ON A NEW ONE PARAMETER GENERALIZATION OF PELL NUMBERS

Dorota Bród

Abstract

In this paper we present a new one parameter generalization of the classical Pell numbers. We investigate the generalized Binet's formula, the generating function and some identities for r-Pell numbers. Moreover, we give a graph interpretation of these numbers.

1. Introduction

The Pell sequence $\left\{P_{n}\right\}$ is one of the special cases of sequences $\left\{a_{n}\right\}$ which are defined recurrently as a linear combination of the preceding k terms

$$
\begin{equation*}
a_{n}=b_{1} a_{n-1}+b_{2} a_{n-2}+\cdots+b_{k} a_{n-k} \quad \text { for } n \geq k \tag{1.1}
\end{equation*}
$$

where $k \geq 2, b_{i}$ are integers, $i=1,2, \ldots, k$ and $a_{0}, a_{1}, \ldots, a_{k-1}$ are given numbers.

Received: 06.02.2019. Accepted: 31.05.2019. Published online: 22.06.2019.
(2010) Mathematics Subject Classification: 11B37, 05C69, 05A15, 11 B 39.

Key words and phrases: Pell numbers, generalized Pell numbers, Binet's formula, generating function, Merrifield-Simmons index.

By recurrence (1.1) for $k=2$ we get (among others) the well-known recurrences:

$$
\begin{array}{llll}
F_{n}=F_{n-1}+F_{n-2}, & F_{0}=0, & F_{1}=1 & \text { (Fibonacci numbers) } \\
L_{n}=L_{n-1}+L_{n-2}, & L_{0}=2, & L_{1}=1 & \text { (Lucas numbers) } \\
J_{n}=J_{n-1}+2 J_{n-2}, & J_{0}=0, & J_{1}=1 \quad \text { (Jacobsthal numbers) } \\
P_{n}=2 P_{n-1}+P_{n-2}, & P_{0}=0, & P_{1}=1 & \text { (Pell numbers) }
\end{array}
$$

The first ten terms of the Pell sequence are $0,1,2,5,12,29,70,169,408,985$. The n-th Pell number is explicitly given by the Binet-type formula

$$
P_{n}=\frac{(1+\sqrt{2})^{n}-(1-\sqrt{2})^{n}}{2 \sqrt{2}} \quad \text { for } n \geq 0
$$

Moreover, the Pell numbers are defined by the following formula

$$
P_{n}=\sum_{k=0}^{\left[\frac{n-1}{2}\right]}\binom{n}{2 k+1} 2^{k}
$$

The matrix generator of the sequence $\left\{P_{n}\right\}$ is $\left[\begin{array}{ll}2 & 1 \\ 1 & 0\end{array}\right]$. It is known that

$$
\left[\begin{array}{ll}
P_{n+1} & P_{n} \\
P_{n} & P_{n-1}
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right]^{n}
$$

Hence we get the well-known formula (Cassini's identity) $P_{n+1} P_{n-1}-P_{n}^{2}=$ $(-1)^{n}$. Another interesting properties of the Pell numbers are given in [4].

In the literature there are some generalizations of the Pell numbers. We recall some of them. In [5] the authors introduced p-Pell numbers $P_{p}(n)$ defined by the following relation: $P_{p}(n)=2 P_{p}(n-1)+P_{p}(n-p-1)$ for $p=0,1,2 \ldots$. and $n \geq p+2$ with $P_{p}(1)=a_{1}, P_{p}(2)=a_{2}, \ldots, P_{p}(p+1)=a_{p+1}$, where $a_{1}, a_{2}, \ldots, a_{p+1}$ are integers, real or complex numbers. Another generalization of the Pell numbers is given in [1], [2]: the k-Pell numbers $\left\{P_{k, n}\right\}$ are defined recurrently by $P_{k, n+1}=2 P_{k, n}+k P_{k, n-1}$ for $k \geq 1$ and $n \geq 1$ with $P_{k, 0}=0$, $P_{k, 1}=1$.

