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APPLICATIONS OF STOCHASTIC SEMIGROUPS
TO QUEUEING MODELS

Piotr Gwiżdż

Abstract. Non-markovian queueing systems can be extended to piecewise-
deterministic Markov processes by appending supplementary variables to the
system. Then their analysis leads to an infinite system of partial differential
equations with an infinite number of variables and non-local boundary con-
ditions. We show how one can study such systems by using the theory of
stochastic semigroups.

1. Introduction

A basic model of a queueing system ([2]) is a single-server system in which
customers arrive for a service and the times taken to serve the customers
(service times) are independent and identically distributed (i.i.d.) random
variables. On arrival each customer must wait until a server is free, giving
priority to earlier arrivals, and the times between arrivals of two consecu-
tive customers (inter-arrival times) are also i.i.d. The service times and the
inter-arrival times are assumed to be independent. Let N(t) be the num-
ber of customers in the system at time t, those being served at time t and
those waiting to be served. This process is not Markov, unless both the inter-
arrival and the service times are exponentially distributed. Then the queue
is called an M/M/1 queue, where the code means memoryless inter-arrival
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times/memoryless service times/single server system. If customers arrive ac-
cording to a Poisson process in which case the inter-arrival times are exponen-
tially distributed then the queue is called M/G/1, where now G indicates that
the service-times distribution is general. The earliest investigation to analyze
this queueing system was by Cox ([8]), who introduced the supplementary
variable: the time that the customer in service has been at the service point,
and constructed the forward Kolmogorov equations (see (2.2)–(2.5)) for the
resulting Markov process. For the history of the supplementary variables tech-
nique and its use in queueing models we refer the reader to [7] and [12], where
the references to treatments of the M/G/1 queue may also be found.

We focus here on applications of the theory of stochastic semigroups
([5, 21]) to the particular example of the M/G/1 queue. We rewrite the for-
ward Kolmogorov equations in the form of an abstract Cauchy problem on
the space of integrable functions and prove its well-posedness using semigroup
methods. We then study the existence of stationary solutions and show that
the time dependent solutions converge to the stationary solution if and only
if the traffic intensity is strictly smaller then 1. In all previous studies of the
M/G/1 queue with the tools of functional analysis (see [12]) it was assumed
that the hazard rate function µ as in (2.1) associated with the distribution of
service time is bounded and that infx µ(x) > 0. In particular, these assump-
tions are not satisfied for queues with uniformly, gamma, Weibull or Pareto
distributed service times. In our approach we do not need these assumptions.
We prove well-posedness using a generation result from [14] that is an ex-
tension of Greiner’s theorem ([11]) by allowing unbounded perturbations of
boundary conditions in the setting of an AL-space. Convergence to a station-
ary solution is obtained by using the theory of partially integral stochastic
semigroups ([20]). For applications of methods of operator semigroups to con-
crete problems from the theory of queues we refer to [15, 12, 13, 25], where
the spectral theory was used to get the existence of stationary solutions. Our
approach with stochastic semigroups can be used in virtually all queueing
models which can be studied by supplementary variables, see [17] for a recent
review of such models.

2. The Markov process for the M/G/1 queue

We consider the M/G/1 queue, in which customers arrive according to a
Poisson process with rate α and the service times of customers are indepen-
dently distributed random variables with probability density function b(x).
Define the state of the process to be (0, 0) if there are no customers present and
to be (s, n) if the customer being currently served is at the service point for a
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time s and there are n customers in the system. We write X(t) = (x(t), N(t)),
where N(t) is the system size and x(t) is the time already spent in service by
time t of a customer being served. A customer will leave the service point in
the next ∆t time units with probability µ(x(t))∆(t) + o(∆t), where µ is the
hazard rate function

(2.1) µ(x) =
b(x)∫∞

x
b(r)dr

, x > 0,

and b is the probability density of the distribution of the service time.
The process {X(t)}t≥0 has values in the set

E = {(0, 0)} ∪ [0,∞)× N

and it is an example of a piecewise deterministic Markov process ([9, 21]). It
evolves deterministically according to the differential equation

X ′(t) = g(X(t)),

where g(x, n) = (1, 0) for x ≥ 0, n ≥ 1, g(0, 0) = (0, 0), and it changes its
values in a random way only at random times tk, k ≥ 0, where 0 = t0 < t1 <
. . . < tk < . . .. Here the random times (tk) denote departure and arrival times
of customers. We have

P(t1 > t|X(0) = (x, n)) = exp

{
−
∫ t

0

ϕ(x+ r, n)dr

}
,

where we set

ϕ(x, n) =

{
α+ µ(x) for x ≥ 0, n ≥ 1,

α, for x ≥ 0, n = 0,

and µ(0) = 0. Once the jump occurs at time tk and X(t−k ) = (x, n), where
X(t−k ) = limt↑tk X(t), then we choose Xk = X(tk) according to the following
transition probability

P(Xk ∈ B|X(t−k ) = (x, n)) = P((x, n), B), (x, n) ∈ E,

where P((0, 0), B) = 1B(0, 1) and

P((x, n), B) =
α

α+ µ(x)
1B(x, n+ 1) +

µ(x)

