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A GENERAL FIXED POINT THEOREM FOR TWO PAIRS
OF ABSORBING MAPPINGS IN Gp-METRIC SPACES

VALERIU Pora

Abstract. A general fixed point theorem for two pairs of absorbing mappings
satisfying a new type of implicit relation ([37]), without weak compatibility in
Gp-metric spaces is proved. As applications, new results for mappings satisfy-
ing contractive conditions of integral type and for ¢-contractive mappings are
obtained.

1. Introduction

Let (X, d) be a metric space and S, T be two self mappings of X. In [19],
Jungck defined S and T' to be compatible if

lim d(STz,,TSz,) =0,

n— oo

whenever {z,} is a sequence in X such that

lim Sz, = lim Tx, =t,
n— oo n—oo
for some t € X.
This concept has been frequently used to prove existence theorems in fixed
point theory.
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Let f, g be self mappings of a nonempty set X. A point x € X is a coinci-
dence point of f and g if fz = gx. The set of all coincidence points of f and
g is denoted by C(f,g).

The study of common fixed points for noncompatible mappings is also
interesting, the work in this regard being initiated by Pant in [30]-[32].

Aamri and El-Moutawakil ([I]) introduced a generalization of noncompat-
ible mappings.

DErFINITION 1.1 ([1]). Let S and T be self mappings of a metric space
(X,d). We say that S and T satisfy (E.A)-property if there exists a sequence
{z,} in X such that

lim Sz, = lim Tz, =t,
n—oo n—oo

for some t € X.

REMARK 1.2. It is clear that two self mappings S and T of a metric
space (X, d) are noncompatible if there exists a sequence {z,} in X such that
lim,, 00 Sy, = limy, o0 T, = t for some t € X, but lim,,—, oo d(STxy, T'Sxy,)
is nonzero or does not exist. Therefore, two noncompatible self mappings of a
metric space (X, d) satisfy (E.A)-property.

In 2005, Liu et al. (J23]) defined the notion of common (E.A)-property.

DEFINITION 1.3 (|23]). Two pairs (A, S) and (B, T) of self mappings on a
metric space (X, d) are said to satisfy common (E.A)-property if there exist
two sequences {z,} and {y,} in X such that

lim Az, = lim Sz, = lim By, = lim Ty, =t,
n—00 n—o00 n—00 n—00

for some t € X.

There exists a vast literature concerning the study of fixed points for map-
pings satisfying common (FE.A)-property.

In 2011, Sintunavarat and Kumam ([48]) introduced the concept of com-
mon limit range property.

DEFINITION 1.4 ([48]). A pair (A, S) of self mappings on a metric space
(X, d) is said to satisfy common limit range property with respect to S, denoted
CLRg)-property, if there exists a sequence {z,} in X such that

lim Az, = lim Sz, =t,
n—oo n—oo

for some t € S (X).
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Thus, we can infer that a pair (A, S) satisfying (E.A)-property, along with
the closedness of the subspace S (X), always has C'LRg)-property.

Recently, Imdad et al. ([I7]) extended the notion of common limit range
property for two pairs of mappings in metric spaces.

DErFINITION 1.5 ([I7]). Two pairs (A, S) and (B,T) of self mappings of
a metric space (X,d) are said to satisfy common limit range property with
respect to S and T, denoted C' LR g 1)- property, if there exist two sequences
{z,} and {y,} in X such that

lim Az, = lim Sz, = lim By, = lim Ty, =t,
n—o0 n—oo n— 00 n—00

for some t € S (X)NT (X).

Some results for pairs of mappings satisfying CLRs)- and CLR g 1)-
property are obtained in [15], [16], [I8] and in other papers.

Quite recently, the present author introduced in [37] a new type of common
limit range property.

