LEFT DERIVABLE MAPS AT NON-TRIVIAL IDEMPOTENTS ON NEST ALGEBRAS

Hoger Ghahramani, Saman Sattari

Abstract

Let $\operatorname{Alg} \mathcal{N}$ be a nest algebra associated with the nest \mathcal{N} on a (real or complex) Banach space \mathbb{X}. Suppose that there exists a non-trivial idempotent $P \in \operatorname{Alg} \mathcal{N}$ with range $P(\mathbb{X}) \in \mathcal{N}$, and $\delta: \operatorname{Alg} \mathcal{N} \rightarrow \operatorname{Alg} \mathcal{N}$ is a continuous linear mapping (generalized) left derivable at P, i.e. $\delta(a b)=a \delta(b)+b \delta(a)$ $(\delta(a b)=a \delta(b)+b \delta(a)-b a \delta(I))$ for any $a, b \in \operatorname{Alg} \mathcal{N}$ with $a b=P$, where I is the identity element of $\operatorname{Alg} \mathcal{N}$. We show that δ is a (generalized) Jordan left derivation. Moreover, in a strongly operator topology we characterize continuous linear maps δ on some nest algebras $\operatorname{Alg} \mathcal{N}$ with the property that $\delta(P)=2 P \delta(P)$ or $\delta(P)=2 P \delta(P)-P \delta(I)$ for every idempotent P in $A l g \mathcal{N}$.

1. Introduction

Throughout this paper, all algebras and vector spaces will be over \mathbb{F}, where \mathbb{F} is either the real field \mathbb{R} or the complex field \mathbb{C}. Let \mathbb{A} be an algebra with unity $1, \mathbb{M}$ be a left \mathbb{A}-module and $\delta: \mathbb{A} \rightarrow \mathbb{M}$ be a linear mapping. The mapping δ is said to be a left derivation (or a generalized left derivation) if $\delta(a b)=a \delta(b)+b \delta(a)($ or $\delta(a b)=a \delta(b)+b \delta(a)-b a \delta(1))$ for all $a, b \in \mathbb{A}$. It is called a Jordan left derivation (or a generalized Jordan left derivation) if $\delta\left(a^{2}\right)=2 a \delta(a)\left(\right.$ or $\left.\delta\left(a^{2}\right)=2 a \delta(a)-a^{2} \delta(1)\right)$ for any $a \in \mathbb{A}$. Obviously, any (generalized) left derivation is a (generalized) Jordan left derivation, but in general the converse is not true (see [15, Example 1.1]). The concepts of left derivation and Jordan left derivation were introduced by Brešar and Vukman

[^0]in [4. For results concerning left derivations and Jordan left derivations we refer the readers to [10] and the references therein.

In recent years, several authors studied the linear (additive) maps that behave like homomorphisms, derivations or left derivations when acting on special products (for instance, see [3, 7, ,9, 6, 11, 12, 16] and the references therein). In this article we study the linear maps on nest algebras behaving like left derivations at idempotent-product elements.

Let \mathbb{A} be an algebra with unity $1, \mathbb{M}$ be a left \mathbb{A}-module and $\delta: \mathbb{A} \rightarrow \mathbb{M}$ be a linear mapping. We say that δ is left derivable (or generalized left derivable) at a given point $z \in \mathbb{A}$ if $\delta(a b)=a \delta(b)+b \delta(a)($ or $\delta(a b)=a \delta(b)+b \delta(a)-b a \delta(1))$ for any $a, b \in \mathbb{A}$ with $a b=z$. In this paper, we characterize the continuous linear maps on nest algebras which are (generalized) left derivable at a nontrivial idempotent operator P. Moreover, in a strongly operator topology we describe continuous linear maps δ on some nest algebra $\operatorname{Alg} \mathcal{N}$ with the property that $\delta(P)=2 P \delta(P)$ or $\delta(P)=2 P \delta(P)-P \delta(I)$ for every idempotent P in $\operatorname{Alg} \mathcal{N}$, where I is the identity element of $\operatorname{Alg} \mathcal{N}$.

The following are the notations and terminologies which are used throughout this article.

