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ON A NEW ONE PARAMETER GENERALIZATION
OF PELL NUMBERS

Dorota Bród

Abstract. In this paper we present a new one parameter generalization of
the classical Pell numbers. We investigate the generalized Binet’s formula, the
generating function and some identities for r-Pell numbers. Moreover, we give
a graph interpretation of these numbers.

1. Introduction

The Pell sequence {Pn} is one of the special cases of sequences {an} which
are defined recurrently as a linear combination of the preceding k terms

an = b1an−1 + b2an−2 + · · ·+ bkan−k for n ≥ k,(1.1)

where k ≥ 2, bi are integers, i = 1, 2, . . . , k and a0, a1, . . . , ak−1 are given
numbers.
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By recurrence (1.1) for k = 2 we get (among others) the well-known re-
currences:

Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1 (Fibonacci numbers),

Ln = Ln−1 + Ln−2, L0 = 2, L1 = 1 (Lucas numbers),

Jn = Jn−1 + 2Jn−2, J0 = 0, J1 = 1 (Jacobsthal numbers),

Pn = 2Pn−1 + Pn−2, P0 = 0, P1 = 1 (Pell numbers).

The first ten terms of the Pell sequence are 0, 1, 2, 5, 12, 29, 70, 169, 408, 985.
The n-th Pell number is explicitly given by the Binet-type formula

Pn =
(1 +

√
2)n − (1−

√
2)n

2
√
2

for n ≥ 0.

Moreover, the Pell numbers are defined by the following formula

Pn =

[n−1
2 ]∑

k=0

(
n

2k + 1

)
2k.

The matrix generator of the sequence {Pn} is
[
2 1
1 0

]
. It is known that

[
Pn+1 Pn

Pn Pn−1

]
=

[
2 1
1 0

]n
.

Hence we get the well-known formula (Cassini’s identity) Pn+1Pn−1 − P 2
n =

(−1)n. Another interesting properties of the Pell numbers are given in [4].
In the literature there are some generalizations of the Pell numbers. We

recall some of them. In [5] the authors introduced p-Pell numbers Pp(n) defined
by the following relation: Pp(n) = 2Pp(n− 1)+Pp(n− p− 1) for p = 0, 1, 2 . . .
and n ≥ p + 2 with Pp(1) = a1, Pp(2) = a2, . . ., Pp(p + 1) = ap+1, where
a1, a2, . . . , ap+1 are integers, real or complex numbers. Another generalization
of the Pell numbers is given in [1], [2]: the k-Pell numbers {Pk,n} are defined
recurrently by Pk,n+1 = 2Pk,n + kPk,n−1 for k ≥ 1 and n ≥ 1 with Pk,0 = 0,
Pk,1 = 1.

In [6] there was presented k-distance Pell sequence defined as follows:
Pk(n) = 2Pk(n − 1) + Pk(n − k) for n ≥ k with Pk(0) = 0, Pk(n) = 2n−1

for n = 1, 2, . . . , k−1. Another interesting generalizations of the Pell numbers
can be found in [9].

In this paper we introduce a new one parameter generalization of Pell
numbers.
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2. The r-Pell numbers and some basic properties

Let n ≥ 0, r ≥ 1 be integers. Define r-Pell sequence {P (r, n)} by the
following recurrence relation

P (r, n) = 2rP (r, n− 1) + 2r−1P (r, n− 2) for n ≥ 2(2.1)

with initial conditions P (r, 0) = 2, P (r, 1) = 1 + 2r+1.
It is easily seen that P (1, n) = Pn+2. By (2.1) we obtain

P (r, 0) = 2,

P (r, 1) = 1 + 2r+1,

P (r, 2) = 2r+1 + 2 · 4r,
P (r, 3) = 2r−1 + 3 · 4r + 2 · 8r,

P (r, 4) = 3
2 · 4

r + 4 · 8r + 2 · 16r.