DEFINITION 1.6 ([37]). Let A, S and T be self mappings of a metric space
(X,d). The pair (A,S) is said to satisfy common limit range property with
respect to T', denoted CLR (4 s)p-property, if there exists a sequence {z,} in
X such that

lim Az, = lim Sz, =t,
n—oo n—oo

for some t € S(X)NT(X).

REMARK 1.7 ([37]). Let A, B, S and T be self mappings of a metric space
(X,d). If (A, S) and (B, T) satisfy C LR g 1)-property, then A, S and T satisfy
CLRa,s)r-property.

DEFINITION 1.8 (|22]). An altering distance is a function 9: [0,00) —
[0,00) such that
(11) 1 is increasing and continuous,

(12) ¥(t) =0 if and only if t = 0.

Fixed point theorems involving altering distances have been studied in
[38], [44], [45] and in other papers.
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The notion of almost altering distance is introduced in [41].

DEFINITION 1.9 ([41]). A function ¢: [0,00) — [0, 00) is an almost altering
distance if

(11) 1 is continuous,
(12) (t) = 0 if and only if ¢ = 0.

2. Preliminaries

In [IT], [I2] Dhage introduced a new class of generalized metric spaces
named D-metric spaces. Mustafa and Sims (28], [29]) proved that most of
the claims concerning the fundamental topological structures on D-metric
spaces are incorrect and introduced an appropriate notion of generalized met-
ric space, named G-metric spaces. In fact, Mustafa, Sims and other authors
studied many fixed point results for self mappings in G-metric spaces under
certain conditions in [27]-[29], [47] and in other papers.

DEFINITION 2.1 ([29]). Let X be a nonempty set and G: X® — R, be a
function satisfying the following properties:

(Gh) G(z,y,2) =0if x =y = 2,

(G2) 0 < G(z,x,y) for all x,y € X with z # y,

(G3) G(z,y,y) < G(x,y,z2) for all z,y,z € X with z # y,

(G4) G(z,y,2) = G(y, z,x) = ... (symmetry in all three variables),

(Gs) G(z,y,2) < G(z,a,a)+G(a,y,2) for all z,y, z,a € X (triangle inequal-
ity).

The function G is called a G-metric on X and (X, Q) is called a G-metric
space.

REMARK 2.2. Let (X,G) be a G-metric space. If y = z, then G (z,y,y)
is a quasi-metric on X ([36, Lemma 2.1]). Hence, (X, Q), where Q(z,y) =
G(z,y,y) is a quasi-metric and since every metric space is a particular case
of quasi-metric space it follows that the notion of G-metric space is a gener-
alization of a metric space.

In 1994, Matthews (|25]) introduced the notion of partial metric space as
a part of study of denotional semantics of dataflows networks and proved the
Banach contraction principle in such spaces.

Quite recently, in [4], [9], [10], [20], |2I] and in other papers, some fixed
point theorems under various contractive conditions in partial metric spaces
have been proved.
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DEFINITION 2.3 (|25]). Let X be a nonempty set. A function p: X2 — R
is said to be a partial metric on X if for all z,y,z € X:
(P1) pla,x) = p(z,y) = p(y,y) if and only if 2 =y,
(P2) p(z,x) <p(z,y),
(Ps) p(z,y) = p(y, ),
(P4) p(z,2) < plz,y) +p(y,2) —p(y,y)-
The pair (X, p) is called a partial metric space.

REMARK 2.4. Obviously, every metric space is a partial metric space.

Quite recently, Ahmadi Zand and Dehghan Nezhad ([2]) introduced a gen-
eralization and unification of G-metric spaces and partial metric spaces, named
G, -metric spaces. Some fixed point results in G,-metric spaces are obtained
in [5]-[7], [33] and in other papers.