In [6] there was presented k-distance Pell sequence defined as follows: $P_{k}(n)=2 P_{k}(n-1)+P_{k}(n-k)$ for $n \geq k$ with $P_{k}(0)=0, P_{k}(n)=2^{n-1}$ for $n=1,2, \ldots, k-1$. Another interesting generalizations of the Pell numbers can be found in [9].

In this paper we introduce a new one parameter generalization of Pell numbers.

2. The r-Pell numbers and some basic properties

Let $n \geq 0, r \geq 1$ be integers. Define r-Pell sequence $\{P(r, n)\}$ by the following recurrence relation

$$
\begin{equation*}
P(r, n)=2^{r} P(r, n-1)+2^{r-1} P(r, n-2) \text { for } n \geq 2 \tag{2.1}
\end{equation*}
$$

with initial conditions $P(r, 0)=2, P(r, 1)=1+2^{r+1}$.
It is easily seen that $P(1, n)=P_{n+2}$. By 2.1 we obtain

$$
\begin{aligned}
& P(r, 0)=2 \\
& P(r, 1)=1+2^{r+1} \\
& P(r, 2)=2^{r+1}+2 \cdot 4^{r}, \\
& P(r, 3)=2^{r-1}+3 \cdot 4^{r}+2 \cdot 8^{r} \\
& P(r, 4)=\frac{3}{2} \cdot 4^{r}+4 \cdot 8^{r}+2 \cdot 16^{r} .
\end{aligned}
$$

Now we present the Binet's formula, which allows us to express the r Pell numbers in function of the roots r_{1} and r_{2} of the following characteristic equation, associated with the recurrence relation (2.1)

$$
\begin{equation*}
x^{2}-2^{r} x-2^{r-1}=0 . \tag{2.2}
\end{equation*}
$$

Then

$$
\begin{equation*}
r_{1}=\frac{2^{r}+\sqrt{4^{r}+2^{r+1}}}{2}, \quad r_{2}=\frac{2^{r}-\sqrt{4^{r}+2^{r+1}}}{2} \tag{2.3}
\end{equation*}
$$

Proposition 2.1 (Binet's formula). Let $n \geq 0, r \geq 1$ be integers. Then

$$
\begin{equation*}
P(r, n)=C_{1} r_{1}^{n}+C_{2} r_{2}^{n} \tag{2.4}
\end{equation*}
$$

where r_{1}, r_{2} are given by 2.3 and

$$
C_{1}=1+\frac{2^{r}+1}{\sqrt{4^{r}+2^{r+1}}}, \quad C_{2}=1-\frac{2^{r}+1}{\sqrt{4^{r}+2^{r+1}}}
$$

Proof. The general term of the sequence $\{P(r, n)\}$ may be expressed in the following form

$$
P(r, n)=C_{1} r_{1}^{n}+C_{2} r_{2}^{n}
$$

for some coefficients C_{1} and C_{2}. Using initial conditions of the recurrence (2.1), we obtain the following system of two linear equations

$$
\left\{\begin{array}{l}
C_{1}+C_{2}=2 \\
C_{1} r_{1}+C_{2} r_{2}=1+2^{r+1}
\end{array}\right.
$$

Hence

$$
C_{1}=1+\frac{2^{r}+1}{\sqrt{4^{r}+2^{r+1}}} \quad \text { and } \quad C_{2}=1-\frac{2^{r}+1}{\sqrt{4^{r}+2^{r+1}}}
$$

which ends the proof.
Since r_{1} and r_{2} are the roots of equation 2.2 , we have

$$
\begin{align*}
& r_{1}+r_{2}=2^{r} \tag{2.5}\\
& r_{1}-r_{2}=\sqrt{4^{r}+2^{r+1}} \tag{2.6}\\
& r_{1} r_{2}=-2^{r-1} \tag{2.7}
\end{align*}
$$

Moreover, by simple calculations, we get

$$
\begin{align*}
& C_{1} C_{2}=-\frac{1}{4^{r}+2^{r+1}} \tag{2.8}\\
& C_{1} r_{2}+C_{2} r_{1}=-1 \tag{2.9}
\end{align*}
$$

3. Some identities for the sequence $\{P(r, n)\}$

In this section we present some properties and identities for the r-Pell numbers. They generalize known results for classical Pell numbers.

