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SOME GENERALIZATIONS OF NON-UNIQUE FIXED
POINT THEOREMS OF ĆIRIĆ-TYPE FOR (Φ, ψ)-HYBRID

CONTRACTIVE MAPPINGS

Memudu O. Olatinwo

Abstract. In this article, we establish some non-unique fixed point theorems
of Ćirić’s type for (Φ, ψ)−hybrid contractive mappings by using a similar no-
tion to that of the paper [M. Akram, A.A. Zafar and A.A. Siddiqui, A general
class of contractions: A−contractions, Novi Sad J. Math. 38 (2008), no. 1, 25–
33]. Our results generalize, extend and improve several ones in the literature.

1. Introduction

Let (X, d) be a complete metric space and T : X → X a selfmapping of
X. Suppose that F (T ) = {x ∈ X | Tx = x} is the set of fixed points of T.
The following definitions shall be required in the sequel:

The orbit of T at x, denoted O(x, T ), is defined by

O(x, T ) = {x, Tx, T 2x, . . . , Tnx, . . .}.

In 1971, Ćirić ([11]) introduced the following two definitions to obtain some
fixed point theorems.
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Definition 1.1 ([11, 13]). A metric space (X, d) is said to be T -orbitally
complete if T : X → X is a selfmapping and if any Cauchy subsequence {Tnix}
in orbit O(x, T ), with x ∈ X, converges in X.

Definition 1.2 ([11, 13]). An operator T : X → X is said to be T -orbitally
continuous if Tnix→ x? =⇒ T (Tnix)→ Tx? as i→∞.

We give the following equivalent definition in the metric form:
An operator T : X → X is orbitally continuous if

lim
i→∞

d(Tnix, x?) = 0 =⇒ lim
i→∞

d(T (Tnix), Tx?) = 0.

In applications, it is possible to have nonlinear equations whose fixed points
are not necessarily unique. Ćirić ([12]) established some results pertaining to
this innovative notion of nonunique fixed points. Our purpose is to establish
some nonunique fixed point theorems on a complete metric space for selfmap-
pings by using Akram-Zafar-Siddiqui type contractive conditions. Our results
generalize, extend and improve some previous results in the literature. In par-
ticular, our results generalize and improve some of the results of Ćirić ([12, 13])
and some recent results of the author (see [20]–[23], [26]). The classical Ba-
nach’s fixed point theorem was established by Banach ([6]), using the following
contractive condition: there exists c ∈ [0, 1) (fixed) such that ∀ x, y ∈ X,

(1.1) d(Tx, Ty) ≤ c d(x, y).

However, it is crucial to say that the mappings satisfying the contractive
condition (1.1) are necessarily continuous. In order to have a wider class of
contractive mappings than those satisfying (1.1), Kannan ([16]) generalized
the Banach’s fixed point theorem by employing the following contractive con-
dition: there exists a ∈ [0, 1

2) such that

(1.2) d(Tx, Ty) ≤ a[d(x, Tx) + d(y, Ty)], ∀ x, y ∈ X.

So, the mappings satisfying (1.2) need not be continuous and this is a very
nice initiative of the author (see [16]). Several authors have generalized and
extended Banach’s fixed point theorem using similar notion as in (1.2). For
such generalization and extension of Banach’s fixed point theorem, interested
readers may also consult Agarwal et al. ([4]), Chatterjea ([10]), Khamsi and
Kirk ([18]), Zamfirescu ([31]), Zeidler ([32]) and a host of others in the liter-
ature.