α+ µ(x)
1B(0, n− 1)

for x ≥ 0, n ≥ 1, and any Borel subset B of E.
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Let p0(t) be the probability that there are no customers at time t present in
the system and let pn(t, x) be the probability density function of X(t) when
N(t) = n at time t. The M/G/1 queue can be described by the following
system of partial differential equations ([8])

∂p0(t)

∂t
= −αp0(t) +

∫ ∞
0

µ(x)p1(t, x)dx,(2.2)

∂p1(t, x)

∂t
= −∂p1(t, x)

∂x
− (α+ µ(x))p1(t, x),(2.3)

∂pn(t, x)

∂t
= −∂pn(t, x)

∂x
− (α+ µ(x))pn(t, x) + αpn−1(t, x),(2.4)

for n ≥ 2, x > 0, supplemented by boundary conditions

p1(t, 0) =

∫ ∞
0

p2(t, x)µ(x)dx+ αp0(t),(2.5)

pn(t, 0) =

∫ ∞
0

pn+1(t, x)µ(x)dx, n ≥ 2,(2.6)

and the initial conditions

(2.7) p0(0) = f(0, 0), pn(0, x) = f(x, n), x > 0, n ≥ 1,

which are nonnegative and such that

f(0, 0) +

∞∑
n=1

∫ ∞
0

f(x, n)dx = 1.

Using the theory of stochastic semigroups we prove in Section 4 the following:

Theorem 2.1. The system (2.2)–(2.7) has a unique nonnegative time-
dependent solution and

p0(t) +

∞∑
n=1

∫ ∞
0

pn(t, x)dx = 1, t ≥ 0.

We also study the long time behavior of the solutions of (2.2)–(2.7). Let
Nb be the number of arrivals during the service time of one customer. Con-
ditioning on the duration of the service time, we see that the distribution of
Nb is

(2.8) ak := P(Nb = k) =

∫ ∞
0

e−αx
(αx)k

k!
b(x)dx, k ≥ 0,
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and its generating function is given by

(2.9) Ga(z) =

∞∑
n=0

anz
n =

∫ ∞
0

e−α(1−z)xb(x)dx = b̂(α(1− z)),

where b̂ denotes the Laplace transform of the service time distribution with
density b. We define the traffic intensity ρ, i.e., the mean number of arrivals
within the average service time, by

ρ = α

∫ ∞
0

xb(x)dx.

Note that G′a(1) = ρ. If ρ < 1 then we define a probability distribution
q = (qn)n≥0 with the help of its generating function of the form

(2.10) Gq(z) =

∞∑
n=0

qnz
n =

(1− ρ)z(1− z)
Ga(z)− z

, z ∈ (0, 1).

The proof of the next result is also given in Section 4.

Theorem 2.2. Suppose that the traffic intensity satisfies ρ < 1 and the
distribution (qn)n≥0 is defined by (2.10). Then there exists a stationary solu-
tion p∗ of (2.2)–(2.7), it is given by p∗0 = 1− ρ,

(2.11) p∗n(x) = α

n−1∑
k=0

e−αx
(αx)k

k!
qn−k

∫ ∞
x

b(z)dz, x ≥ 0, n ≥ 1,

and the unique time-dependent solution of (2.2)–(2.7) converges to p∗:

lim
t→∞

(|p0(t)− p∗0|+
∞∑
n=1

∫ ∞
0

|pn(t, x)− p∗n(x)|dx) = 0.

Conversely, if the unique time-dependent solution of (2.2)–(2.7) is convergent
then ρ < 1.

Now suppose that ρ < 1. If the process is at the stationary distribution,
a departing customer leaves n customers in the system with probability

vn =

∫ ∞
0

p∗n(x)dx, n = 1, 2, . . . , v0 = 1− ρ.
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Making use of (2.11) we show that the generating function of the sequence
(vn)n≥0 is of the form

(2.12) Gv(z) =
(1− ρ)(1− z)Ga(z)

Ga(z)− z
, z ∈ (0, 1).

This is known as the Pollaczek–Khinchin formula (see e.g. [22]).
For this purpose, we set

rk =

∫ ∞
0

e−αx
(αx)k

k!
α

∫ ∞
x

b(z)dzdx, k ≥ 0,

and, by (2.11), we see that

(2.13) vn =

n−1∑
k=0

rkqn−k, n ≥ 1.

To calculate rk we write α = (α+ µ(x))− µ(x) and use (2.1) to arrive at

rk =

∫ ∞
0

e−αx
(αx)k

k!
(α+ µ(x))

∫ ∞
x

b(z)dzdx−
∫ ∞

0

e−αx
(αx)k

k!
b(x)dx.

It follows from (2.1) that

e−αx
∫ ∞
x

b(z)dz = e−αx−
∫ x
0
µ(z)dz.

This together with integration by parts implies that

rk = rk−1 − ak, k ≥ 1, r0 = 1− a0,

where (ak)k≥0 is defined by (2.8). Consequently,

rk = 1−
k∑
l=0

al =
∞∑

l=k+1

al, k ≥ 0,

and the generating function of the sequence (rk)k≥0 is of the form

(2.14) Gr(z) =
1−Ga(z)

1− z
, z ∈ (0, 1).