Theorem 3.1. Let r be a positive integer. Then

$$
\lim _{n \rightarrow \infty} \frac{P(r, n+1)}{P(r, n)}=\frac{2^{r}+\sqrt{4^{r}+2^{r+1}}}{2}
$$

Proof. Using Proposition 2.1, we have

$$
\lim _{n \rightarrow \infty} \frac{P(r, n+1)}{P(r, n)}=\lim _{n \rightarrow \infty} \frac{C_{1} r_{1}{ }^{n+1}+C_{2} r_{2}^{n+1}}{C_{1} r_{1}^{n}+C_{2} r_{2}^{n}}=\lim _{n \rightarrow \infty} \frac{C_{1} r_{1}+C_{2} r_{2}\left(\frac{r_{2}}{r_{1}}\right)^{n}}{C_{1}+C_{2}\left(\frac{r_{2}}{r_{1}}\right)^{n}}
$$

Since $\lim _{n \rightarrow \infty}\left(\frac{r_{2}}{r_{1}}\right)^{n}=0$, we get

$$
\lim _{n \rightarrow \infty} \frac{P(r, n+1)}{P(r, n)}=r_{1}=\frac{2^{r}+\sqrt{4^{r}+2^{r+1}}}{2}
$$

Theorem 3.2 (Cassini's identity). Let n, r be positive integers. Then

$$
\begin{equation*}
P(r, n+1) P(r, n-1)-P^{2}(r, n)=(-1)^{n} 2^{(r-1)(n-1)} . \tag{3.1}
\end{equation*}
$$

Proof. By Binet's formula 2.4 we obtain

$$
\begin{aligned}
& P(r, n+1) P(r, n-1)-P^{2}(r, n) \\
& \quad=\left(C_{1} r_{1}^{n+1}+C_{2} r_{2}^{n+1}\right)\left(C_{1} r_{1}^{n-1}+C_{2} r_{2}^{n-1}\right)-\left(C_{1} r_{1}^{n}+C_{2} r_{2}^{n}\right)^{2} \\
& \quad=C_{1} C_{2}\left(r_{1} r_{2}\right)^{n}\left(\frac{r_{1}}{r_{2}}+\frac{r_{2}}{r_{1}}-2\right)=C_{1} C_{2}\left(r_{1} r_{2}\right)^{n-1}\left(r_{1}-r_{2}\right)^{2}
\end{aligned}
$$

where r_{1}, r_{2} are given by 2.3 .
Using formulas (2.8), 2.7) and (2.6), we have

$$
P(r, n+1) P(r, n-1)-P^{2}(r, n)=-\left(-2^{r-1}\right)^{n-1}=(-1)^{n} 2^{(r-1)(n-1)}
$$

By formula (3.1), considering $r=1$ and taking into account that $P(1, n)=$ P_{n+2}, we obtain Cassini's identity for the classical Pell numbers.

Corollary 3.3. For $n \geq 1, P_{n+1} P_{n-1}-P_{n}^{2}=(-1)^{n}$.

The next theorem presents a summation formula for the r-Pell numbers.

Theorem 3.4. Let n, r be positive integers. Then

$$
\sum_{i=0}^{n-1} P(r, i)=\frac{P(r, n)+2^{r-1} P(r, n-1)-3}{3 \cdot 2^{r-1}-1}
$$

Proof. Using formula 2.4, we have

$$
\begin{aligned}
& \sum_{i=0}^{n-1} P(r, i)=\sum_{i=0}^{n-1}\left(C_{1} r_{1}^{i}+C_{2} r_{2}^{i}\right)=C_{1} \frac{1-r_{1}^{n}}{1-r_{1}}+C_{2} \frac{1-r_{2}^{n}}{1-r_{2}} \\
& =\frac{C_{1}+C_{2}-\left(C_{1} r_{2}+C_{2} r_{1}\right)-\left(C_{1} r_{1}^{n}+C_{2} r_{2}^{n}\right)+r_{1} r_{2}\left(C_{1} r_{1}^{n-1}+C_{2} r_{2}^{n-1}\right)}{1-\left(r_{1}+r_{2}\right)+r_{1} r_{2}}
\end{aligned}
$$