However, it is noteworthy to say that several contractive conditions in-
cluding Banach’s contractive condition (1.1) have always been concerned with
establishing the existence and uniqueness of the fixed point of the mapping.
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Therefore, in order to include mappings whose fixed points may be not unique,
Ćirić ([12]) introduced a new technique involving contractive conditions for
such mappings, realizing the fact that there are also nonlinear equations with
more than one fixed point as aforementioned. In particular, Ćirić ([12]) intro-
duced, amongst others, the following two contractive conditions: For a map-
ping T : X → X, there exists λ ∈ (0, 1) such that ∀ x, y ∈ X,

(1.3) min{d(Tx, Ty), d(x, Tx), d(y, Ty)} −min{d(x, Ty), d(y, Tx)}
≤ λd(x, y), where T is orbitally continuous;

and also there exists λ ∈ (0, 1) such that ∀ x, y ∈ X,

(1.4) min{d(Tx, Ty),max{d(x, Tx), d(y, Ty)}}
−min{d(x, Ty), d(y, Tx)} ≤ λd(x, y).

Another contractivity condition worthy of note is the following:

Definition 1.3 ([5]). A selfmap T : X → X of a metric space (X, d) is
said to be A-contraction if it satisfies the condition:

(A) d(Tx, Ty) ≤ β(d(x, y), d(x, Tx), d(y, Ty)), ∀ x, y ∈ X,

with some β ∈ A, where A is the set of all functions β : IR3
+ → IR+ satisfying

(i) β is continuous on the set IR3
+ (with respect to the Euclidean metric on

IR3);
(ii) a ≤ kb for some k ∈ [0, 1) whenever a ≤ β(a, b, b), or a ≤ β(b, a, b), or,

a ≤ β(b, b, a), ∀ a, b ∈ IR+.

Akram et al. ([5]) employed the contractive condition (A) to prove that if
X is a complete metric space, then the mapping T has a unique fixed point.

Olatinwo ([20]) generalized the results of Akram et al. ([5]) by employing
the following more general contractive condition:

Definition 1.4 ([20]). A selfmap T : X → X of a metric space (X, d) is
said to be a generalized A-contraction or GA−contraction if it satisfies the
condition:

d(Tx, Ty) ≤ α(d(x, y), d(x, Tx), d(y, Ty),

[d(x, Tx)]r[d(y, Tx)]pd(x, Ty), d(y, Tx)[d(x, Tx)]m),

∀ x, y ∈ X, r, p,m ∈ IR+ with some α ∈ GA, where GA is the set of all
functions α : IR5

+ → IR+ satisfying
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(i) α is continuous on the set IR5
+ (with respect to the Euclidean metric on

IR5);
(ii) if any of the conditions a ≤ α(b, b, a, c, c), or, a ≤ α(b, b, a, b, b), or, a ≤

α(a, b, b, b, b) holds for some a, b, c ∈ IR+, then there exists k ∈ [0, 1)
such that a ≤ kb.

A further generalization of the results of Akram et al. ([5]) is contained
in Olatinwo ([20]–[21]) and Olatinwo in [25] established some convergence
theorems as well as some stability results using similar notion.

Motivated by the results of both Akram et al. ([5]) and Ćirić ([12]), in
the present paper, we prove various and more general nonunique fixed point
theorems by employing contractive conditions which are hybrids of those used
in [5, 12], [20]–[23], [26]. Our results are indeed generalizations of the results of
Ćirić ([12]) and those of several authors in the literature. For excellent study
of mappings having nonunique fixed points, we refer to Achari ([1]–[3]), Ćirić
([12]–[13]), Ćirić et al. ([14]), Karapınar ([17]) and Pachpatte ([27]) as well as
the articles of the author (see [22]–[24], [26]).

Definition 1.5.
(a) A function ψ : IR+ → IR+ is called a comparison function if it satisfies the

following conditions:
(i) ψ is monotone increasing;
(ii) lim

n→∞
ψn(t) = 0, ∀ t ≥ 0, where ψn(t) denotes the n-th iterate of ψ.

(b) A comparison function satisfying
∑∞
n=0 ψ

n(t) converges for all t > 0 is
called a (c)-comparison function.

See Berinde ([7, 8]), Rus ([29]) and Rus et al. ([30]) for the definition and
examples of comparison function.