Let \mathbb{X} be a Banach space. We denote by $\mathcal{B}(\mathbb{X})$ the algebra of all bounded linear operators on \mathbb{X}, and $\mathcal{F}(\mathbb{X})$ denotes the algebra of all finite rank operators in $\mathcal{B}(\mathbb{X})$. A subspace lattice \mathcal{L} on a Banach space \mathbb{X} is a collection of closed (under norm topology) subspaces of \mathbb{X} which is closed under the formation of arbitrary intersection and closed linear span (denoted by \vee), and which includes $\{0\}$ and \mathbb{X}. For a subspace lattice \mathcal{L}, we define $\operatorname{Alg} \mathcal{L}$ by

$$
\operatorname{Alg} \mathcal{L}=\{T \in \mathcal{B}(\mathbb{X}) \mid T(N) \subseteq N \text { for all } N \in \mathcal{L}\}
$$

A totally ordered subspace lattice \mathcal{N} on \mathbb{X} is called a nest and $\operatorname{Alg} \mathcal{N}$ is called a nest algebra. When $\mathcal{N} \neq\{\{0\}, \mathbb{X}\}$, we say that \mathcal{N} is non-trivial. It is clear that if \mathcal{N} is trivial, then $\operatorname{Alg} \mathcal{N}=\mathcal{B}(\mathbb{X})$. Denote $A l g_{\mathcal{F}} \mathcal{N}:=\operatorname{Alg} \mathcal{N} \cap \mathcal{F}(\mathbb{X})$, the set of all finite rank operators in $\operatorname{Alg} \mathcal{N}$ and for $N \in \mathcal{N}$, let $N_{-}=\vee\{M \in$ $\mathcal{N} \mid M \subset N\}$. The identity element of a nest algebra will be denoted by I. An element P in a nest algebra is called a non-trivial idempotent if $P \neq 0, I$ and $P^{2}=P$.

Let \mathcal{N} be a non-trivial nest on a Banach space \mathbb{X}. If there exists a nontrivial idempotent $P \in A l g \mathcal{N}$ with range $P(\mathbb{X}) \in \mathcal{N}$, then we have $(I-$ $P)(A l g \mathcal{N}) P=\{0\}$ and hence

$$
A \lg \mathcal{N}=P(A l g \mathcal{N}) P \dot{+} P(A \lg \mathcal{N})(I-P) \dot{+}(I-P)(A l g \mathcal{N})(I-P)
$$

as sum of linear spaces. This is so-called Peirce decomposition of $\operatorname{Alg} \mathcal{N}$. The sets $P(A l g \mathcal{N}) P, P(A l g \mathcal{N})(I-P)$ and $(I-P)(A l g \mathcal{N})(I-P)$ are closed
in $\operatorname{Alg} \mathcal{N}$. In fact, $P(\operatorname{Alg} \mathcal{N}) P$ and $(I-P)(A l g \mathcal{N})(I-P)$ are Banach subalgebras of $\operatorname{Alg} \mathcal{N}$ whose unit elements are P and $I-P$, respectively and $P(\operatorname{Alg} \mathcal{N})(I-P)$ is a Banach $(P(\operatorname{Alg} \mathcal{N}) P,(I-P)(\operatorname{Alg} \mathcal{N})(I-P))$-bimodule. Also $P(\operatorname{Alg} \mathcal{N})(I-P)$ is faithful as a left $P(\operatorname{Alg} \mathcal{N}) P$-module as well as a right $(I-P)(\operatorname{Alg} \mathcal{N})(I-P)$-module. For more information on nest algebras, we refer to 5 .

A subspace lattice \mathcal{L} on a Hilbert space \mathbb{H} is called a commutative subspace lattice, or a CSL, if the projections of \mathbb{H} onto the subspaces of \mathcal{L} commute with each other. If \mathcal{L} is a $C S L$, then $\operatorname{Alg} \mathcal{L}$ is called a CSL algebra. Each nest algebra on a Hilbert space is a $C S L$-algebra.

2. Main results

In order to prove our results we need the following result.
Theorem 2.1 ([8]). Let \mathbb{A} be a Banach algebra with unity $1, \mathbb{X}$ be a Banach space and let $\phi: \mathbb{A} \times \mathbb{A} \rightarrow \mathbb{X}$ be a continuous bilinear map with the property that

$$
a, b \in \mathbb{A}, a b=1 \Rightarrow \phi(a, b)=\phi(1,1) .
$$

Then

$$
\phi(a, a)=\phi\left(a^{2}, 1\right)
$$

for all $a \in \mathbb{A}$.
Proposition 2.2. Let \mathbb{A} be a Banach algebra with unity 1 , and \mathbb{M} be a unital Banach left \mathbb{A}-module. Let $\delta: \mathbb{A} \rightarrow \mathbb{M}$ be a continuous linear map. If δ is left derivable at 1 , then δ is a Jordan left derivation.

