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INVERSE AMBIGUOUS FUNCTIONS AND
AUTOMORPHISMS ON FINITE GROUPS

IMKE TOBORG

Abstract. If G is a finite group, then a bijective function f : G — G is
inverse ambiguous if and only if f(z)~! = f~!(z) for all z € G. We give a
precise description when a finite group admits an inverse ambiguous function
and when a finite group admits an inverse ambiguous automorphism.

1. Introduction

Suppose (G, ) is a finite group and f : G — G is a bijective function and
let x € G. Then f(z)~! denotes the inverse of the image of  under f while
f~1(x) denotes the pre-image of x under f. In general f(x)~! and f~!(z) are
different elements.

Inspired from students being confused by this similar notation, several
authors investigated functions f: K — K such that f~1(z) = f(z)™! for all
x € K where K is equal to (0,00) € R, R, or C (see for example [2] and
[3]). Furthermore in [4] functions f: R — R satisfying the functional equation
f(f(x)) = —x for all x € R have been investigated. Recently, David J. Schmitz
introduced in [7] the notion of an inverse ambiguous function of a group G.
This is a bijective function f: G — G that is a solution of the functional
equation f~1(x) = f(z)7! for all z € G. He analysed the question whether
a group admits an inverse ambiguous function and answered it for several
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abelian groups. Moreover he gave a criteria for the existence of an inverse
ambiguous function of a finite group in terms of the number of elements
of order at least 3. This criteria was used by him together with Katherine
Gallagher in [8] to answer the question whether a symmetric or alternating
group or GL(2, ¢) for an arbitrary prime power ¢ admits an inverse ambiguous
function. In their introduction they refer to an article by Marcel Herzog [5]
from which some of their conclusions may also be derived.

In this paper we study finite groups in general. We use the work of Her-
zog in Section 2 to show that the existence of an inverse ambiguous function
of a finite group (G, -) depends on the order of G as well as the structure
or number of Sylow 2-subgroups of G. We are also interested in inverse am-
biguous automorphisms. These are inverse ambiguous functions that are also
homomorphisms. Non-abelian groups do not admit inverse ambiguous auto-
morphisms. In Section 3 we give a precise characterisation of finite abelian
p-groups admitting an inverse ambiguous automorphism for odd primes. Fi-
nally in Section 4 we investigate finite abelian 2-groups and characterise those
that admit an inverse ambiguous automorphism. This theorem together with
the results of Section 3 lead to a characterisation of finite groups admitting
inverse ambiguous automorphism.

All groups are written multiplicatively and we use standard group-theoretic
notation (see for example [6]). In particular 1 denotes the neutral element of
a group G as well as its trivial subgroup generated by the neutral element.

2. Inverse ambiguous functions

DEFINITION 2.1. Let G be a group and f: G — G be a bijective function.
Then f is an inverse ambiguous function if and only if

flx)™t = fHx) for all z € G.

If further f is an automorphism, then f is an inverse ambiguous automor-
phism.

LEMMA 2.2. Let G be a finite group such that |G| is a multiple of 4. Then
the following statements are equivalent.
(a) There is an inverse ambiguous function f: G — G.
(b) We have |{x € G | o(x) = 3}| =0 mod 4.
(c) We have |[{x € G| o(z) =2}| = (—1) mod 4.
(d) A Sylow 2-subgroup of G is neither cyclic, a quaternion group, a non-
abelian dihedral group nor semi-dihedral.
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(e) A Sylow 2-subgroup of G is not a dihedral group of order 8 and contains
a normal subgroup which is elementary abelian of order 4.

(f) The group G has an elementary abelian subgroup of order 4 that either is
a Sylow 2-subgroup of G or not a Sylow 2-subgroup of its centraliser.

PRrROOF. By Theorem 4.1 of [7] we see that (a) and (b) are equivalent.

From G = {1}U{z € G | o(z) = 3}U{x € G | o(z) = 2} and from |G| =
0 mod 4 we moreover obtain that (b) and (c) are equivalent.

Furthermore the equivalence of (¢) and (d) follows from Theorem 3 of [5].

Lemma 1.4 of [I] shows that (d) implies (e).

We now assume that (e) is true and let S be a Sylow 2-subgroup of G.
Then S contains an elementary abelian normal subgroup A which has order 4.
We suppose for a contradiction that S # A and Cs(A) = A. From S = Ng(A)
we get that Ng(A)/Cs(A) is isomorphic to a non-trivial 2-subgroup of Aut(A)
by 3.1.9 of [6]. Since Aut(A) has order 6 by 2.1.8 (b) of [6], we conclude that
S/A = Ng(A)/Cg(A) has order 2 and so |S| = 8. From Cg(A4) # S we see
that S is non-abelian. There are exactly two non-abelian groups of order 8,
the quaternion group of order 8 which contains a unique element of order 2
and the dihedral group of order 8 (see for example 3.2.2 of [9]). This is a
contradiction. So we have S = Ng(A) = Cg(A) or A # Cs(A). This implies
that A = S or that A < Cs(A). In the second case A is not a Sylow 2-subgroup
of Cg(A). Thus (f) is true in both cases.