Remark 1.6. Every comparison function satisfies ψ(0) = 0.
To prove our results, we shall employ the following more general contrac-

tive conditions than those stated in (1.3) and (1.4):
Let (X, d) be a metric space.

(a) For a mapping T : X → X, there exist functions u, v, w : IR+ → IR+

with v(0) = 0 = w(0), and functions β : IR5
+ → IR+, Φ, ψ : IR+ → IR+

such that

(∆) Φ(M) ≤ β(d(x, y), d(x, Tx), d(y, Ty),

u(d(x, Tx))v(d(y, Tx))d(x, Ty), d(y, Tx)u(d(x, Tx))),



Some generalizations of non-unique fixed point theorems 225

∀ x, y ∈ X such that M ≥ 0, where

M = min{d(Tx, Ty), d(x, Tx), d(y, Ty)} − w(min{d(x, Ty), d(y, Tx)}),

and the functions β,Φ, ψ satisfy:
(p1) β is continuous on the set IR5

+ (with respect to the Euclidean metric
on IR5);

(p2) ψ is a continuous (c)−comparison function, Φ is an injective, continu-
ous and subadditive monotone increasing function such that Φ(0) = 0
and Φ(a) ≤ ψ(Φ(b)) whenever Φ(a) ≤ β(b, b, a, 0, 0), ∀ a, b ∈ IR+.

(b) For a mapping T : X → X, there exist continuous functions u, v, w : IR+ →
IR+ with v(0) = 0 = w(0), and functions β : IR5

+ → IR+, Φ, ψ : IR+ → IR+

such that

(∆?) Φ(N) ≤ β(d(x, y), d(x, Tx), d(y, Ty),

u(d(x, Tx))v(d(y, Tx))d(x, Ty), d(y, Tx)u(d(x, Tx))),

∀ x, y ∈ X such that N ≥ 0, where

N = min{d(Tx, Ty),max{d(x, Tx), d(y, Ty)}}

− w(min{d(x, Ty), d(y, Tx)}),

and the functions β,Φ, ψ satisfy properties (p1), (p2).

Remark 1.7. Each of the contractive conditions (∆) and (∆?) can be
reduced to several other ones in the literature. In particular, we have the
following:

It is obvious that both contractive conditions (1.3) and (1.4) are special
cases of contractive conditions (∆) and (∆?) respectively if

β(t1, t2, t3, t4, t5) = λt1, ∀ (t1, t2, t3, t4, t5) ∈ IR5
+, λ ∈ (0, 1).

2. Main results

Theorem 2.1. Let (X, d) be a complete metric space and let T : X → X
be a mapping satisfying the contractive condition (∆) with some functions
u, v, w : IR+ → IR+ such that v(0) = 0 = w(0), and functions β : IR5

+ →
IR+,Φ, ψ : IR+ → IR+ satisfying properties (p1) and (p2). If T is orbitally
continuous, then T has a fixed point in X.
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Proof. For x0 ∈ X, let {xn}∞n=0 be the Picard iteration associated to
T defined by xn+1 = Txn (n = 0, 1, 2, . . .). Note that xn = Txn−1 = Tnx0

(n = 0, 1, 2, . . .). Let x = xn, y = xn+1, then we have

M = min{d(Txn, Txn+1), d(xn, Txn), d(xn+1, Txn+1)}

− w(min{d(xn, Txn+1), d(xn+1, Txn)})
= min{d(xn+1, xn+2), d(xn, xn+1)}.

If d(xq, xq+1) = 0 for some q ≥ 0, then x0 is the limit point of {Tnx0} and xq
is a fixed point of T.