By Binet's formula we get

$$
\sum_{i=0}^{n-1} P(r, i)=\frac{C_{1}+C_{2}-\left(C_{1} r_{2}+C_{2} r_{1}\right)-P(r, n)+r_{1} r_{2} P(r, n-1)}{1-\left(r_{1}+r_{2}\right)+r_{1} r_{2}}
$$

By (2.9), 2.7) and 2.5 we obtain

$$
\sum_{i=0}^{n-1} P(r, i)=\frac{P(r, n)+2^{r-1} P(r, n-1)-3}{3 \cdot 2^{r-1}-1}
$$

Using twice the recurrence 2.1, we obtain the following result.
Proposition 3.5. Let n, r be integers such that $n \geq 4, r \geq 1$. Then

$$
P(r, n)=\left(8^{r}+4^{r}\right) P(r, n-3)+\left(2^{3 r-1}+2^{2 r-2}\right) P(r, n-4)
$$

ThEOREM 3.6. The generating function of the sequence $\{P(r, n)\}$ has the following form

$$
f(x)=\frac{2+x}{1-2^{r} x-2^{r-1} x^{2}}
$$

Proof. Assuming that the generating function of the sequence $\{P(r, n)\}$ has the form $f(x)=\sum_{n=0}^{\infty} P(r, n) x^{n}$, we get

$$
\begin{aligned}
& \left(1-2^{r} x-2^{r-1} x^{2}\right) f(x)=\left(1-2^{r} x-2^{r-1} x^{2}\right) \sum_{n=0}^{\infty} P(r, n) x^{n} \\
& =\sum_{n=0}^{\infty} P(r, n) x^{n}-2^{r} \sum_{n=0}^{\infty} P(r, n) x^{n+1}-2^{r-1} \sum_{n=0}^{\infty} P(r, n) x^{n+2} \\
& =\sum_{n=2}^{\infty}\left(P(r, n)-2^{r} P(r, n-1)-2^{r-1} P(r, n-2)\right) x^{n} \\
& \quad+(P(r, 0)+P(r, 1) x)-2^{r} P(r, 0) x
\end{aligned}
$$

By recurrence (2.1) we have

$$
\left(1-2^{r} x-2^{r-1} x^{2}\right) f(x)=2+\left(1+2^{r+1}-2^{r+1}\right) x
$$

Hence

$$
\left(1-2^{r} x-2^{r-1} x^{2}\right) f(x)=2+x
$$

Thus

$$
f(x)=\frac{2+x}{1-2^{r} x-2^{r-1} x^{2}}
$$

which ends the proof.

4. A graph interpretation of the r-Pell numbers

In general we use the standard terminology and notation of graph theory, see [3]. Let G be a simple, undirected, finite graph with vertex set $V(G)$ and edge set $E(G)$. By $P_{n}, C_{m}, n \geq 1, m \geq 3$, we mean n-vertex path, m-vertex cycle, respectively. A set $S \subseteq V(G)$ is independent if no edge of G has both its endpoints in S. Moreover, a subset of $V(G)$ containing only one vertex and the empty set are independent sets of G. The total number of independent sets of a graph G, including the empty set, is known as the Merrifield-Simmons index. It is denoted by $i(G)$ or $N I(G)$. For a graph G with $V(G)=\emptyset$ we put
$i(G)=1$. The Merrifield-Simmons index is an example of topological index, which is of interest in combinatorial chemistry. This parameter was introduced in 1982 by Prodinger and Tichy in [7]. It was called the Fibonacci number of a graph. It has been proved that $i\left(P_{n}\right)=F_{n+1}, i\left(C_{n}\right)=L_{n}$. In recent years, many researches have investigated this index, see for example [8]. We will show that the r-Pell numbers can be used for counting independent sets in special classes of graphs.

Let $x \in V(G)$. By $i_{x}(G)\left(i_{-x}(G)\right.$, respectively) we denote the number of independent sets S of G such that $x \in S(x \notin S$, respectively). Hence we get the basic rule for counting of independent sets of a graph G

$$
\begin{equation*}
i(G)=i_{x}(G)+i_{-x}(G) . \tag{4.1}
\end{equation*}
$$

Consider a graph $H_{n, r}$ (Figure 1), where $n \geq 1, r \geq 1, H_{1, r}=K_{1, r+1}$.