Applying (2.13) we deduce that

Gv(z) = 1− ρ+

∞∑
n=1

vnz
n = 1− ρ+Gr(z)Gq(z), z ∈ (0, 1).

Simple computations using (2.10) and (2.14) give (2.12).



Applications of stochastic semigroups to queueing models 127

3. Stochastic operators and semigroups

In this section we collect preliminary material concerning stochastic semi-
groups. Let (E, E ,m) be a σ-finite measure space and L1 = L1(E, E ,m) be
the space of integrable functions. We denote by D(m) ⊂ L1 the set of all
densities on E, i.e.

D(m) = {f ∈ L1
+ : ‖f‖ = 1}, where L1

+ = {f ∈ L1 : f ≥ 0},

and ‖·‖ is the norm in L1. A linear operator P : L1 → L1 such that P (D(m)) ⊆
D(m) is called stochastic or Markov ([18]). It is called substochastic if Pf ≥ 0
and ‖Pf‖ ≤ ‖f‖ for all f ∈ L1

+. If D is a linear subspace of L1 then a linear
operator P : D → L1 is called positive, if Pf ≥ 0 for f ∈ D∩L1

+. A positive and
everywhere defined operator is bounded and its norm is determined through
its values on L1

+.
A family of stochastic (substochastic, positive) operators {P (t)}t≥0 on L1

which is a C0-semigroup, i.e.,
(1) P (0) = I (the identity operator);
(2) P (t+ s) = P (t)P (s) for every s, t ≥ 0;
(3) for each f ∈ L1 the mapping t 7→ P (t)f is continuous: for each s ≥ 0

lim
t→s
‖P (t)f − P (s)f‖ = 0;

is called a stochastic (substochastic, positive) semigroup. The infinitesimal gen-
erator of {P (t)}t≥0 is by definition the operator A with domain D(A) ⊂ L1

defined as

D(A) = {f ∈ L1 : lim
t↓0

1

t
(P (t)f − f) exists},

Af = lim
t↓0

1

t
(P (t)f − f), f ∈ D(A).

Let (A,D(A)) be a linear operator. If for some real λ the operator λ−A :=
λI−A is one-to-one, onto, and (λ−A)−1 is a bounded linear operator, then λ
is said to belong to the resolvent set ρ(A) and R(λ,A) := (λ−A)−1 is called
the resolvent of A at λ. If A is the generator of the substochastic semigroup
{P (t)}t≥0 then (0,∞) ⊂ ρ(A) and we have the integral representation

R(λ,A)f =

∫ ∞
0

e−λsP (s)f ds for f ∈ L1.

The operator λR(λ,A) is substochastic and R(µ,A)f ≤ R(λ,A)f for µ > λ >
0, f ∈ L1

+.
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Following Arendt ([1]), a linear operator A is said to be resolvent positive
if there exists ω ∈ R such that (ω,∞) ⊆ ρ(A) and R(λ,A) ≥ 0 for all λ > ω.
Generators of substochastic semigroups are resolvent positive and we have the
following result being a consequence of the fundamental Hille–Yosida theorem
(see e.g. [4, 21]). If the operator (A,D(A)) is resolvent positive, D(A) is dense
in L1, and ∫

E

Af dm ≤ 0 for all nonnegative f ∈ D(A),

then (A,D(A)) generates a substochastic semigroup on L1.
We now provide a result from [14] concerning the existence of positive

semigroups generated by operators defined on non-trivial domains and pro-
viding positive and integrable solutions of initial-boundary value problems. It
is a generalization of Greiner’s theorem ([11]) on perturbation of the domain
of a generator. For a recent review of different approaches used in the study
of initial-boundary value problems see [6].

We assume that there is a second L1 space denoted by L1
∂=L1(E∂ , E∂ ,m∂),

where (E∂ , E∂ ,m∂) is a σ-finite measure space. Let D be a linear subspace of
L1. We assume that A : D → L1 and Ψ0,Ψ: D → L1

∂ are linear operators
satisfying the following conditions:
(i) for each λ > 0, the operator Ψ0 : D → L1

∂ restricted to the nullspace
N (λI − A) = {f ∈ D : λf − Af = 0} of the operator (λI − A,D) has a
positive right inverse, i.e., there exists a positive operator Ψ(λ) : L1

∂ →
N (λI −A) such that Ψ0Ψ(λ)f∂ = f∂ for f∂ ∈ L1

∂ ;
(ii) the operator Ψ: D → L1

∂ is positive and ‖ΨΨ(λ)‖ < 1 for all λ > 0;
(iii) the operator A0 = A with D(A0) = {f ∈ D : Ψ0f = 0} is resolvent

positive and D(A0) is dense in L1;
(iv) for all nonnegative f ∈ D

(3.1)
∫
E

Af dm−
∫
E∂

Ψ0f dm∂ ≤ 0.