Suppose that d(xn, xn+1) > 0 (n = 0, 1, 2, . . .). Using condition (∆) with
x = xn, y = xn+1, then we have

Φ(M) ≤ β(d(xn, xn+1), d(xn, Txn), d(xn+1, Txn+1), u(d(xn, Txn))

× v(d(xn+1, Txn))d(xn, Txn+1), d(xn+1, Txn)u(d(xn, Txn)))

= β(d(xn, xn+1), d(xn, xn+1), d(xn+1, xn+2), 0, 0)

from which we obtain that

(2.1) Φ(min{d(xn+1, xn+2), d(xn, xn+1)})

≤ β(d(xn, xn+1), d(xn, xn+1), d(xn+1, xn+2), 0, 0).

We choose M = min{d(xn+1, xn+2), d(xn, xn+1)} = d(xn+1, xn+2) and then
apply property (p2) of β so that from (2.1) we get

Φ(d(xn+1, xn+2)) ≤ ψ(Φ(d(xn, xn+1))),

that is,

(2.2) Φ(d(xn, xn+1)) ≤ ψ(Φ(d(xn−1, xn))).

Using (2.2) inductively we obtain

Φ(d(xn, xn+1)) ≤ ψ(Φ(d(xn−1, xn)))

≤ ψ2(Φ(d(xn−2, xn−1))) ≤ · · · ≤ ψn(Φ(d(x0, x1))),

from which it follows that

(2.3) Φ(d(xn, xn+1)) ≤ ψn(Φ(d(x0, x1))).
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Applying the subadditivity of Φ in the repeated application of the triangle
inequality yields

(2.4) Φ(d(xn, xn+q)) ≤ Φ(d(xn, xn+1))

+ Φ(d(xn+1, xn+2)) + · · ·+ Φ(d(xn+q−1, xn+q)).

Using (2.3) inductively in (2.4) gives

Φ(d(xn, xn+q)) ≤ ψn(Φ(d(x0, x1)))(2.5)

+ ψn+1(Φ(d(x0, x1))) + · · ·+ ψn+q−1(Φ(d(x0, x1)))

=

n+q−1∑
k=n

ψk(Φ(d(x0, x1)))

≤
∞∑
k=n

ψk(Φ(d(x0, x1))), n, q ∈ IN.

The right-hand side term in (9) tends to 0 as n→∞, thus leading to the fact
that Φ(d(xn, xn+q))→ 0 as n→∞ uniformly with respect to q. Therefore, by
the continuity and injectivity of Φ and the condition Φ(0) = 0, we have that
d(xn, xn+q) → 0 asn → ∞ uniformly with respect to q. That is, {xn}∞n=0 is
a Cauchy sequence in X. Since (X, d) is a complete metric space, there exists
u ∈ X such that lim

n→∞
d(xn, u) = 0, that is, lim

n→∞
xn = u. Therefore, since

xn = Tnx0 and T is orbitally continuous, we have

0 = d( lim
n→∞

T (Tnx0), Tu) = lim
n→∞

d(T (Tnx0), Tu) = lim
n→∞

d(Txn, Tu)

= lim
n→∞

d(xn+1, Tu) = d(u, Tu).

Thus, Tu = u, that is, u ∈ X is a fixed point of T. �

Theorem 2.2. Let (X, d) be a complete metric space and T : X → X a
mapping satisfying contractive condition (∆?) with some continuous functions
u, v, w : IR+ → IR+ such that v(0) = 0 = w(0), and functions β : IR5

+ → IR+,
Φ, ψ : IR+ → IR+ satisfying properties (p1), (p2). Then, T has a fixed point.

Proof. For x0 ∈ X, let {xn}∞n=0 defined by xn = Txn−1 = Tnx0

(n = 0, 1, 2, . . .) be the Picard iteration associated with T. Note that
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xn = Txn−1 = Tnx0 (n = 0, 1, 2, . . .). Let x = xn, y = xn+1, then we
have

N = min{d(Txn, Txn+1),max{d(xn, Txn), d(xn+1, Txn+1)}}

− w(min{d(xn, Txn+1), d(xn+1, Txn)})

= min{d(xn+1, xn+2),max{d(xn, xn+1), d(xn+1, xn+2)}} = d(xn+1, xn+2).