Proof. Since $1 \cdot 1=1$, it follows that $\delta(1)=2 \delta(1)$ and therefore $\delta(1)=0$. Define a continuous bilinear map $\phi: \mathbb{A} \times \mathbb{A} \rightarrow \mathbb{M}$ by $\phi(a, b)=a \delta(b)+b \delta(a)$. Then $\phi(a, b)=\phi(1,1)$ for all $a, b \in \mathbb{A}$ with $a b=1$, since δ is left derivable at 1. By applying Theorem 2.1, we obtain $\phi(a, a)=\phi\left(a^{2}, 1\right)$ for all $a \in \mathbb{A}$. So,

$$
\delta\left(a^{2}\right)=2 a \delta(a) \quad(a \in \mathbb{A})
$$

Corollary 2.3. Let \mathbb{A} be a Banach algebra with unity 1, and \mathbb{M} be a unital Banach left \mathbb{A}-module. Let $x, y \in \mathbb{A}$ with $x+y=1$ and let $\delta: \mathbb{A} \rightarrow \mathbb{M}$ be a continuous linear map. If δ is left derivable at x and y, then δ is a Jordan left derivation.

Proof. For $a, b \in \mathbb{A}$ with $a b=1$, we have $a b x=x$ and $a b y=y$. Since δ is left derivable at x and y, it follows that

$$
\delta(x)=\delta(a b x)=a \delta(b x)+b x \delta(a)
$$

and

$$
\delta(y)=\delta(a b y)=a \delta(b y)+b y \delta(a)
$$

Combining the two above equations, we get that

$$
\delta(1)=\delta(x+y)=a \delta(b x)+b x \delta(a)+a \delta(b y)+b y \delta(a)=a \delta(b)+b \delta(a)
$$

i.e. δ is left derivable at 1. It follows from Proposition 2.2 that δ is a Jordan left derivation.

REmARK 2.4. If \mathbb{A} is a $C S L$-algebra or a unital semisimple Banach algebra, then by [12] and [14] every continuous Jordan left derivation on \mathbb{A} is zero. Hence it follows from Proposition 2.2 that every continuous linear map $\delta: \mathbb{A} \rightarrow$ \mathbb{A} which is left derivable at 1 is zero.

The following is our main result.
Theorem 2.5. Let \mathcal{N} be a nest on a Banach space \mathbb{X} such that there exists non-trivial idempotent $P \in \operatorname{Alg} \mathcal{N}$ with range $P(\mathbb{X}) \in \mathcal{N}$. If $\delta: \operatorname{Alg} \mathcal{N} \rightarrow$ Alg \mathcal{N} is a continuous left derivable map at P, then δ is a Jordan left derivation.

Proof. For a notational convenience, we denote $\mathbb{A}=\operatorname{Alg} \mathcal{N}, \mathbb{A}_{11}=P \mathbb{A} P$, $\mathbb{A}_{12}=P \mathbb{A}(I-P)$ and $\mathbb{A}_{22}=(I-P) \mathbb{A}(I-P)$. As mentioned in the introduction $\mathbb{A}=\mathbb{A}_{11} \dot{+} \mathbb{A}_{12} \dot{+} \mathbb{A}_{22}$. Throughout the proof, $a_{i j}$ and $b_{i j}$ will denote arbitrary elements in $\mathbb{A}_{i j}$ for $1 \leq i, j \leq 2$.

First we show that $\delta(P)=0$. Since $P^{2}=P$, we have $2 P \delta(P)=\delta(P)$. It follows from equation $2 P \delta(P)=\delta(P)$ that $P \delta(P)=0$ and it implies that $\delta(P)=0$.

We complete the proof by verifying the following steps.

Step 1. $P \delta\left(a_{11}^{2}\right) P=2 a_{11} P \delta\left(a_{11}\right) P$ and $P \delta\left(a_{11}^{2}\right)(I-P)=2 a_{11} P \delta\left(a_{11}\right)(I-P)$.
For any a_{11}, b_{11} with $a_{11} b_{11}=P$, we have

$$
\begin{equation*}
a_{11} \delta\left(b_{11}\right)+b_{11} \delta\left(a_{11}\right)=\delta(P) \tag{2.1}
\end{equation*}
$$