Now we present the Binet’s formula, which allows us to express the r-
Pell numbers in function of the roots r1 and r2 of the following characteristic
equation, associated with the recurrence relation (2.1)

x2 − 2rx− 2r−1 = 0.(2.2)

Then

r1 =
2r +

√
4r + 2r+1

2
, r2 =

2r −
√
4r + 2r+1

2
.(2.3)

Proposition 2.1 (Binet’s formula). Let n ≥ 0, r ≥ 1 be integers. Then

P (r, n) = C1r
n
1 + C2r

n
2 ,(2.4)

where r1, r2 are given by (2.3) and

C1 = 1 +
2r + 1√
4r + 2r+1

, C2 = 1− 2r + 1√
4r + 2r+1

.
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Proof. The general term of the sequence {P (r, n)} may be expressed in
the following form

P (r, n) = C1r
n
1 + C2r

n
2

for some coefficients C1 and C2. Using initial conditions of the recurrence
(2.1), we obtain the following system of two linear equations{

C1 + C2 = 2,

C1r1 + C2r2 = 1 + 2r+1.

Hence

C1 = 1 +
2r + 1√
4r + 2r+1

and C2 = 1− 2r + 1√
4r + 2r+1

,

which ends the proof. �

Since r1 and r2 are the roots of equation (2.2), we have

r1 + r2 = 2r,(2.5)

r1 − r2 =
√
4r + 2r+1,(2.6)

r1r2 = −2r−1.(2.7)

Moreover, by simple calculations, we get

C1C2 = − 1

4r + 2r+1
,(2.8)

C1r2 + C2r1 = −1.(2.9)

3. Some identities for the sequence {P (r, n)}

In this section we present some properties and identities for the r-Pell
numbers. They generalize known results for classical Pell numbers.
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Theorem 3.1. Let r be a positive integer. Then

lim
n→∞

P (r, n+ 1)

P (r, n)
=

2r +
√
4r + 2r+1

2
.

Proof. Using Proposition 2.1, we have

lim
n→∞

P (r, n+ 1)

P (r, n)
= lim

n→∞

C1r1
n+1 + C2r

n+1
2

C1r1n + C2rn2
= lim

n→∞

C1r1 + C2r2

(
r2
r1

)n
C1 + C2(

r2
r1
)n

.

Since lim
n→∞

( r2r1 )
n = 0, we get

lim
n→∞

P (r, n+ 1)

P (r, n)
= r1 =

2r +
√
4r + 2r+1

2
. �

Theorem 3.2 (Cassini’s identity). Let n, r be positive integers. Then

(3.1) P (r, n+ 1)P (r, n− 1)− P 2(r, n) = (−1)n2(r−1)(n−1).

Proof. By Binet’s formula (2.4) we obtain

P (r, n+ 1)P (r, n− 1)− P 2(r, n)

= (C1r
n+1
1 + C2r

n+1
2 )(C1r

n−1
1 + C2r

n−1
2 )− (C1r

n
1 + C2r

n
2 )

2

= C1C2(r1r2)
n(

r1
r2

+
r2
r1
− 2) = C1C2(r1r2)

n−1(r1 − r2)
2,

where r1, r2 are given by (2.3).
Using formulas (2.8), (2.7) and (2.6), we have

P (r, n+ 1)P (r, n− 1)− P 2(r, n) = −(−2r−1)n−1 = (−1)n2(r−1)(n−1). �

By formula (3.1), considering r = 1 and taking into account that P (1, n) =
Pn+2, we obtain Cassini’s identity for the classical Pell numbers.

Corollary 3.3. For n ≥ 1, Pn+1Pn−1 − P 2
n = (−1)n.

The next theorem presents a summation formula for the r-Pell numbers.
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Theorem 3.4. Let n, r be positive integers. Then

n−1∑
i=0

P (r, i) =
P (r, n) + 2r−1P (r, n− 1)− 3

3 · 2r−1 − 1
.

Proof. Using formula (2.4), we have

n−1∑
i=0

P (r, i) =

n−1∑
i=0

(C1r
i
1 + C2r

i
2) = C1

1− rn1
1− r1

+ C2
1− rn2
1− r2

=
C1 + C2 − (C1r2 + C2r1)− (C1r

n
1 + C2r

n
2 ) + r1r2(C1r

n−1
1 + C2r

n−1
2 )

1− (r1 + r2) + r1r2
.