If d(xq, xq+1) = 0 for some q ≥ 0, then x0 is the limit point of {Tnx0} and xq
is a fixed point of T.

Assume that d(xn, xn+1) > 0 (n = 0, 1, 2, · · · ). By using condition (∆?)
with x = xn, y = xn+1, then we obtain

Φ(N) ≤ β(d(xn, xn+1), d(xn, Txn), d(xn+1, Txn+1), u(d(xn, Txn))

× v(d(xn+1, Txn))d(xn, Txn+1), d(xn+1, Txn)u(d(xn, Txn)))

= β(d(xn, xn+1), d(xn, xn+1), d(xn+1, xn+2), 0, 0),

from which we obtain that

(2.6) Φ(d(xn+1, xn+2)) ≤ β(d(xn, xn+1), d(xn, xn+1), d(xn+1, xn+2), 0, 0).

Then, applying property (p2) of β again in (2.6) gives

Φ(d(xn+1, xn+2)) ≤ ψ(Φ(d(xn, xn+1)),

which leads to the form (2.5) again. It follows again that the sequence {xn}∞n=0

is a Cauchy sequence in X. Since (X, d) is complete, {xn} converges to some
ν ∈ X, that is, lim

n→∞
xn = ν.

Since N can be negative, we define now the function Φ also for negative
arguments so that Φ(x) < 0 for x < 0 as follows: Let Φ(x) := −Φ(−x) for
x < 0.

The continuity of Φ is preserved.
Now, in the expression for N, let x = xn, y = ν so that we have

N = min{d(Txn, T ν),max{d(xn, Txn), d(ν, Tν)}}

− w(min{d(xn, T ν), d(ν, Txn)})

= min{d(xn+1, T ν),max{d(xn, xn+1), d(ν, Tν)}}

− w(min{d(xn, T ν), d(ν, xn+1)}),
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from which we have that

lim
n→∞

N = lim
n→∞

[min{d(xn+1, Tν),max{d(xn, xn+1), d(ν, Tν)}}(2.7)

− w(min{d(xn, Tν), d(ν, xn+1)})]

= min{d(ν, Tν),max{d(ν, ν), d(ν, Tν)}}

− w(min{d(ν, Tν), d(ν, ν)})

= min{d(ν, Tν), d(ν, Tν)} = d(ν, Tν).

By using condition (∆?) again with x = xn, y = ν, we have that

Φ(N) ≤ β(d(xn, ν), d(xn, Txn), d(ν, Tν),(2.8)

u(d(xn, Txn))v(d(ν, Txn))d(xn, T ν), d(ν, Txn)u(d(xn, Txn)))

= β(d(xn, ν), d(xn, xn+1), d(ν, Tν), u(d(xn, xn+1))

× v(d(ν, xn+1))d(xn, T ν), d(ν, xn+1)u(d(xn, xn+1))).

As n→∞ in (12), we get by the continuity of u, v, w, Φ, ψ and the metric
as well as by applying (11) in (12) that Φ(d(ν, Tν)) ≤ β(0, 0, d(ν, Tν), 0, 0).
Then, property (p2) gives Φ(d(ν, Tν)) ≤ ψ(Φ(0)) = 0, from which it follows
by the condition on Φ that Φ(d(ν, Tν)) = 0, so that d(ν, Tν) = 0, that is,
Tν = ν. �

Remark 2.3. In order to establish that {xn} is a Cauchy sequence in
Theorem 2.1, the following observation is crucial: choosing

min{d(xn+1, xn+2), d(xn, xn+1)} = d(xn, xn+1)

is ignored as a reasonable recurrence inequality relation involving the compar-
ison function ψ could not be obtained. More precisely, if min{d(xn+1, xn+2),
d(xn, xn+1)} = d(xn, xn+1), for some n ∈ IN, then putting y = d(xn, xn+1)
yields