Theorem 3.1 ([14]). Suppose that conditions (i)–(iv) hold. Then the op-
erator (AΨ,D(AΨ)) defined by

(3.2) AΨf = Af, f ∈ D(AΨ) = {f ∈ D : Ψ0(f) = Ψ(f)},

is the generator of a positive semigroup on L1. Moreover, the resolvent of AΨ

at λ > ω is given by

(3.3) R(λ,AΨ)f = (I + Ψ(λ)(I −ΨΨ(λ))−1Ψ)R(λ,A0)f, f ∈ L1.
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We also need the following corollary to the Kato perturbation theorem
([16, 10, 24, 3]).

Theorem 3.2. Assume conditions (i)–(iv). Let (AΨ,D(AΨ)) be as in (3.2)
and let B : D(AΨ)→ L1 be a positive operator satisfying

(3.4)
∫
E

(AΨf +Bf) dm = 0 for all f ∈ D(AΨ) ∩ L1
+.

If for some λ > 0

(3.5) lim
n→∞

‖(BR(λ,AΨ))n‖ = 0

then the operator (AΨ +B,D(AΨ)) is the generator of a stochastic semigroup
{P (t)}t≥0 on L1.

Remark 3.3. Condition (3.4) in Theorem 3.2 implies that the operator
(AΨ,D(AΨ)) satisfies∫

E

AΨf dm ≤ 0 for all f ∈ D(AΨ) ∩ L1
+,

since Bf ≥ 0 for f ≥ 0. Hence, the operator (AΨ,D(AΨ)) generates a sub-
stochastic semigroup. From condition (3.4) it also follows that the operator
BR(λ,AΨ) is substochastic (see e.g. [23, Corollary 3.2]).

It should be noted that condition (3.5) equivalently states that the spectral
radius of the bounded operator BR(λ,AΨ) is strictly smaller than 1.

We now combine the generation results with the approach from [23, 5] to
study the existence of invariant densities for the semigroup {P (t)}t≥0 of The-
orem 3.2. Consider the substochastic operator K : L1 → L1 defined by ([23])

(3.6) Kf = lim
λ→0

BR(λ,AΨ)f, f ∈ L1,

where the limit exists in L1 and pointwise (see [23, Theorem 3.6]). It follows
from [5, Theorem 3.3] that if K has an invariant density f∗, i.e., Kf∗ = f∗,
and if f∗ defined by

(3.7) f∗ = sup
λ>0

R(λ,AΨ)f∗ = lim
λ→0

R(λ,AΨ)f∗

belongs to L1, then f∗ is invariant for the semigroup {P (t)}t≥0, i.e., P (t)f∗ =

f∗, t ≥ 0. The limit in (3.7) is taken pointwise and in general it does not have
to belong to L1.
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Note that given any λ, µ ∈ ρ(A0) we have ([11, Lemma 1.3]) Ψ(λ) =
Ψ(µ)+(µ−λ)R(λ,A0)Ψ(µ). Thus Ψ(λ) ≥ Ψ(µ) for 0 < λ ≤ µ. Consequently,
for any nonnegative f∂ ∈ L1

∂ we can define the pointwise limit

(3.8) Ψ(0)f∂ = lim
λ→0

Ψ(λ)f∂ .

Theorem 3.4. Assume conditions (i)–(iv) and (3.4)–(3.5). Suppose that
0 ∈ ρ(A0) and that Ψ(0) as in (3.8) extends to a bounded linear operator
Ψ(0): L1

∂ → L1 with ‖ΨΨ(0)‖ < 1. Then the semigroup {P (t)}t≥0 has an
invariant density if and only if the operator K defined as in (3.6) has an
invariant density. Moreover, the equation Kf∗ = f∗ can be rewritten as

(3.9) f∗ = BR(0, A0)f∗ +BΨ(0)f∂ , f∂ = ΨR(0, A0)f∗ + ΨΨ(0)f∂ ,

and f∗ given by

(3.10) f∗ = R(0, A0)f∗ + Ψ(0)f∂

is invariant for the semigroup {P (t)}t≥0.

Proof. Since 0 ∈ ρ(A0), the operator R(0, A0) is bounded and

lim
λ→0

R(λ,A0)f = R(0, A0)f, f ∈ L1.

The operator Ψ(0) is bounded and I − ΨΨ(0) is invertible. Thus, R0f ∈ L1

for all f ∈ L1, where (see (3.3))

R0f := lim
λ→0

R(λ,AΨ)f = R(0, A0)f + Ψ(0)(I −ΨΨ(0))−1ΨR(0, A0)f.