DEFINITION 2.5 ([2,33]). Let X be a nonempty set. A function G,,: X3 —
Ry is called a G,-metric on X if the following conditions are satisfied:
(Gpl) rL=Yy==z lf Gp(x7y7 Z) - Gp(m,x,a:) = Gp(yvyvy) = GP(Zv 2, Z)a
(Gp2) 0 < Gplz,z,2) < Gp(z,z,y) < Gp(z,y,2) for all z,y,z € X with

y # 2,
(Gp3) Gp(z,y,2) = Gp(y, z,x) = ... (symmetry in all three variables),
(Gpa) Gp(z,y,2) < Gp(z,a,a) + Gpa,y, z) for all z,y,z,a € X.

—~

The pair (X, G,) is called a G,-metric space.

LEMMA 2.6 ([5]). Let (X,G)p) be a Gp-metric space. Then:
1) if Gp(x,y,2) =0, thenx =y = z,
2) if x #y, then G, (x,y,y) > 0.

DEFINITION 2.7 ([5]). Let (X,G,) be a Gp-metric space and {z,} be
a sequence of points in X. A point € X is said to be the limit of the
sequence {x,}, denoted by x,, — z, if limy, oo Gp(T, Tn, Tm) = Gp(z, x, x).
Then the sequence {z,} is called G)-convergent to x.

LEMMA 2.8 ([B]). Let (X,G)p) be a G,-metric space. Then, for any {z,}
in X and x € X, the following conditions are equivalent:
a) {z,} is G,-convergent to z,
b) Gp(xn, Tn,z) = Gp(z,z,z) as n — oo,
c) Gp(zy,z,x) = Gp(x,x,x) as n — oo.

LEMMA 29 ([B]). If =z, — =z in a Gp-metric space (X,Gp) and
Gp (z,z,z) =0, then for every y € X
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a) limy, o0 Gp(Tn,y,y) = Gp(z, 9, ),
b) hmn—)oo Gp(x’nv 'I’n? y) = GP(:U7 xv y)

DEFINITION 2.10 (J46]). Let A, S and T be self mappings of a G,-metric
space (X,G,). The pair (A, S) satisfy (A,S) common limit range property
with respect to T, if there exists a sequence {z, } in X such that

lim Az, = lim Sz, ==z
n— o0 n—oo

for some z € S(X)NT (X) with G, (2, 2,2) = 0.

The notion of absorbing mappings is introduced in [13],[14] 26] and in other
papers.
We introduce the notion of absorbing mapping in G -metric spaces.

DEFINITION 2.11. Let A and S be self mappings of a G-metric space
(X,Gp). Then

1) Ais called S absorbing if there exists R > 0 such that
Gp (Sz,SAx, SAz) < RG), (Sx, Az, Azx), Vx € X.

Similarly, S is A absorbing.
2) A is called pointwise S absorbing if for given x € X, there exists R > 0
such that

Gp (Sz,SAx,SAx) < RG), (Sz, Az, Az) .

Similarly, S is pointwise A absorbing.

3. Implicit relations

Several classical fixed point theorems and common fixed point theorems
have been unified considering a general condition by an implicit relation in
[34, [35] and in other papers.

The study of fixed points for a pair of mappings satisfying an implicit
relation in G-metric spaces is initiated in [39] and [40].

The study of fixed points for a pair of mappings with common limit range
property satisfying implicit relations is initiated in [15].

The study of fixed points for pairs of mappings with common limit range
property in G-metric spaces is initiated in [41].
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Recently, fixed point results for mappings satisfying an implicit relation in
partial metric spaces are obtained in [49].
Fixed point theorems for mappings satisfying implicit relations in G-
metric spaces are obtained in [42] [43].
In 2008, Ali and Imdad ([3]) introduced a new type of implicit relations.
Let F be the family of lower semi-continuous functions F': R} — R satis-
fying the following conditions:
(Fy) F(t,0,t,0,0,t) > 0, Vt > 0,
(Fy) F(t,0,0,t,t,0) > 0, ¥Vt > 0,
(F3) F(t,t,0,0,¢t,t) >0, Vt > 0.