Multiplying this identity by P both from the left and from the right, we find

$$
a_{11} P \delta\left(b_{11}\right) P+b_{11} P \delta\left(a_{11}\right) P=P \delta(P) P \quad\left(a_{11} b_{11}=P\right)
$$

Define a continuous linear map $d: \mathbb{A}_{11} \rightarrow \mathbb{A}_{11}$ by $d\left(a_{11}\right)=P \delta\left(a_{11}\right) P$. By above identity d is left derivable at P. Hence by Proposition 2.2, d is a Jordan left derivation, which implies

$$
P \delta\left(a_{11}^{2}\right) P=2 a_{11} P \delta\left(a_{11}\right) P \quad\left(a_{11} \in \mathbb{A}_{11}\right)
$$

By multiplying (2.1) by P from the left and by $(I-P)$ from the right, we arrive at

$$
a_{11} P \delta\left(b_{11}\right)(I-P)+b_{11} P \delta\left(a_{11}\right)(I-P)=P \delta(P)(I-P) \quad\left(a_{11} b_{11}=P\right)
$$

Define a continuous linear map $D: \mathbb{A}_{11} \rightarrow \mathbb{A}_{12}$ by $D\left(a_{11}\right)=P \delta\left(a_{11}\right)(I-P)$. It is easy to see that D is a left derivable at P. It follows from Proposition 2.2 that D is a Jordan left derivation. Thus,

$$
P \delta\left(a_{11}^{2}\right)(I-P)=2 a_{11} P \delta\left(a_{11}\right)(I-P) \quad\left(a_{11} \in \mathbb{A}_{11}\right)
$$

Step 2. $P \delta\left(a_{22}\right)=0$.
Since $\left(P+a_{22}\right) P=P$, we have

$$
\left(P+a_{22}\right) \delta(P)+P \delta\left(P+a_{22}\right)=\delta(P)
$$

From $\delta(P)=0$ we get

$$
P \delta\left(a_{22}\right)=0
$$

Step 3. $P \delta\left(a_{12}\right)=0$.
Applying δ to $\left(P+a_{12}\right) P=P$, we get

$$
\left(P+a_{12}\right) \delta(P)+P \delta\left(P+a_{12}\right)=\delta(P)
$$

Since $\delta(P)=0$, it follows that

$$
P \delta\left(a_{12}\right)=0
$$

Step 4. $(I-P) \delta\left(a_{11}\right)(I-P)=0$.
For any a_{11}, b_{11} with $b_{11} a_{11}=P$, we have $\left(I-P+b_{11}\right) a_{11}=P$ and hence

$$
\left(I-P+b_{11}\right) \delta\left(a_{11}\right)+a_{11} \delta\left(I-P+b_{11}\right)=\delta(P)
$$

Multiplying this identity by $I-P$ both from the left and from the right we arrive at

$$
(I-P) \delta\left(a_{11}\right)(I-P)=0
$$

Since any element in a Banach algebra with unit element is a sum of its invertible elements ([1), by the linearity of δ and above identity we have

$$
(I-P) \delta\left(a_{11}\right)(I-P)=0
$$

for all $a_{11} \in \mathbb{A}_{11}$.
Step 5. $(I-P) \delta\left(a_{12}\right)(I-P)=0$.
Since $\left(P-a_{12}\right)\left(I+a_{12}\right)=P$, it follows that

$$
\left(P-a_{12}\right) \delta\left(I+a_{12}\right)+\left(I+a_{12}\right) \delta\left(P-a_{12}\right)=\delta(P)
$$

Multiplying this identity by $I-P$ both from the left and from the right and using the fact that $\delta(P)=0$, we find

$$
(I-P) \delta\left(a_{12}\right)(I-P)=0
$$

Step 6. $(I-P) \delta\left(a_{22}\right)(I-P)=0$.
Applying δ to $\left(P+a_{12}\right)\left(P-a_{12} a_{22}+a_{22}\right)=P$, we see that

$$
\left(P+a_{12}\right) \delta\left(P-a_{12} a_{22}+a_{22}\right)+\left(P-a_{12} a_{22}+a_{22}\right) \delta\left(P+a_{12}\right)=\delta(P)
$$

Now, multiplying this identity from the left by P, from the right by $I-P$ and by Steps 2,3 and 5 and the fact that $\delta(P)=0$, we get $a_{12}(I-P) \delta\left(a_{22}\right)(I-P)=$ 0 . Since $a_{12} \in \mathbb{A}_{12}$ is arbitrary, we have $\mathbb{A}_{12}\left((I-P) \delta\left(a_{22}\right)(I-P)\right)=\{0\}$. From the fact that \mathbb{A}_{12} is faithful as right \mathbb{A}_{22}-module, we arrive at

$$
(I-P) \delta\left(a_{22}\right)(I-P)=0
$$

Since $a b=P a P b P+P a P b(I-P)+P a(I-P) b(I-P)+(I-P) a(I-$ $P) b(I-P)$, for any $a, b \in \mathbb{A}$, by Steps $1-6$, it follows that δ is a Jordan left derivation.