This implies that

lim
λ→0

λR(λ,AΨ)f = 0,

which together with [23, Theorem 3.6] shows that the operatorK is stochastic.
Now if Kf∗ = f∗ for f∗ ∈ D(m) then f∗ = R0f∗ ∈ L1. Thus f∗/‖f∗‖

is an invariant density for the semigroup {P (t)}t≥0, by [5, Theorem 3.3]. To
prove the converse assume that f̃∗ is an invariant density for the semigroup
{P (t)}t≥0. Since f̃∗ ∈ D(AΨ) and (B,D(AΨ)) is a positive operator, we have
B(f̃∗) ∈ L1 and B(f̃∗) ≥ 0. Hence, B(f̃∗)/‖B(f̃∗)‖ is an invariant density for
K, by the same argument as in [5, Corollary 3.11]. �
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We conclude this section with a general result from [20] concerning pos-
sible asymptotic behavior of stochastic semigroups. A stochastic semigroup
{P (t)}t≥0 is called asymptotically stable if it has an invariant density f∗ such
that

lim
t→∞

‖P (t)f − f∗‖ = 0 for all f ∈ D(m)

and partially integral if, for some t > 0, the operator P (t) is partially integral,
i.e., there exists a measurable function q : E × E → [0,∞) such that∫

E

∫
E

q(x, y)m(dx)m(dy) > 0 and P (t)f(x) ≥
∫
E

q(x, y)f(y)m(dy)

for (m-a.e.) x ∈ E and for every density f .

Theorem 3.5 ([20, Theorem 2]). Let {P (t)}t≥0 be a partially integral sto-
chastic semigroup. Assume that the semigroup {P (t)}t≥0 has only one invari-
ant density f∗. If f∗ > 0 a.e. then the semigroup {P (t)}t≥0 is asymptotically
stable.

4. Stochastic semigroup for the M/G/1 queue

We consider the Borel sets E = {(0, 0)} ∪ (0,∞) × N and E∂ = {0} ×
{1, 2, . . .} with Borel σ-algebras and measures

m = δ(0,0) +
∑
n∈N

Leb× δn, m∂ =
∑
n∈N

δ0 × δn,

where Leb is the Lebesgue measure on R+. We take

Af(0, 0) = −αf(0, 0),

Af(x, n) = − ∂

∂x
f(x, n)− (α+ µ(x))f(x, n), x > 0, n ≥ 1,

on its maximal domain D, which consists of all f ∈ L1 such that Af ∈ L1,

∞∑
n=1

∫ ∞
0

µ(x)|f(x, n)|dx <∞

and the function x 7→ f(x, n) is absolutely continuous on (0,∞) for each
n ≥ 1.
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We define operators Ψ0,Ψ: D → L1
∂ by

Ψ0f(0, n) = lim
x→0+

f(x, n), n ≥ 1, f ∈ D,

and

Ψf(0, 1) = αf(0, 0) +

∫ ∞
0

µ(x)f(x, 2)dx,(4.1)

Ψf(0, n) =

∫ ∞
0

µ(x)f(x, n+ 1)dx, n ≥ 2, f ∈ D.(4.2)

Finally, let B : D → L1 be given by

Bf(0, 0) =

∫ ∞
0

µ(x)f(x, 1)dx, Bf(x, 1) = 0,(4.3)

Bf(x, n) = αf(x, n− 1), x > 0, n ≥ 2, f ∈ D.(4.4)

Now using Theorem 3.2 we prove the following generation theorem which
implies Theorem 2.1.

Theorem 4.1. The operator (AΨ + B,D(AΨ)) is the generator of a sto-
chastic semigroup {P (t)}t≥0 on L1.

Before we prove Theorem 4.1 we state a couple of lemmas.

Lemma 4.2. The resolvent of the operator A0f = Af , f ∈ D(A0) = {f ∈
D : Ψ0f = 0}, at λ ≥ 0 is of the form

R(λ,A0)f(0, 0) =
1

λ+ α
f(0, 0),

R(λ,A0)f(x, n) = e−Λλ(x)

∫ x

0

eΛλ(y)f(y, n)dy, x > 0, n ≥ 1,

where

(4.5) Λλ(x) = (λ+ α)x+

∫ x

0

µ(z)dz.

Proof. The idea of the proof comes from [19]. Let f ∈ L1 and λ ≥ 0. We
define Rλf(0, 0) = f(0, 0)/(λ+ α) and

Rλf(x, n) = e−Λλ(x)

∫ x

0

eΛλ(y)f(y, n)dy, x > 0, n ≥ 1.
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We first show that Rλf ∈ D. If 0 ≤ y ≤ x then we have∫ y

0

µ(z)dz ≤
∫ x

0

µ(z)dz.

This and Fubini’s theorem give∫ ∞
0

e−Λλ(x)

∫ x

0

eΛλ(y)|f(y, n)|dydx =

∫ ∞
0

∫ ∞
y

e−Λλ(x)dx eΛλ(y)|f(y, n)|dy

≤
∫ ∞

0

∫ ∞
y

e−(λ+α)(x−y)dx|f(y, n)|dy

for all n ≥ 1, implying that ‖Rλf‖ ≤ ‖f‖/(λ + α). Hence Rλ is a bounded
linear operator. Now, observe that∫ ∞

y

µ(x)e−Λλ(x)dx =

∫ ∞
y

b(x)e−(λ+α)xdx ≤ e−Λλ(y), y ≥ 0.

Thus

∞∑
n=1

∫ ∞
0

µ(x)|Rλf(x, n)|dx ≤ ‖f‖ <∞.