ExAMPLE 3.1. F(tl, . ,tﬁ) =11 — kmax {tg,tg,. .. ,t6}, where k € [0,1)
t t
ExaMPLE 3.2. F(tl,...,tﬁ) = {1 — kmax{tg,tg,t4,5;6}, where
ke 0,1).

t3+1ts ts+1is
2 7 2

EXAMPLE 3.3. F(t1,...,ts) = t1 — kmax {tg,
ke0,1).

} , Where

EXAMPLE 3.4. F(t1,...,ts) = t1—ato—bmax{ts, t4} —cmax{ts,ts}, where
a,b,c>0anda+b+c< 1.

EXAMPLE 3.5. F(tl, N ,tﬁ) ={; — amax {tz,tg,t4} — (1 — Oé) (at5 + btﬁ),
where o € (0,1), a,b >0 and a + b < 1.

EXAMPLE 3.6. F(t1,...,ts) =t1 — ata — b(t3 + t4) — cmin {t5, ts}, where
a,b,c>0anda+b+c< 1.

b(ts + te)

EXAMPLE 3.7. F(t1,....,tg) = t1 — ato —
(17 76) 1 ato 1+t3+t4,

a+2b<1.

where a,b > 0 and

EXAMPLE 3.8. F(t1,...,ts) = t1 — max{cto, cts, cty, ats + btg}, where ¢ €
(0,1), a,b>0and a+b < 1.

Other examples are in [15].

The purpose of this paper is to prove a general fixed point theorem for
two pairs of absorbing mappings satisfying a new type of common limit range
property in Gp-metric spaces. As applications we obtain new results for map-
pings satisfying contractive conditions of integral type and for y-contractive
mappings.
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4. Main results

THEOREM 4.1. Let A,B,S and T be self mappings of a G,-metric space
(X,Gyp) such that

(4 1) F(d) (Gp(Ax7 BZ/, By)) 7’(/} (GP(S‘T“J TZ/,T?J)) 7’(/} (G;D(Ax7 S.’L’, S.’,C)) )
¥ (Gp(Ty, By, By)) ;¥ (Gy(Sx, By, By)) , ¢ (Gy(Az, Ty, Ty)) ) <0
for all x,y € X, where F € F and 1 is an almost altering distance.
If (A,S) and T satisfy CLR (4 syr-property, then C (A, S) # 0 # C(B,T).

Moreover, if A is pointwise S absorbing and B is pointwise T absorbing,
then A, B, S and T have a unique common fized point z with G, (z, z,z) = 0.

PROOF. The proof that Bu = Tu = z = Av = Sv for some u,v € X and
z € S(X)NT(X) with G,(z,2,2) =0 is similar to the first part of the proof
of |46, Theorem 4.1]. Fix now the points u, v, z satisfying these properties.

If A is pointwise S absorbing, there exists R; > 0 such that

Gp (Sv, SAv, SAv) < R1G,, (Sv, Av, Av) = R1G) (2,2, 2) = 0.

Hence, by Lemma (1), z=Sv=5Av = Sz and z is a fixed point of S.
By (4.1) for x = z and y = u we obtain

F (¢ (Gp(Az, Bu, Bu)) , ¥ (Gp(Sz, Tu, Tu)) , v (Gp(Az, Sz, 5z)),
¥ (Gp(Tw, Bu, Bu)) , ¢ (Gy(Sz, Bu, Bu)) , ¢ (Gp(Az, Tu, Tu)) ) <0,
F (¥ (Gp(Az, 2,2)),0,9 (Gp(Az,2,2)),0,0,¢ (Gy(Az, 2,2)) ) <0,
a contradiction of (Fy) if ¢ (Gp(Az, z,2)) > 0. Hence, G,(Az, z,z) = 0 which
implies by Lemma (1) that z = Az = Sz. Therefore, z is a common fixed

point of A and S with G(z,z,z) = 0.
If B is pointwise T' absorbing, there exists Ry > 0 such that

Gy, (Tu,TBu,TBu) < RyGp, (Tu, Bu, Bu) = RyG, (2,2,2) = 0.