Our next result characterizes the linear mappings on $\operatorname{Alg} \mathcal{N}$ which are generalized left derivable at P.

Theorem 2.6. Let \mathcal{N} be a nest on a Banach space \mathbb{X} such that there exists a non-trivial idempotent $P \in \operatorname{Alg} \mathcal{N}$ with range $P(\mathbb{X}) \in \mathcal{N}$. If $\delta: \operatorname{Alg} \mathcal{N} \rightarrow$ Alg \mathcal{N} is a continuous generalized left derivable map at P, then δ is a generalized Jordan left derivation.

Proof. Define $\Delta: \operatorname{Alg} \mathcal{N} \rightarrow \operatorname{Alg} \mathcal{N}$ by $\Delta(a)=\delta(a)-a \delta(1)$. It is easy to see that Δ is a continuous left derivable map at P. By Theorem 2.5, Δ is a Jordan left derivation. Therefore

$$
\begin{aligned}
\delta\left(a^{2}\right) & =\Delta\left(a^{2}\right)+a^{2} \delta(1) \\
& =2 a \Delta(a)+a^{2} \delta(1) \\
& =2 a(\delta(a)-a \delta(1))+a^{2} \delta(1) \\
& =2 a \delta(a)-a^{2} \delta(1)
\end{aligned}
$$

for all $a \in \operatorname{Alg} \mathcal{N}$. So δ is a generalized Jordan left derivation.
Since every continuous Jordan left derivation on a $C S L$ algebra is zero ([12]), we have the following result.

Corollary 2.7. Let \mathcal{N} be a non-trivial nest on a Hilbert space \mathbb{H}. Let P be a non-trivial idempotent in $\operatorname{Alg} \mathcal{N}$ with range $P(\mathbb{H}) \in \mathcal{N}$ and $\delta: \operatorname{Alg} \mathcal{N} \rightarrow$ Alg \mathcal{N} be a continuous linear map.
(i) If δ is left derivable at P, then δ is zero.
(ii) If δ is generalized left derivable at P, then $\delta(a)=a \delta(1)$ for all $a \in \operatorname{Alg} \mathcal{N}$.

Proof. (i) Since every continuous Jordan left derivation on a $C S L$ algebra is zero $([12)$, by Theorem $2.5, \delta$ is zero.
(ii) By Theorem 2.6, δ is a generalized Jordan left derivation, so the mapping $\Delta: \operatorname{Alg} \mathcal{N} \rightarrow A l g \mathcal{N}$ defined by $\Delta(a)=\delta(a)-a \delta(1)$ is a continuous Jordan left derivation. Therefore $\Delta=0$ and hence $\delta(a)=a \delta(1)$ for all $a \in \operatorname{Alg} \mathcal{N}$.

Now, we characterize (generalized) left Jordan derivations which are continuous in the strongly operator topology, but in order to prove our result we must assume an additional (mild) condition concerning the nest \mathcal{N}. At present we have no counter-example, so it remains an open problem if this additional condition can be omitted.

The idea of the proof of Proposition 2.8 (i) comes from [2].

Proposition 2.8. Let \mathcal{N} be a nest on a Banach space \mathbb{X}, with each $N \in \mathcal{N}$ complemented in \mathbb{X} whenever $N_{-}=N . \operatorname{Let} \delta: \operatorname{Alg} \mathcal{N} \rightarrow \operatorname{Alg} \mathcal{N}$ be a continuous linear map in a strong operator topology.
(i) If $\delta(P)=2 P \delta(P)$ for every idempotent P in $\operatorname{Alg} \mathcal{N}$, then $\delta=0$.
(ii) If $\delta(P)=2 P \delta(P)-P \delta(I)$ for every idempotent P in $\operatorname{Alg} \mathcal{N}$, then $\delta(a)=$ $a \delta(I)$ for all $a \in A l g \mathcal{N}$.