Figure 1. A graph $H_{n, r}$

Theorem 4.1. Let n, r be integers such that $n \geq 1, r \geq 1$. Then

$$
i\left(H_{n, r}\right)=P(r, n)
$$

Proof. Let $n \geq 3$. Assume that vertices of $H_{n, r}$ are numbered as in Figure 1. Using formula (4.1), we have

$$
i\left(H_{n, r}\right)=i_{x_{n}}\left(H_{n, r}\right)+i_{-x_{n}}\left(H_{n, r}\right)
$$

Let S be any independent set of $H_{n, r}$. Consider two cases.
Case 1. $x_{n} \in S$. Then $x_{n-1}, y_{n}, z_{1}, \ldots, z_{r} \notin S$. Hence $S=S^{\prime} \cup\left\{x_{n}\right\} \cup Z$, where S^{\prime} is any independent set of the graph

$$
H_{n, r} \backslash\left\{x_{n-1}, y_{n}, z_{1}, \ldots, z_{r}, h_{1}, \ldots, h_{r}\right\}
$$

which is isomorphic to $H_{n-2, r}$, and Z is any subset of the set $\left\{h_{1}, h_{2}, \ldots, h_{r-1}\right\}$. Hence we get

$$
i_{x_{n}}\left(H_{n, r}\right)=2^{r-1} i\left(H_{n-2, r}\right)
$$

Case 2. $x_{n} \notin S$. Proving analogously as in Case 1, we have

$$
i_{-x_{n}}\left(H_{n, r}\right)=2^{r} i\left(H_{n-2, r}\right) .
$$

Consequently, for $n \geq 3$ we get

$$
i\left(H_{n, r}\right)=2^{r-1} i\left(H_{n-1, r}\right)+2^{r} i\left(H_{n-2, r}\right) .
$$

Now we consider graphs $H_{1, r}$ and $H_{2, r}$. It is easy to check that $i\left(H_{1, r}\right)=$ $1+2^{r+1}=P(r, 1)$. Using the same method for the graph $H_{2, r}$ as in Case 1, we have

$$
\begin{aligned}
& i\left(H_{2, r}\right)=i_{x_{2}}\left(H_{2, r}\right)+i_{-x_{2}}\left(H_{2, r}\right) \\
& \quad=2^{r}+2^{r}\left(1+2^{r+1}\right)=2\left(4^{r}+2^{r}\right)=P(r, 2) .
\end{aligned}
$$

Corollary 4.2. For $n \geq 1$

$$
i\left(H_{n, 1}\right)=P(1, n)=P_{n+2} .
$$

The graph interpretation of r-Pell numbers can be used for proving some identities.

Theorem 4.3. (Convolution identity) Let n, m, r be integers such that $m \geq 2, n \geq 1, r \geq 1$. Then

$$
P(r, m+n)=2^{r-1} P(r, m-1) P(r, n)+2^{2 r-2} P(r, m-2) P(r, n-1) .
$$

Proof. It is easy to check that the theorem is true for $m=2$ and $n=1$, we have namely

$$
P(r, 3)=2^{r-1}\left(1+2^{r+1}\right)^{2}+4 \cdot 2^{2 r-2}=2^{r-1}+3 \cdot 4^{r}+2 \cdot 8^{r} .
$$

Moreover, for $m=2$ and $n=2$ we obtain

$$
\begin{aligned}
& P(r, 4)=2^{r-1}\left(1+2^{r+1}\right)\left(2^{r+1}+2 \cdot 4^{r}\right)+2^{2 r-2}\left(2+2^{r+2}\right) \\
&=2 \cdot 16^{r}+4 \cdot 8^{r}+\frac{3}{2} \cdot 4^{r}
\end{aligned}
$$

Assume now that $m \geq 3, n \geq 2$. Consider the graph $H_{m+n, r}$. Assume that vertices of the graph are numbered analogously as in Figure 1. By Theorem 4.1 we have $i\left(H_{m+n, r}\right)=P(r, m+n)$. Assume that x_{m} is any vertex of the graph $H_{m+n, r}$, such that $\operatorname{deg} x_{m}=r+3$. Let S be any independent set of the
graph $H_{m+n, r}$. Denote by $L\left(x_{i}\right)$ the set of pendant vertices attached to the vertex $x_{i}, i=1,2,3, \ldots, m+n$. Consider two cases.