Hence, z =Tu =TBu =Tz and z is a fixed point of T.
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By (4.1) for x = v and y = z we obtain
F (¢ (Gp(Av, Bz, B2)) , ¢ (Gp(Sv,Tz,T%?)) , ¢ (Gp(Av, Sv, Sv))
Y (Gp(T'2, Bz, Bz)) ;4 (Gp(Sv, Bz, Bz)) , ¥ (Gp(Av, Tz, Tz)) ) <0,

F(¢ (Gp(z, Bz, Bz)),0,0,v (Gp(z, Bz, Bz)) ,¢ (G,(z, Bz, Bz)),0) <0,
a contradiction of (Fy) if ¢ (Gp(2, Bz, Bz)) > 0. Hence, Gp(2,Bz,Bz) = 0
which implies z = Bz = Tz and z is a common fixed point of B and T with
G(z,z,2) = 0.

Hence, z is a common fixed point of A, B, S and T with Gy, (2, z,2) = 0.

Suppose that there exists another common fixed point z; for A, B, S and
T with G, (21,21, 21) = 0. Then, by (4.1)) we obtain

F (¢ (Gp(Az, Bz1, Bz1)) , ¢ (Gp(Sz, Tz, Tz1)) , ¥ (Gp(Az, Sz, Sz)),
Y (Gp(T21, Bz, Bz1)) , ¢ (Gp(Sz, Bz1, B21)) 1 (Gp(Az, Tz, T2)) ) <0,
F($ (Gylz,21,21)) 0 (Gp(2,21,21)) , 0,0,
P (Gp(z,21,21)), ¢ (Gp(z,21,21)) ) <0,

a contradiction of (F3) if ¢ (Gp(z, z1,21)) > 0. Hence, Gp(z, 21, 21) = 0 which
implies by Lemma (1) that z = z;. Hence, z is the unique common fixed
point of A, B, S and T with G, (2, 2,2) = 0. O

REMARK 4.2. In [46, Theorem 4.1], the fact that z is the unique point of co-
incidence of (A4, S) and (B, T') must be completed with the additional assump-
tion, namely that G,(Sz, Sz, Sz) = 0forx € C(A,S) and G,(Ty, Ty, Ty) =0
forye C(B,T).

A similar remark refers to [46, Theorems 4.2, 5.2-5.5].

If ¢ (t) = t, by Theorem we obtain

THEOREM 4.3. Let A,B,S and T be self mappings of a G,-metric space
(X,G)p) such that

F(Gp(Ax,By,By),Gp(Sx,Ty,Ty),Gp(A.’E,Sm,Sm),
GP(Ty’ Bya By)7GP(SxaBya By),Gp(AfE,Tny?J)) S 0

for all x,y € X and some F € F.
If (A,S) and T satisfy CLR(4 syr-property, then C (A, S) # 0 # C(B,T).
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Moreover, if A is pointwise S absorbing and B is pointwise T absorbing,
then A, B, S and T have a unique common fized point z with G, (z, z,z) = 0.

THEOREM 4.4. Let A,B,S and T be self mappings of a G,-metric space
(X,Gp) such that

Gp(Ax, By, By) < kmax {Gp(Sar, Ty, Ty),Gy(Az, Sz, Sx),
Gp(Ty7 By-; By)v GP(SJ:7 BZ/7 By)7 Gp(A;L‘7 Tyv Ty)}7

for all x,y € X, where k € [0,1).
If (A, S) and T satisfy CLR 4, s)yp-property, then C(A,S) #0 #C(B,T).
Moreover, if A is pointwise S absorbing and B is pointwise T absorbing,
then A, B, S and T have a unique common fized point z=0 with G,(z, z, z) =0.