0 < y ≤ ψ2(y),

whence, by monotonicity of ψ,

0 < y ≤ ψk(y), for k ∈ IN,

which contradicts condition (ii) of Definition 1.5.
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Theorem 2.4. Let X be a nonempty set, d and ρ be two metrics on X
and let T : X → X be a mapping. Assume that:
(i) there exists K > 0 such that ρ(Tx, Ty) ≤ Kd(x, y), ∀ x, y ∈ X;
(ii) (X, ρ) is a complete metric space;
(iii) T : (X, ρ)→ (X, ρ) is orbitally continuous;
(iv) T : (X, d)→ (X, d) is a mapping satisfying (∆).

Then, T : X → X has a fixed point.

Proof. For x0 ∈ X, let {xn}∞n=0 defined by xn+1 = Txn, n = 0, 1, 2, . . . ,
be the Picard iteration associated with T. By condition (iv), we obtain as in
Theorem 2.1 that, for p ∈ IN, d(xn, xn+p)→ 0 as n→∞. That is, {xn} is a
Cauchy sequence in (X, d).

We now show that {xn} is a Cauchy sequence in (X, ρ) as follows: By
condition (i), we have, for p ∈ IN,

ρ(xn, xn+p) = ρ(Txn−1, Txn+p−1) ≤ Kd(xn−1, xn+p−1)→ 0 as n→∞,

that is, ρ(xn, xn+p) → 0 as n → ∞. Thus, {xn} is a Cauchy sequence in
(X, ρ) too.

By condition (ii), (X, ρ) is a complete metric space which implies that
there exists u ∈ X such that lim

n→∞
ρ(xn, u) = 0, that is, lim

n→∞
xn = u.

By condition (iii), since xn = Tnx0 and T : (X, ρ) → (X, ρ) is orbitally
continuous, we have

0 = ρ( lim
n→∞

T (Tnx0), Tu) = lim
n→∞

ρ(T (Tnx0), Tu)

= lim
n→∞

ρ(Txn, Tu) = lim
n→∞

ρ(xn+1, Tu) = ρ(u, Tu).

Therefore, ρ(u, Tu) = 0 ⇐⇒ Tu = u. So, T has a fixed point u. �

Theorem 2.5. Let X be a nonempty set, d and ρ be two metrics on X
and let T : X → X be a mapping. Assume that:
(i) there exists K > 0 such that ρ(Tx, Ty) ≤ Kd(x, y), ∀ x, y ∈ X;
(ii) (X, ρ) is a complete metric space;
(iii) T : (X, ρ)→ (X, ρ) is orbitally continuous;
(iv) T : (X, d)→ (X, d) is a mapping satisfying (∆?).

Then, T : X → X has a fixed point.

Proof. For x0 ∈ X, let {xn}∞n=0 defined by xn+1 = Txn, n = 0, 1, 2, . . . ,
be the Picard iteration associated with T. By condition (iv), we obtain as in
Theorem 2.2 that {xn} is a Cauchy sequence in (X, d).

Further we proceed as in the proof of Theorem 2.4:
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By condition (i), we have that {xn} is a Cauchy sequence in (X, ρ) too.
By condition (ii), (X, ρ) is a complete metric space which implies that

there exists u ∈ X such that lim
n→∞

ρ(xn, u) = 0, that is, lim
n→∞

xn = u.

Again, by condition (iii), since xn = Tnx0 and T : (X, ρ) → (X, ρ) is
orbitally continuous, we obtain that ρ(u, Tu) = 0 ⇐⇒ Tu = u. Hence, T
has a fixed point u. �

Example 2.6. Let ϕ : IR+ → IR+ be a Lebesgue-integrable mapping which
is summable, nonnegative and such that

∫ ε
0
ϕ(t) > 0, for each ε > 0. Suppose

Φ, β are as defined in the Contractive conditions given in (∆) and (∆?).
Then, we have the various cases below.