By Binet’s formula we get

n−1∑
i=0

P (r, i) =
C1 + C2 − (C1r2 + C2r1)− P (r, n) + r1r2P (r, n− 1)

1− (r1 + r2) + r1r2
.

By (2.9), (2.7) and (2.5) we obtain

n−1∑
i=0

P (r, i) =
P (r, n) + 2r−1P (r, n− 1)− 3

3 · 2r−1 − 1
. �

Using twice the recurrence (2.1), we obtain the following result.

Proposition 3.5. Let n, r be integers such that n ≥ 4, r ≥ 1. Then

P (r, n) = (8r + 4r)P (r, n− 3) + (23r−1 + 22r−2)P (r, n− 4).

Theorem 3.6. The generating function of the sequence {P (r, n)} has the
following form

f(x) =
2 + x

1− 2rx− 2r−1x2
.
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Proof. Assuming that the generating function of the sequence {P (r, n)}
has the form f(x) =

∞∑
n=0

P (r, n)xn, we get

(1− 2rx− 2r−1x2)f(x) = (1− 2rx− 2r−1x2)

∞∑
n=0

P (r, n)xn

=

∞∑
n=0

P (r, n)xn − 2r
∞∑

n=0

P (r, n)xn+1 − 2r−1
∞∑

n=0

P (r, n)xn+2

=

∞∑
n=2

(P (r, n)− 2rP (r, n− 1)− 2r−1P (r, n− 2))xn

+ (P (r, 0) + P (r, 1)x)− 2rP (r, 0)x

By recurrence (2.1) we have

(1− 2rx− 2r−1x2)f(x) = 2 + (1 + 2r+1 − 2r+1)x.

Hence

(1− 2rx− 2r−1x2)f(x) = 2 + x.

Thus

f(x) =
2 + x

1− 2rx− 2r−1x2
,

which ends the proof. �

4. A graph interpretation of the r-Pell numbers

In general we use the standard terminology and notation of graph theory,
see [3]. Let G be a simple, undirected, finite graph with vertex set V (G) and
edge set E(G). By Pn, Cm, n ≥ 1, m ≥ 3, we mean n-vertex path, m-vertex
cycle, respectively. A set S ⊆ V (G) is independent if no edge of G has both
its endpoints in S. Moreover, a subset of V (G) containing only one vertex and
the empty set are independent sets of G. The total number of independent sets
of a graph G, including the empty set, is known as the Merrifield-Simmons
index. It is denoted by i(G) or NI(G). For a graph G with V (G) = ∅ we put
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i(G) = 1. The Merrifield-Simmons index is an example of topological index,
which is of interest in combinatorial chemistry. This parameter was introduced
in 1982 by Prodinger and Tichy in [7]. It was called the Fibonacci number
of a graph. It has been proved that i(Pn) = Fn+1, i(Cn) = Ln. In recent
years, many researches have investigated this index, see for example [8]. We
will show that the r-Pell numbers can be used for counting independent sets
in special classes of graphs.

Let x ∈ V (G). By ix(G) (i−x(G), respectively) we denote the number of
independent sets S of G such that x ∈ S (x 6∈ S, respectively). Hence we get
the basic rule for counting of independent sets of a graph G

i(G) = ix(G) + i−x(G).(4.1)

Consider a graph Hn,r (Figure 1), where n ≥ 1, r ≥ 1, H1,r = K1,r+1.
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Figure 1. A graph Hn,r

Theorem 4.1. Let n, r be integers such that n ≥ 1, r ≥ 1. Then

i(Hn,r) = P (r, n).

Proof. Let n ≥ 3. Assume that vertices of Hn,r are numbered as in
Figure 1. Using formula (4.1), we have

i(Hn,r) = ixn(Hn,r) + i−xn(Hn,r).