We finally assume (f). Then there is an elementary abelian subgroup A
of order 4 of G that is either a Sylow 2-subgroup of G or not a Sylow 2-
subgroup of its centraliser. In the first case (d) is true. So let S be a Sylow
2-subgroup of G such that Cg(A) is a Sylow 2-subgroup of C¢(A). Suppose
that A # S. Then we have A < Cg(A) < S and hence S is neither cyclic nor
a quaternion group, as it contains at least two elements of order 2 by 5.3.7
of [6]. We suppose for a contradiction that S is dihedral or semi-dihedral.
In both cases Z(S) is cyclic and S contains a cyclic normal subgroup {c) of
index 2 (see for example the remark below 5.3.2 of [6]). Hence there is some
a € A\Z(S) and furthermore 5.3.2 of [6] yields that c¢* = ¢! or ¢* = ¢~ 1*+2"
where o(c) = 2"+, This implies that [C¢y(a)| = 2. From a € Cg(a)\{(c) we
deduce that {¢) < (¢)Cs(a) < S. This implies that S = {(c)Cs(a). Now 1.1.6
of [6] shows that

_18IICs(a) n (o))
@)

This implies the contradiction A = Cs(a). We conclude that (d) holds. O

|Cs(a)l

= [5:{0| - |Cey(a)] = 4.

THEOREM 2.3. Let G be a finite group. Then G admits an inverse am-
biguous function if and only if one of the following holds:
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(a) |G| =1 mod 4,
(b) 41|G| and there is some z € G of order 2 such that |G : Cg(z)| =1 mod 4,
(c) 4 | |G| and G has one of the properties in Lemma .

PROOF. We first notice from Theorem 4.1 of [7] that G admits an inverse
ambiguous function f: G — G if and only if [{z € G | o(z) = 3}| = 0 mod 4.

Let G have odd order. Then we have {x € G | o(x) > 3} = G\{1} and so
we see with regard to (a) that the theorem holds in this case.

If |G| is a multiple of 4, then Lemma [2.2| shows that the assertion is true.

It remains the case |G| = 2 mod 4. Then |G| is even and so there is an
element z in G of order 2. Then (z) is a Sylow 2-subgroup of G and so Sylow’s
theorem (see for example 3.2.3 (b) of [6]) implies that 2% := {g7'2g | g€ G}
is the set of all elements of order 2 of G. From 3.1.5 of [6] we moreover see
that |29] = |G : Cg(2)].

It follows that {x € G | o(x) = 3}U2% = G\{1} and hence

HrxeG|o(x) =3} +|G:Cq(z)] =2—1mod 4.

Summarising we obtain in this last case that G admits an inverse ambiguous
function if and only if |G : Cg(2)| = 1 mod 4. O

3. Inverse ambiguous automorphisms

LEMMA 3.1. Let G be a finite group and f: G — G be an automorphism
of G. Then f is inverse ambiguous if and only if the composition fo f inverts
every ¢ € G.

PRrROOF. Let x be an element of G. Then we have
fla) ' =) e f(f@T) =z e (fofia™) ==
This implies the assertion. O
THEOREM 3.2. Let G be a finite group admitting an inverse ambiguous
automorphism f. Then G is abelian. Furthermore, f has order 4 or G is an

elementary abelian 2-group.

PROOF. From Lemma [3.I] we see that f o f inverts G. Thus G is abelian
(see for example Exercise 4 of 1.3 in [6]).
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Furthermore we see that f* = (f o f) o (f o f) is the identity on G. So
the order of f divides 4. If f does not have order 4, then f o f is the identity
on G. In this case we conclude that z=1 = (f o f)(z) = z for all z € G.
In particular every element of G\{1} has order 2 and so G is an elementary
abelian 2-group. O

LEMMA 3.3. Let G be a finite group admitting an inverse ambiguous au-
tomorphism and let x € G. Then {x) n {f(x)) and {x, f(x)) are f-invariant.
In particular both groups admit an inverse ambiguous automorphism.

PrOOF. We apply Lemmal[3.1] It yields f((f(z))) = {(fof)(z)) = {z™1) =
{x). So we get that f((x) n {f(z))) = {f(x)) n<{x). As G is abelian by
Theorem we further see (z, f(z)) = (@)}{f(z)) = {(f(z))}zx) and hence

f, f(@))) = Fa)f(x))) = {f(2)Xa) = (x, f(x)). O

LEMMA 3.4. Let G be a finite group admitting an inverse ambiguous au-
tomorphism f and let A < G be f-invariant. Then f: G/A — G/A defined
via f(Ag) := Af(g) is an inverse ambiguous automorphism of G/A.

PROOF. By Lemma [3.2] the group G is abelian and so A is a normal
subgroup of GG. Since f is an automorphism of the finite group G, elementary
arguments show that f is an automorphism of G/A. Finally we see from
Lemma that for all g € G we have (f o f)(Ag) = Af(f(g9)) = Ag~! =
(Ag)~'. Thus f is inverse ambiguous by Lemma [3.1] O

LEMMA 3.5. Let G and H be finite groups and let f1: G — G and fo: H —
H be inverse ambiguous automorphisms. Then f: G x H — G x H defined via
f(z,y) == (fi(x), f2(y)) for all x € G and all y € H is an inverse ambiguous
automorphism.

