Hence g(z +y) — g(y) — g(x) € Sag for z,y € S.
Let z € S,y € Sarr-. Then in view of Lemmall] (d) we get T'(y) € Hprp~,

so T'(y) € Hgr, C Hpr. Hence we have
Az, 9(y)) = B(T'(2),T(y)) =0,

which means that g(y) € Sag.
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For z,y € S we have

B(T(x),T(y)) = Az, g(y)) = A1z, y),

which ends the proof. O

The following example shows that the assumption H BL C H BR 1S impor-
tant in the previous theorem.

EXAMPLE 1. Let S = H = Q%, X = Q, g = (91,92): S — S be an
arbitrary function, f: S — H be a function given by the formula

f(@) = (21 + 22, 02(2)), @ = (21,22) € Q%
Let further B: H? — X, A: S? — X be functions given by formulas

B((x1,22), (y1,Y2)) = z1y2, x1,%2,y1,Y2 € Q,
A((z1,22), (V1,¥2)) = (x1 + x2)y2, T1,%2,y1,¥2 € Q.

It is easy to see that A, B are biadditive and Sar = Q x 0.
We have also

A(x,g(y)) = (21 + 22)92(y) = B((71 + 22, 92(2)), (y1 + Y2, 92(v)))
= B(f(z), f(y)), z=(z1,22),y = (y1,92) € Q°.

Hence ({3.1)) holds. Of course g, can be nonadditive, so there exist z,y € S
such that g(z +vy) — g(y) — g(x) ¢ Sar.

It is a natural question whether given a function 7" there exists a function
g such that (T, g) satisfies equation (3.1)). The lemma below gives us an answer
for this question.

LEMMA 3. Let T: S — H be such that imT C D(T*), where T* is
a (B, A)-adjoint operator to T. Then (T,g) satisfies equation (3.1)), where
g=T*oT:5—8S.

Proor. We observe that

B(T(x),T(y)) = Az, T*(T(y))) = Az, 9(y)), =x,y€S,

which ends the proof. O
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The second natural question is whether given a function g there exists a
function T such that (T, g) satisfies equation (3.1)).

LEMMA 4. Let g: S — S satisfies conditions (3.3)), g(Sarg) C Sar and
there exists a subgroup H of H such that there exists an (A1, B)-quasi isom-

etry T: S — H where A1, Sarg are given resp. by (3.4), (3.2). Then (T, g)
satisfies (3.1)).

PROOF. Let z,y € S. Then
B(T(z),T(y)) = Ai(z,y) = A(z, 9(y)),

which ends the proof. O

In the previous lemma, in the case when S, H are unitary spaces and
A, B are inner products, instead assuming the existence of an (A;, B)-quasi
isometry we can assume that g is positive and symmetric and there exists an
isometry from S to some subspace of H (see [3, Theorem 8|). In general we
do not have a similar result but we can write here the following

THEOREM 4. Let g,h: S — S be such that imh C D(h*) and g(x) —
(h* o h)(x) € Sagr for x € S, where h*: D(h*) — S is an (A, A)-adjoint
operator to h. Assume that imh is (B, A)-isometric with some subset of H,
i.e. there exists I: S — H such that

B(I(h(x)), I(h(y))) = A(h(z),h(y)), w,y€S.
Then (T, g) satisfies with T =1 o h.
PrOOF. We observe that
B(T(x),T(y)) = B(I(h(z)),I(h(y))) = A(h(z), h(y))
= Az, (h" o h)(y)) = Az, 9(y)), =,y €S O
The following example shows that we cannot reverse the previous theorem.

EXAMPLE 2. Let S=H=X=Q, A: 5?2 - X,B: H> - X,g9: S = S,
T:S — H be maps given by formulas

A(.T,y) =2y, X,Y€ Sv B(x,y) = -2y, T,Y€ Sa

glx)=—z, z€8, Tx)==z =zeb.
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Then it is easy to see that (7,g) satisfies (3.1)). Suppose that there exists
a map h: S — S such that imh C D(h*), g(x) — h* o h(x) € Sar, where
h*: D(h*) — S is (A, A)-adjoint operator to h. Then

0 < h(z)? = A(h(z), h(z)) = A(z, (h* o h)(z))
= A(z,9(z)) = A(z, —2) = —2%, z €S,
which gives us a contradiction.

We can also say something about the family of functions 7" which satisfy
equation (3.1)) with the same g.

THEOREM 5. Let T1,T: S — H, g: S — S, (T, g) satisfies (3.1)), H =
(imT1). Then (11, g) satisfies if and only if there exists a (B|im1)2, B)-
quasi isometry I: (imT) — (mTy) such that Ty(z) — I(T(z)) € Hgo
forx e S.

PROOF. Assume that (77, g) satisfies (3.1)). For x € (imT') let p(x) be an
arbitrary element of the set x + Hpo. We define I: (imT') — H by the formula

I(Zsz($z)) = @(Zkﬂ](xz) +I§BO>7 ]{71,. . .7kn S Z, T1,...,Tp € S.
=1 i=1

Let ki,... kn,71,. sty €EZ, Yy, 21,...,2, €S and Y k;T(x;) = > riT(x;).
i=1 i=1
Then

= B( Y KiT(w) = 3 riT(@) 7))

:Z (T1<~7fz Tl(y Zﬁ Tl -Tz Tl( ))

= B(i (x;) — ZriTl(xi)aTl(y))y

=1
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so Y. kiTy(x;) — > riTi(x;) € Hp;. In analogical way we can prove that
i=1 i=1

Z k‘iTl (xl) — ZTz’TI(Ii) € fIBR.
=1

i=1

Hence > k;Th(x;) — > riTi(x;) € ﬁo, so I is well-defined. We have also

i=1 i=1

B(ikZT(x,),zn: ) Zk Zr] :c]))

so I is a (B|m1)2, B)-quasi isometry. We have also
I(T(x)) + Hpo = ¢(T1(x) + Hpo) + Hpo = Ty (z) + Hpo, z €S,

so Ty(x) — I(T(x)) € AI:;TBO for z € S.
Let I: (imT) — H be a (B|imr)2, B)-quasi isometry such that T3 (z) —
I(T(z)) € Hpy for 2 € S. Then

B(Ti(x), T1(y)) = B(I (T(x)), 1(T(y)))
= B(T(z),T(y)) = A(z,9(y)), =,y€S,

which ends the proof. O
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