Let S be any independent set of Hn,r. Consider two cases.
Case 1. xn ∈ S. Then xn−1, yn, z1, . . . , zr 6∈ S. Hence S = S′ ∪ {xn} ∪ Z,

where S′ is any independent set of the graph

Hn,r \ {xn−1, yn, z1, . . . , zr, h1, . . . , hr},

which is isomorphic toHn−2,r, and Z is any subset of the set {h1, h2, . . . , hr−1}.
Hence we get

ixn(Hn,r) = 2r−1i(Hn−2,r).
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Case 2. xn 6∈ S. Proving analogously as in Case 1, we have

i−xn(Hn,r) = 2ri(Hn−2,r).

Consequently, for n ≥ 3 we get

i(Hn,r) = 2r−1i(Hn−1,r) + 2ri(Hn−2,r).

Now we consider graphs H1,r and H2,r. It is easy to check that i(H1,r) =
1 + 2r+1 = P (r, 1). Using the same method for the graph H2,r as in Case 1,
we have

i(H2,r) = ix2
(H2,r) + i−x2

(H2,r)

= 2r + 2r(1 + 2r+1) = 2(4r + 2r) = P (r, 2). �

Corollary 4.2. For n ≥ 1

i(Hn,1) = P (1, n) = Pn+2.

The graph interpretation of r-Pell numbers can be used for proving some
identities.

Theorem 4.3. (Convolution identity) Let n,m, r be integers such that
m ≥ 2, n ≥ 1, r ≥ 1. Then

P (r,m+ n) = 2r−1P (r,m− 1)P (r, n) + 22r−2P (r,m− 2)P (r, n− 1).

Proof. It is easy to check that the theorem is true for m = 2 and n = 1,
we have namely

P (r, 3) = 2r−1(1 + 2r+1)2 + 4 · 22r−2 = 2r−1 + 3 · 4r + 2 · 8r.

Moreover, for m = 2 and n = 2 we obtain

P (r, 4) = 2r−1(1 + 2r+1)(2r+1 + 2 · 4r) + 22r−2(2 + 2r+2)

= 2 · 16r + 4 · 8r + 3

2
· 4r.

Assume now that m ≥ 3, n ≥ 2. Consider the graph Hm+n,r. Assume that
vertices of the graph are numbered analogously as in Figure 1. By Theorem
4.1 we have i(Hm+n,r) = P (r,m + n). Assume that xm is any vertex of the
graph Hm+n,r, such that deg xm = r+3. Let S be any independent set of the
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graph Hm+n,r. Denote by L(xi) the set of pendant vertices attached to the
vertex xi, i = 1, 2, 3, . . . ,m+ n. Consider two cases.

Case 1. xm ∈ S. Then xm−1, xm+1, ym, ym−1 6∈ S. Moreover, L(xm) 6⊂ S.
Then S = S∗ ∪ S∗∗ ∪ Z1 ∪ Z2 ∪ {xm}, where S∗ is an independent set of the

graph Hm+n,r \
n+1⋃
i=0

{xm+n−i} \
n+2⋃
j=0

{ym+n−j} \ L(xi), which is isomorphic to

the graph Hm−2,r, Z1, Z2 is any subset of the set L(xm−1), L(xm+1), resp.

Moreover, S∗∗ is an independent set of the graph Hm+n,r \
m+1⋃
i=1

{xi, yi}\L(xi),

which is isomorphic to the graph Hn−1,r. Thus we obtain

ixm
(Hm+n,r) = (2r−1)2P (r,m− 2)P (r, n− 1).

Case 2. xm 6∈ S. Using the same method as in Case 1, we have

i−xm(Hm+n,r) = 2r−1P (r,m− 1)P (r, n).

Consequently,

i(Hm+n,r) = P (r,m+ n)

= 2r−1P (r,m− 1)P (r, n) + 22r−2P (r,m− 2)P (r, n− 1). �

Using the fact that P (0, n) = Pn+2, we get known identity for classical
Pell numbers.

Corollary 4.4. Pm+n = PmPn+1 + Pm−1Pn.
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