PROOF. It follows by Theorem and Example O

EXAMPLE 4.5 (J46]). Let X = [0,1] with G, (z,y, 2) = max {z, y, z}. Then

(X,Gp) is a Gp-metric space. Let Az = 0, Sz = %, Bx = g, Txr = .
x

Then S(X) = [0,3], T(X) = [0,1], S(X)NT (X) = [0,3]. Let {z,} be a

) )
sequence in X such that lim,,_, . x,, = 0. Then,

lim Az, = lim Sz, =2=0€ S (X)NT(X)
n—oo n—oo
and Gy, (z,2,2) = 0. Hence, (A,S) and T satisfy CLR(4 s)r-property. Note
that
x x

Gy (Sz,SAz, SAz) = ==, Gy (Sw, Az, Av) = ——.

Hence,
Gp (Sz,SAz, SAz) < RiGp, (Sx, Az, Ax) for Ry > 1.
Thus, A is pointwise S absorbing. We have also
Gp Tz, TBx,TBx) =z, Gp(Tz,Bz,Bz)=x.
Hence,
Gp (Tz,TBx,TBx) < RyG), (Tx, Bz, Bx) for Ry > 1.

Thus, B is T pointwise absorbing.
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On the other hand,
Gy (Az, By, By) = % G (Ty, By, By) = y.
Hence,
Gy (Az, By, By) < kG, (T'y, By, By)
for k € [3,1), which implies
G)p (Az, By, By) < kmax {Gp (Sz,Ty,Ty),Gp (Az, Sz, Sx),
Gy (Ty, By, By) , Gy (S, By, By) , G, (A, Ty, Ty) }

1
for k € {3, 1). By Theorem [4.4] A, B,S and T have a unique common fixed
point z = 0 with G}, (2, 2, z) = 0.

5. Applications

5.1. Fixed points for mappings satisfying contractive
conditions of integral type in Gp-metric spaces

In [8], Branciari established the following theorem, which opened the way
to the study of fixed points for mappings satisfying contractive conditions of
integral type.

THEOREM 5.1 ([8]). Let (X,d) be a complete metric space, ¢ € (0,1) and
f: X — X such that for all x,y € X,

d(f,fy) d(w,y)
/ h(t)dt < c/ h(t)dt,
0 0

whenever h: [0,00) — [0,00) is a Lebesgue measurable mapping which is sum-
mable (i.e. with finite integral) on each compact subset of [0,00), such that
Js h(t)dt >0 for all e > 0.

Then f has a unique fixed point z such that for allx € X, z = lim,, o f™x.

Some fixed point theorems for mappings satisfying contractive conditions
of integral type are obtained in [3§].
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LEMMA 5.2. Let h: [0,00) — [0,00) be as in Theorem |5.1. Then
fo x)dx is an almost altering distance.

PrOOF. It follows by [38, Lemma 2.5]. O

THEOREM 5.3. Let A,B,S and T be self mappings of a G,-metric space
(X,G)p) such that

Gp(Az,By,By) Gp(Sz,Ty,Ty)
(5.1) F(/ h(#) dt,/ h () dt,
0 0
Gp(Ax,Sz,Sx) G,(Ty,By,By)
/ h(t) dt, / h(t) dt,
0 0

GP(vaBvay) GP(Am7Ty7Ty)
/ h (1) d, / h(t) dt> <0
0 0

for all z,y € X, where F € F and h(t) is as in Theorem[5.1 If (A,S) and
T satisfy CLR (4, gyr-property, then C (A, S) #0 # C(B,T).

Moreover, if A is pointwise S absorbing and B is pointwise T absorbing,
then A, B, S and T have a unique common fized point z with G, (z, z,z) = 0.