Since the function x 7→ e−Λλ(x) is absolutely continuous and y 7→ eΛλ(y)f(y, n)
is integrable on intervals (0, x), x > 0, we see that Rλf is absolutely continu-
ous. For any absolutely continuous function f(·, n) we have

(4.6) λf(x, n)−Af(x, n) = e−Λλ(x) ∂

∂x

(
eΛλ(x)f(x, n)

)
.

Consequently, (λI −A)Rλf = f and Rλf ∈ D. Since

|Rλf(x, n)| ≤
∫ x

0

|f(y, n)|dy, x > 0, n ≥ 1,

we see that Ψ0(Rλf)(0, n) = 0 for all n. Hence Rλf ∈ D(A0). It is easy to
check that

Rλ(λf −A0f) = f, f ∈ D(A0).

We conclude that Rλ = R(λ,A0) as required. �
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Lemma 4.3. Let λ ≥ 0. The right inverse Ψ(λ) of Ψ0 restricted to the
nullspace of the operator λI −A is given by Ψ(λ)f∂(0, 0) = 0 and

(4.7) Ψ(λ)f∂(x, n) = f∂(0, n)e−Λλ(x), n ≥ 1, x > 0, f∂ ∈ L1
∂ ,

where Λλ is defined by (4.5). If Ψ is as in (4.1)–(4.2) then

(4.8) ‖ΨΨ(λ)‖ ≤ cλ < 1, where cλ =

∫ ∞
0

µ(x)e−Λλ(x)dx.

Moreover,

(4.9) (I −ΨΨ(λ))−1ΨR(λ,A0)f(0, 1)

≤ α

λ+ α
f(0, 0) +

∞∑
k=0

ckλ

∫ ∞
0

f(x, k + 2)dx ≤ ‖f‖

for any nonnegative f ∈ L1.

Proof. The first claim follows from formula (4.6). Since Ψ(λ)f(0, 0) = 0,
we get

(4.10) ΨΨ(λ)f∂(0, n) =

∫ ∞
0

µ(x)f∂(0, n+ 1)e−Λλ(x)dx, n ≥ 1.

This gives the first inequality in (4.8). From (2.1) and (4.5) we have∫ ∞
0

µ(x)e−Λλ(x)dx =

∫ ∞
0

b(x)e−(λ+α)xdx.

Since b is a probability density function, the last integral is strictly smaller
than 1, completing the proof of (4.8).

For each f∂ ∈ L1
∂ and n ≥ 1 we have ΨΨ(λ)f∂(0, n) = cλf∂(0, n + 1), by

(4.10), implying that

(I −ΨΨ(λ))−1f∂(0, n) =

∞∑
k=0

(ΨΨ(λ))kf∂(0, n) =

∞∑
k=0

ckλf∂(0, k + n).

Let f ∈ L1 be nonnegative. Then

ΨR(λ,A0)f(0, 1) =
α

λ+ α
f(0, 0) +

∫ ∞
0

µ(x)R(λ,A0)f(x, 2)dx

and

ΨR(λ,A0)f(0, n) =

∫ ∞
0

µ(x)R(λ,A0)f(x, n+ 1)dx, n ≥ 2.
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Since ∫ ∞
0

µ(x)R(λ,A0)f(x, n+ 1)dx ≤
∫ ∞

0

f(x, n+ 1)dx

for any n ≥ 2, we get (4.9). �

Now we are ready to prove the generation theorem using Theorem 3.2.

Proof of Theorem 4.1. It follows from Lemma 4.3 that conditions (i)
and (ii) hold. By Lemma 4.2, the operator (A0,D(A0)) is resolvent positive.
Since the space of Lipschitz continuous functions with compact support is
contained in D(A0) and is dense in L1, the domain of the operatorA0 is dense
in L1. For nonnegative f ∈ D we have∫

E

Afdm = Af(0, 0) +

∞∑
n=1

∫ ∞
0

Af(x, n)dx

= −αf(0, 0) +

∞∑
n=1

(
Ψ0f(0, n)−

∫ ∞
0

(α+ µ(x))f(x, n)dx

)
(4.11)

= −αf(0, 0)−
∞∑
n=1

∫ ∞
0

(α+ µ(x))f(x, n)dx+

∫
E∂

Ψ0fdm∂ .

This implies that (3.1) holds for all nonnegative f ∈ D. Thus, we conclude
that the operator A satisfies conditions (iii)–(iv).

It remains to check conditions (3.4) and (3.5). Since∫
E

Bfdm =

∫ ∞
0

µ(x)f(x, 1)dx+

∞∑
n=2

∫ ∞
0

αf(x, n− 1)dx

and (4.11) holds for nonnegative f ∈ D(AΨ) ⊂ D, we conclude that∫
E

(AΨf +Bf)dm = −αf(0, 0)−
∞∑
n=2

∫ ∞
0

µ(x)f(x, n)dx+

∫
E∂

Ψ0f = 0

and so (3.4) holds. The operator BR(λ,AΨ) is substochastic (see Remark 3.3).
Thus 0 ≤ ‖(BR(λ,AΨ))n+1‖ ≤ ‖(BR(λ,AΨ))n‖ for all n. Consequently, the
limit in (3.5) exists. We will now show that the limit in (3.5) is equal to zero.
Since Bf(·, 1) = 0 for f ∈ D, we see that for any nonnegative f ∈ D

‖BR(λ,AΨ)Bf‖ = BR(λ,AΨ)Bf(0, 0) +

∞∑
n=2

∫ ∞
0

BR(λ,AΨ)Bf(x, n)dx



136 Piotr Gwiżdż

and R(λ,A0)Bf(·, 1) = 0. It follows from (3.3) and (4.7) that

BR(λ,AΨ)Bf(0, 0) =

∫ ∞
0

µ(x)R(λ,AΨ)Bf(x, 1)dx

= cλ(I −ΨΨ(λ))−1ΨR(λ,A0)Bf(0, 1).