Case 1. $x_{m} \in S$. Then $x_{m-1}, x_{m+1}, y_{m}, y_{m-1} \notin S$. Moreover, $L\left(x_{m}\right) \not \subset S$. Then $S=S^{*} \cup S^{* *} \cup Z_{1} \cup Z_{2} \cup\left\{x_{m}\right\}$, where S^{*} is an independent set of the graph $H_{m+n, r} \backslash \bigcup_{i=0}^{n+1}\left\{x_{m+n-i}\right\} \backslash \bigcup_{j=0}^{n+2}\left\{y_{m+n-j}\right\} \backslash L\left(x_{i}\right)$, which is isomorphic to the graph $H_{m-2, r}, Z_{1}, Z_{2}$ is any subset of the set $L\left(x_{m-1}\right), L\left(x_{m+1}\right)$, resp. Moreover, $S^{* *}$ is an independent set of the graph $H_{m+n, r} \backslash \bigcup_{i=1}^{m+1}\left\{x_{i}, y_{i}\right\} \backslash L\left(x_{i}\right)$, which is isomorphic to the graph $H_{n-1, r}$. Thus we obtain

$$
i_{x_{m}}\left(H_{m+n, r}\right)=\left(2^{r-1}\right)^{2} P(r, m-2) P(r, n-1)
$$

Case 2. $x_{m} \notin S$. Using the same method as in Case 1, we have

$$
i_{-x_{m}}\left(H_{m+n, r}\right)=2^{r-1} P(r, m-1) P(r, n)
$$

Consequently,

$$
\begin{aligned}
i\left(H_{m+n, r}\right) & =P(r, m+n) \\
& =2^{r-1} P(r, m-1) P(r, n)+2^{2 r-2} P(r, m-2) P(r, n-1)
\end{aligned}
$$

Using the fact that $P(0, n)=P_{n+2}$, we get known identity for classical Pell numbers.

Corollary 4.4. $P_{m+n}=P_{m} P_{n+1}+P_{m-1} P_{n}$.

References

[1] P. Catarino, On some identities and generating functions for k-Pell numbers, Int. J. Math. Anal. (Ruse) 7 (2013), no. 38, 1877-1884.
[2] P. Catarino and P. Vasco, Some basic properties and a two-by-two matrix involving the k-Pell numbers, Int. J. Math. Anal. (Ruse) 7 (2013), no. 45, 2209-2215.
[3] R. Diestel, Graph Theory, Springer-Verlag, Heidelberg-New York, 2005.
[4] A.F. Horadam, Pell identities, Fibonacci Quart. 9 (1971), no. 3, 245-252, 263.
[5] E.G. Kocer and N. Tuglu, The Binet formulas for the Pell and Pell-Lucas p-numbers, Ars Combin. 85 (2007), 3-17.
[6] K. Piejko and I. Włoch, On k-distance Pell numbers in 3-edge coloured graphs, J. Appl. Math. 2014, Art. ID 428020, 6 pp.
[7] H. Prodinger and R.F. Tichy, Fibonacci numbers of graphs, Fibonacci Quart. 20 (1982), no. 1, 16-21.
[8] S. Wagner and I. Gutman, Maxima and minima of the Hosoya index and the MerrifieldSimmons index: a survey of results and techniques, Acta Appl. Math. 112 (2010), no. 3, 323-346.
[9] A. Włoch and I. Włoch, Generalized Pell numbers, graph representations and independent sets, Australas. J. Combin. 46 (2010), 211-215.

Faculty of Mathematics and Applied Physics
Rzeszów University of Technology
al. Powstańców Warszawy 12
35-959 Rzeszów
Poland
e-mail: dorotab@prz.edu.pl