Solution: Let

M = min{d(Tx, Ty), d(x, Tx), d(y, Ty)}

− w(min{d(x, Ty), d(y, Tx)}) = d(Tx, Ty),

or,

N = min{d(Tx, Ty),max{d(x, Tx), d(y, Ty)}}

− w(min{d(x, Ty), d(y, Tx)}) = d(Tx, Ty).

Suppose w(s) = 0, s ∈ IR+, then we obtain the following cases from the
Contractive conditions given in (∆) and (∆?) :

Case (1): Putting Φ(x) =
∫ x

0
ϕ(t)dt and

β(t1, t2, t3, t4, t5) = k

∫ t1

0

ϕ(t)dt,

where k ∈ [0, 1), we obtain some kind of Branciari’s contractive conditions of
integral type (cf. [9, 28]):∫ M

0

ϕ(t)dt ≤ k
∫ d(x,y)

0

ϕ(t)dt and

∫ N

0

ϕ(t)dt ≤ k
∫ d(x,y)

0

ϕ(t)dt.

Case (2): Also, letting Φ(x) =
∫ x

0
ϕ(t)dt,

β(t1, t2, t3, t4, t5) = k

∫ max{t1,t2,t3, t4+t5
2 }

0

ϕ(t)dt,



232 Memudu O. Olatinwo

where k ∈ [0, 1), and u(t) = 1, t ∈ IR+, v(t) = 1, t > 0, we obtain some kind
of Rhoades’ contractive condition of integral type (cf. [28]):∫ M

0

ϕ(t)dt ≤ k
∫ h(x,y)

0

ϕ(t)dt,

where h(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x,Ty)+d(y,Tx)
2 }.

Case (3) Also, letting Φ(x) =
∫ x

0
ϕ(t)dt,

β(t1, t2, t3, t4, t5) = k

∫ max{t1,t2,t3,t4,t5}

0

ϕ(t)dt,

where k ∈ [0, 1), and u(t) = 1, t ∈ IR+, v(t) = 1, t > 0, we obtain some other
kind of Rhoades’ contractive condition of integral type (cf. [28]):∫ M

0

ϕ(t)dt ≤ k
∫ H(x,y)

0

ϕ(t)dt,

where H(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.

Remark 2.7. In the article by Olatinwo [21], it was shown that the class
of contractions employed in that paper (that is, the class of GΦψ-contractions)
is more general than the class of A−contractions introduced by the authors
in [5].

Remark 2.8. Our results generalize and extend several classical results
in the literature, concerning unique and nonunique fixed points. In particular,
both Theorem 2.1 and Theorem 2.2 are generalizations and extensions of the
corresponding results of Ćirić ([12, 13]) and some results of Jaggi ([15]). Both
Theorem 2.4 and Theorem 2.5 extend both Theorem 2.1 and Theorem 2.2
respectively as well as the corresponding results of Ćirić ([12, 13]) and some
results of Jaggi ([15]). Both Theorem 2.4 and Theorem 2.5 also generalize
the result of Maia ([19]). Indeed, the results of our present paper generalize
the corresponding results by Olatinwo ([22, 23, 26]), but independent of the
corresponding results of the author ([24]).

Remark 2.9. We also employ this medium to announce that while prov-
ing the existence of the fixed point of T, the term “d(T lim

n→∞
(Tnx0), Tu)”

that appeared was a typographical misprint in Theorem 2.1 and Theorem
2.3 of [22] as well as in Theorem 2.1 and Theorem 2.4 of [24]. Since T is
orbitally continuous in those theorems (rather than being continuous), the
misprint should change to “d( lim

n→∞
T (Tnx0), Tu)” (which is now correctly
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written in the present article). Our interested readers can also see the correct
term “d( lim

n→∞
T (Tnx0), Tu)” in the articles [23, 26] (which invariably becomes

“ lim
n→∞

d(T (Tnx0), Tu)” since metric is continuous).
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