This together with (4.9) and (4.4) implies that

BR(λ,AΨ)Bf(0, 0) ≤ cλ
α

λ+ α
Bf(0, 0) + cλ

∞∑
k=0

ckλ

∫ ∞
0

Bf(x, k + 2)dx

≤ cλ
α

λ+ α
Bf(0, 0) + αcλ‖f‖.

We have

∞∑
n=2

∫ ∞
0

BR(λ,AΨ)Bf(x, n)dx = α

∞∑
n=1

∫ ∞
0

R(λ,AΨ)Bf(x, n)dx

= α (‖R(λ,AΨ)Bf‖ −R(λ,AΨ)Bf(0, 0)) .

Since Ψ(λ)f∂(0, 0) = 0 for any f∂ ∈ L1
∂ , we get

R(λ,AΨ)Bf(0, 0) = R(λ,A0)Bf(0, 0) =
1

λ+ α
Bf(0, 0).

We have λ‖R(λ,AΨ)‖ ≤ 1, and so

‖R(λ,AΨ)Bf‖ ≤ 1

λ
‖Bf‖ ≤ 1

λ
Bf(0, 0) +

α

λ
‖f‖,

where we used (4.4). Consequently,

‖BR(λ,AΨ)Bf‖ ≤ α

λ
Bf(0, 0) +

α2

λ
‖f‖+ α‖f‖

for any nonnegative f ∈ D. Now, if we take a nonnegative f ∈ L1 then
R(λ,AΨ)f is nonnegative and R(λ,AΨ)f ∈ D with ‖R(λ,AΨ)f‖ ≤ ‖f‖/λ.
This together with (4.9) implies that

‖(BR(λ,AΨ))2f‖ ≤ α

λ
BR(λ,AΨ)f(0, 0) +

(
α2

λ
+ α

)
‖R(λ,AΨ)f‖

≤
(

2α

λ
+
α2

λ2

)
‖f‖
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and shows that ‖(BR(λ,A))2‖ ≤ α(α + 2λ)/λ2. Thus for sufficiently large λ
the norm of the iterates of BR(λ,A) converges to zero. �

In the proof of Theorem 2.2 we need a couple of lemmas.

Lemma 4.4. If the traffic intensity satisfies ρ < 1 then the stochastic
semigroup {P (t)}t≥0 from Theorem 4.1 has a unique invariant density f∗,
f∗ > 0 a.e., and f∗(·, n) = p∗n for n ≥ 0, where p∗n is as in (2.11). Conversely,
if {P (t)}t≥0 has an invariant density then ρ < 1.

Proof. We have

R(0, A0)f(x, n) = e−Λ0(x)

∫ x

0

eΛ0(y)f(y, n)dy, x > 0, n ≥ 1,

by Lemma 4.2, and

Ψ(0)f∂(x, n) = e−Λ0(x)f∂(0, n), n ≥ 1,

by Lemma 4.3. The operators R(0, A0) and Ψ(0) are bounded. Moreover,
‖ΨΨ(0)‖ < 1, by (4.8). It follows from Theorem 3.4 that {P (t)}t≥0 has an
invariant density if and only if the operator K defined as in (3.6) has an
invariant density. To find an invariant density f∗ for K we make use of (3.9).
We have

f∗(x, n) = BR(0, A0)f∗(x, n) +BΨ(0)f∂(x, n), (x, n) ∈ E,

f∂(0, n) = ΨR(0, A0)f∗(0, n) + ΨΨ(0)f∂(0, n), n ≥ 1.

Since Bf(·, 1) = 0 for all f ∈ D, we see that f∗(·, 1) = 0. This and (4.3) show
that BR(0, A0)f∗(0, 0) = 0. Thus

f∗(0, 0) =

∫ ∞
0

µ(x)Ψ(0)f∂(x, 1)dx

=

∫ ∞
0

µ(x)e−Λ0(x)dxf∂(0, 1) = a0f∂(0, 1).

We also have BR(0, A0)f∗(·, 2) = 0 and ΨΨ(0)f∂(0, n) = a0f∂(0, n+1), n ≥ 1.
Hence,

f∗(x, 2) = BΨ(0)f∂(x, 2) = αΨ(0)f∂(x, 1) = αe−Λ0(x)f∂(0, 1), x > 0,

and

(4.12) f∂(0, 1) = f∗(0, 0) + a1f∂(0, 1) + a0f∂(0, 2).
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It is easily seen that for n ≥ 2 we have

f∗(x, n) = αe−Λ0(x)
n−2∑
k=0

(αx)k

k!
f∂(0, n− 1− k), x > 0,

and

(4.13) f∂(0, n) =

n∑
k=0

akf∂(0, n+ 1− k).