Proof. (i) For arbitrary idempotent operator $P \in \operatorname{Alg} \mathcal{N}$, by hypothesis we have $\delta(P)=2 P \delta(P)$. It follows from equation $2 P \delta(P)=\delta(P)$ that $P \delta(P)=0$ and it implies that $\delta(P)=0$.

Notice that $A l g_{\mathcal{F}} \mathcal{N}$ is contained in the linear span of the idempotents in $\operatorname{Alg} \mathcal{N}$ (see [11]), which implies that $\delta(F)=0$ for all finite rank operator F in $\operatorname{Alg} \mathcal{N}$. Since δ is continuous under the strong operator topology and $\overline{A l g_{\mathcal{F}} \mathcal{N}}{ }^{S O T}=A \lg \mathcal{N}($ see [13]), we find that $\delta(a)=0$ for all $a \in A \lg \mathcal{N}$.
(ii) Define $\Delta: \operatorname{Alg} \mathcal{N} \rightarrow A l g \mathcal{N}$ by $\Delta(a)=\delta(a)-a \delta(I)$. It is easy to see that Δ is a continuous left map satisfying $\Delta(P)=2 P \Delta(P)$ for every idempotent P in $\operatorname{Alg} \mathcal{N}$. So by (i) we have $\Delta=0$ and hence $\delta(a)=a \delta(I)$ for all $a \in A l g \mathcal{N}$.

It is obvious that the nests on Hilbert spaces, finite nests and the nests having order-type $\omega+1$ or $1+\omega^{*}$, where ω is the order-type of the natural numbers, satisfy the condition in Proposition 2.8 automatically.

References

[1] F.F. Bonsall and J. Duncan, Complete normed algebras, Springer-Verlag, Berlin, 1973.
[2] M. Brešar, Characterizations of derivations on some normed algebras with involution, J. Algebra 152 (1992), 454-462.
[3] M. Brešar, Characterizing homomorphisms, derivations and multipliers in rings with idempotents, Proc. Roy. Soc. Edinburgh. Sect. A 137 (2007), 9-21.
[4] M. Brešar and J. Vukman, On left derivations and related mappings, Proc. Amer. Math. Soc. 110 (1990), 7-16.
[5] K.R. Davidson, Nest Algebras, Pitman Res. Notes in Math., vol. 191, Longman, London, 1988.
[6] B. Fadaee and H. Ghahramani, Jordan left derivations at the idempotent elements on reflexive algebras, Publ. Math. Debrecen 92 (2018), 261-275.
[7] H. Ghahramani, Additive mappings derivable at non-trivial idempotents on Banach algebras, Linear Multilinear Algebra 60 (2012), 725-742.
[8] H. Ghahramani, On centralizers of Banach algebras, Bull. Malays. Math. Sci. Soc. 38 (2015), 155-164.
[9] H. Ghahramani, Characterizing Jordan maps on triangular rings through commutative zero products, Mediterr. J. Math. 15 (2018), Art. 38, 10 pp., DOI: 10.1007/s00009-018-1082-3
[10] N.M. Ghosseiri, On Jordan left derivations and generalized Jordan left derivations of matrix rings, Bull. Iranian Math. Soc. 38 (2012), 689-698.
[11] J.C. Hou and X.L. Zhang, Ring isomorphisms and linear or additive maps preserving zero products on nest algebras, Linear Algebra Appl. 387 (2004), 343-360.
[12] J.K. Li and J. Zhou, Jordan left derivations and some left derivable maps, Oper. Matrices 4 (2010), 127-138.
[13] N.K. Spanoudakis, Generalizations of certain nest algebra results, Proc. Amer. Math. Soc. 115 (1992), 711-723.
[14] J. Vukman, On left Jordan derivations of rings and Banach algebras, Aequationes Math. 75 (2008), 260-266.
[15] B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolin. 32 (1991), 609-614.
[16] J. Zhu and C.P. Xiong, Derivable mappings at unit operator on nest algebras, Linear Algebra Appl. 422 (2007), 721-735.

[^1]
[^0]: Received: 14.01.2018. Accepted: 10.02.2019. Published online: 05.04.2019.
 (2010) Mathematics Subject Classification: 47B47, 47L35.

 Key words and phrases: nest algebra, left derivable, left derivation.

[^1]: Department of Mathematics
 University of Kurdistan
 P. O. Box 416

 Sanandaj
 Iran
 e-mail: h.ghahramani@uok.ac.ir; hoger.ghahramani@yahoo.com
 e-mail: saman.satari84@gmail.com