PROOF. By Lemma v (t) = fot h(z)dz is an almost altering distance.
Then

G, (Az,By,By)
/ R0 dt = 0 (Gy (Av. By, By)

Gp(Sz,Ty,Ty)
/ h(t)dt = (G, (Sz. Ty, Ty))

o

Gp(Az,Sz,Sx)
/ h(t)dt = (G, (Azx, Sz, Sx)),

0

G, (Ty,By,By)
/ h(t)dt = 1 (G, (Ty, By, By)).
0

Gp(Sz,By,By)
/ h(t)dt = (Gp (Sz, By, By)) ,
0

Gp(Az,Ty,Ty)
/ h(t)dt = & (G, (Az, Ty, Ty)).

(e}
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By we obtain
F(x/) (Gp (Az, By, By)), v (G, (Sz, Ty, Ty)) ,¢ (G, (Az, Sz, Sx)),
¥ (Gp (Ty, By, By)) , % (G, (S, By, By)) , ¢ (G, (Az, Ty, Ty)) ) <0,

which is inequality (4.1). Hence, the conditions of Theorem are satisfied
and Theorem [5.3] follows by Theorem O

By Theorem [5.3] and Example [3.1] we obtain

THEOREM 5.4. Let A,B,S and T be self mappings of a Gp-metric space
(X,Gyp) such that for all x,y € X,

GP(AmvBvay) G:D(vaTvay)
/ h(t)dtgkmax{/ h(t) dt,
0 0
Gp(Az,Sz,Sx) G,(Ty,By,By)
/ h(t) dt, / h(t) dt,
0 0

Gy (Sz,By,By) Gy (Az,Ty,Ty)
/ h (1) dt,/ h(t) dt},
0 0

where k € [0,1) and h(t) is as in Theorem [5.1 If (A,S) and T satisfy
CLR 4, syr-property, then C(A,S) # 0 #C(B,T).

Moreover, if A is pointwise S absorbing and B is pointwise T absorbing,
then A,B,S and T have a unique common fized point z with G, (z,z,2z) = 0.

ExXAMPLE 5.5 (J46]). Let X = [0,00) and G, (z,y,2) = max{x,y,z}.
Then (X, Gy) is a Gp-metric space. Consider the following mappings: Az = £,
Sz =2z, Bx =0, Tx = z. Then S(X) = [0,00), T(X) = [0,00), S(X) N
T(X)=[0,00). Let {x,,} be a sequence in X such that lim,_, . x,, = 0. Then
lim,, o0 Azy, = limy, 400 Sz, =0 =2 € S(X)NT(X) and G, (z,2,2) = 0.
Hence, (A, S) and T satisfy CLR 4 g)r-property. Note that

Gp (Sz,SAx,SAx) =2z, G)p(Sz, Az, Ax) = 2z.
Hence,
Gp (Sz,SAz, SAz) < R1Gp, (Sz, Az, Ax) for Ry > 1.
Thus, A is S pointwise absorbing. We have also

Gp (Tz,TBx,TBx) =z, G)p(Tv,Bz,Bz)=x.
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Hence,
Gp (Tz,TBx,TBx) < RyG)p, (T'x, Bx, Bx) for Ry > 1.
Thus, B is T pointwise absorbing. On the other hand,

Gy (Az, By, By) = 5, G, (Sa, Sz, Az) = 2a.

Moreover

x

3 2x
/ tdt < / tdt.
0 0
Thus, for h (t) =t we obtain

Gy (Az,By,By) G(Sz,Sz,Ax)
/ h(#) dt < k:/ h () dt,
0 0

where i < k < 1. Hence,
16
Gp(Sz,Ty,Ty) Gp(Azx,Sz,Sx)
G, (Az, By, By) < kmax{ / h(t) dt, / h () dt,
0 0

Gy (Ty,By,By) Gy (Sz,By,By) Gy (Az,Ty,Ty)
/ h(#) dt,/ h(t) dt,/ h(#) dt},
0 0 0

1
where — < k < 1.

By Theorem A, B,S and T have a unique common fixed point z = 0
with G) (z,2,2) = 0.