To find the sequence qn = f∂(0, n), n ≥ 1, we use the generating function
approach. Multiplying (4.13) by zn and (4.12) by z, we calculate that

Gq(z) =

∞∑
n=1

f∂(0, n)zn = f∗(0, 0)z +

∞∑
n=1

n∑
k=0

akf∂(0, n+ 1− k)zn

= f∗(0, 0)z +Ga(z)
Gq(z)

z
− f∗(0, 0),

where Ga is as in (2.9). Hence,

Gq(z) =
f∗(0, 0)(1− z)z
Ga(z)− z

, z ∈ (0, 1).

Note that
∞∑
n=1

∫ ∞
0

f∗(x, n)dx = ρ

∞∑
n=1

f∂(0, n)

and
∞∑
n=1

f∂(0, n) = lim
z→1−

Gq(z) =
f∗(0, 0)

1− ρ
.

Consequently, ‖f∗‖ = 1 if and only if

f∗(0, 0) + ρ
f∗(0, 0)

1− ρ
= 1.

Thus, f∗ is an invariant density for the operator K if and only if f∗(0, 0) =
1− ρ > 0.
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It follows from (3.10) that f∗ = R(0, A0)f∗ + Ψ(0)f∂ is invariant for the
semigroup {P (t)}t≥0. We have f∗(0, 0) = f∗(0, 0)/α and

f∗(x, n) = e−Λ0(x)

(∫ x

0

eΛ0(y)f∗(y, n)dy + f∂(0, n)

)

= e−Λ0(x)
n−1∑
k=0

(αx)k

k!
f∂(0, n− k), x > 0, n ≥ 1.

Note that

∞∑
n=1

∫ ∞
0

f∗(x, n)dx =
ρ

α

∞∑
n=1

f∂(0, n).

If we take f∗ = αf∗ then f∂(0, 1) > 0 and f∗ is a strictly positive invariant
density for the semigroup {P (t)}t≥0. �

Lemma 4.5. The stochastic semigroup {P (t)}t≥0 from Theorem 4.1 is par-
tially integral.

Proof. We show that for each t > 0 there exists a nonnegative measurable
function kt(y) such that

P (t)f(0, 0) ≥
∫ ∞

0

kt(y)f(y, 1)dy

for all densities f and that there exists t > 0 such that∫ ∞
0

kt(y)dy > 0.

To this end, recall that the stochastic semigroup {P (t)}t≥0 obtained with the
help of Theorem 3.2 is given by the Dyson–Phillips expansion ([3, 4])

P (t)f =

∞∑
n=0

Sn(t)f, f ∈ L1,

where {S0(t)}t≥0 is the substochastic semigroup generated by the operator
(AΨ,D(AΨ)) and

Sn+1(t)f =

∫ t

0

Sn(t− s)BS0(s)f ds, f ∈ D(AΨ), n ≥ 0.
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It follows from (3.3) that R(λ,AΨ)−R(λ,A0) is a positive operator. Thus the
semigroup {S0(t)}t≥0 dominates the semigroup {S(t)}t≥0 generated by the
operator (A0,D(A0)), and so we obtain S0(t)f ≥ S(t)f for all nonnegative f .
It is easy to check that (see [19])

S(t)f(x, n) = f(x− t, n)1(0,∞)(x− t)e−
∫ x
x−t µ(z)dz, x > 0, n ≥ 1,

and S(t)f(0, 0) = e−αtf(0, 0), t > 0, f ∈ L1. Since B is a positive operator,
we see that

P (t)f ≥ S2(t)f ≥
∫ t

0

S(t− s)BS(s)f ds

for all nonnegative f ∈ D. Consequently, we get

P (t)f(0, 0) ≥
∫ t

0

e−α(t−s)
∫ ∞
s

µ(x)f(x− s, 1)e−
∫ x
x−s µ(z)dzdxds

≥
∫ ∞

0

kt(y)f(y, 1)dy,

where

kt(y) =

∫ t

0

e−α(t−s)e−
∫ y+s
y

µ(z)dzds, y > 0,

is nontrivial for sufficiently large t. Now taking q(x, n, y, k) = 0 for n, k ≥ 0,
x, y ≥ 0, and q(0, 0, y, 1) = kt(y), we conclude that the semigroup {P (t)}t≥0

is partially integral. �

Proof of Theorem 2.2. Suppose first that ρ < 1. It follows from Lem-
ma 4.4 that there is an invariant density for the semigroup {P (t)}t≥0 of
the given form and that it is unique and strictly positive a.e. This together
with Lemma 4.5 implies that all assumptions of Theorem 3.5 hold. Thus the
semigroup {P (t)}t≥0 is asymptotically stable. Suppose now that {P (t)}t≥0

is asymptotically stable. Then it has an invariant density. Thus ρ < 1, by
Lemma 4.4. �
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