REMARK 5.6. By Theorem [5.1] and Examples 3.8 we obtain new par-
ticular results.
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5.2. Fixed points for mappings satisfying ¢-contractive
conditions in G,-metric spaces

As in [24], let @ be the set of all real continuous nondecreasing functions
¢:[0,00) — [0, 00) such that
1) ¢(t) <tforallt>0,
2) ¢ (t) =0 if and only if ¢t = 0.

The following functions F': RS — R, are in F.

EXAMPLE 5.7. F(tl, e ,tﬁ) =t — 2] (max{tg, t3, tq, t5, tG}).
EXAMPLE 5.8. F(ty,...,ts) = t1 — ¢ (max {ta, 13,14, 50 }).
EXAMPLE 5.9. F(t1,...,ts) = t1 — ¢ (max {t, 8t Iatle 1)

EXAMPLE 5.10. F(t1,...,ts) = t1—¢ (max{t2,\/T3ts,v/t3t5,v/5t5,v/Tal6}).

ExXAMPLE 5.11. F(tl, - ,tﬁ) =1 — gD(CLtQ + btg + cty + dts + etﬁ), where
a,b,c,d,e>0anda+b+c+d+e< 1.

EXAMPLE 5.12. F(t1,...,tg) =t —¢ (atg + lljrvtzif§4), where a,b > 0 and
a+b<l1.

EXAMPLE 5.13. F(t1,...,ts) = t1—¢ (ato + bmax{ts, t4} + cmax {84,
%})7“&161‘6 a,bc>0anda+b+c<1.

ExXAMPLE 5.14. F(tl,...,tﬁ) =t — ap(atg + bmax {2t4 + t5, 2t4 + tg,
ts +t5 +tg}), where a,b >0 and a + b < 1.

By Theorem [4.3] and Example [5.7] we obtain

THEOREM 5.15. Let A, B,S and T be self mappings of a Gp-metric space
(X,G)p) such that

Gp(AJZ, By7 By) S @(maX{GP(Sx7 Ty7 Ty)? GP(A{I:? Sl’, S.’L’),
Gp(Tya BZ/; By)7 GP(S"Ev By7 By)? GP(Ax7Ty7 Ty)})

for all x,y € X, where ¢ € P.
If (A,S) and T satisfy CLR(4 syr-property, then C (A, S) #0 #C(B,T).
Moreover, if A is pointwise S absorbing and B is pointwise T absorbing,
then A, B, S and T' have a unique common fized point z with G, (z, z,z) = 0.
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EXAMPLE 5.16 (J46]). Let X = [0,00) and G, (z,y,2) = max{x,y, 2}.
Then (X, G)) is a Gp-metric space. Let A, B, S and T be as in Example
Asin Example (A, S) and T satisfy CLR 4, g)p-property, A is S pointwise
absorbing and B is T pointwise absorbing. Moreover

GP (vaBvay) = g; Gp (ALL'7S:L', S:L') = 2.

Put (t) = 5. Then ¢ € ® and

G, (Az, By, By) < %Gp (Az, Sz, Sx)

1
3 max{G,(Sz, Ty, Ty),G,(Az, Sz, Sx),

Gp(Ty’ By’ By)a GP(S:E’ Bya By)) GP(A‘T) Tya Ty)}

IN

= @(maX{GP(S‘T’ Tya Ty)a GP(A:E’ SZL’, Sl’),
Gp(Ty’ By’ By)a GP(S:E’ Bya By)) GP(A‘T) Tya Ty)})

By Theorem A, B, S and T have a unique common fixed point z = 0
with G), (z,2,2) = 0.

REMARK 5.17. By Theorem [£.3] and Examples [5.745.14] we obtain new
particular results.

Acknowledgements. The author thanks the anonymous reviewers for
carefully reading the manuscript and for their interesting comments and sug-
gestions, which helped to obtain the new improved form of the paper.
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