PrOOF. We first remark that f is an automorphism from G x H. Further-
more for all z € G and y € H Lemmal3.1|yields that f2(z,y) = (f2(2), f2(y)) =
(z7',y™1). Thus f is inverse ambiguous by Lemma [3.1] O

LEMMA 3.6. Let G be a non-trivial cyclic p-group for some prime p. Then
G admits an inverse ambiguous automorphism if and only if p =1 mod 4 or
|G| = 2.

PROOF. Let n be such that |G| = p™. From 2.2.5 of [6] we obtain that
Aut(G) is a direct product of a group of order p"~! and a cyclic group of
order p — 1.

Suppose first that p = 3 mod 4. Then G does not admit an automor-
phism of order 4. Thus Theorem [3.2] implies that G does not have an inverse
ambiguous automorphism in this case.
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If p =1 mod 4, then G admits exactly one automorphism of order 4, say f.
It further admits a unique automorphism of order 2, namely fo f. In particular
f o f inverts the elements of G and so the assertion follows from Lemma [3.1

It remains the case p = 2. If |G| = 2, then the identity is inverse ambiguous.
If |G| = 22, then there does not exist an inverse ambiguous function on G by

Lemma ((a) < (d)). O

THEOREM 3.7. Let G be a non-trivial abelian p-group for some prime p
such that p =1 mod 4. Then G admits an inverse ambiguous automorphism.

PROOF. Let first G be cyclic. Then Lemma [3.6] provides the statement.

Let now G be non-cyclic. Since G is abelian, we see that G is a direct
product of cyclic groups. Thus Lemma [3.5] and the cyclic case imply the as-
sertion. (]

LEMMA 3.8. Let G = {a)y x {by be an abelian group. If o(a) = o(b), then
f: G — G is defined via f(a'b?) := a=Ib" is an inverse ambiguous automor-
phism.

PROOF. Let f: G — G be the function defined via f(a) = b and f(b) =
a~!. Then f is an isomorphism of G and we have f2(a) = a™1, f2(b) = b1
Thus Lemma [3.1] implies that f is an ambiguous isomorphism. U

LEMMA 3.9. Let p be a prime such that p = 3 mod 4 and let G be an
abelian p-group of rank 2. If G admits an inverse ambiguous automorphism
f, then there is an element a € G such that G = {ay x {f(a)).

In particular, G admits an inverse ambiguous automorphism if and only
if G is isomorphic to a direct product of two cyclic groups of the same order.

PROOF. Let G admit the inverse ambiguous automorphism f and let a € G
be of maximal order. Then we have |G| < o(a)?, as G is generated by two
elements. Furthermore we have o(f(a)) = o(a), since f is an automorphism.

Lemma and Lemma (3.6 imply that {a) n {f(a)) = 1.
Altogether we have (a) x {f(a)) < G and

[Kay x {f(a))] = o(a) - o(f(a)) = o(a)* = |G].

This implies that G = {a) x {f(a)).
On the other hand if G = {a) x {(b) with o(a) = |[{ay| = |<b)| = o(b), then

Lemma [3.8| provides an inverse ambiguous automorphism of G. O

LEMMA 3.10. Let G be an abelian p-group for some prime p. Suppose
further that G admits an inverse ambiguous automorphism f. If a € G is an
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element of maximal order and such that {ay n {f(a)) =1, then {a, f(a)) has
rank 2 and a complement in G.

In particular if p = 3 mod 4, then there is a subgroup 1 # A of G of rank
2 such that f(A) = A and such that A has a complement in G.

PROOF. Let a € G be of maximal order and such that {(a) n {f(a)) = 1.
Then A := {a, f(a)) has rank 2 and o(f(a)) = o(a) is maximal as well. We
further deduce that {a) has a complement in G, say B, by 2.1.2 of [6]. Hence
1.1.6 of [6] yields

eyl - 1B

a5 = B| =|{ayn B| =1

and the Dedekind identity (see for example 1.1.11 of [6]) gives A = {a)(An B).
We conclude that |A| = |{a) x {f(a))| = o(a)? by 1.1.6 of [6]. Now, the same
lemma shows that

|A[-|B] _ o(a)*-|B] Kepl-1B]

ACBI= a5 = jer =% [wyxm o

From (AnB)n<{ay=An(Bn<ay) =An1=1and 1.2.6 of [0] it follows
that An B~ An B/1 =(AnB)/((An B)n<{ay) = ((An BXay/a)) =
Afay = (F(@) x an/ay = F@p/ay o (@) = a1 = (fla)y is
cyclic of maximal order.

Again we apply 2.1.2 of [6] to find a complement C' of A n B in B. But
now C is a complement of A in G, as AC' = {a)(A n B)C = {(a)B = G and
AnC<An(BnC)=(An B)nC = 1. Altogether the first statement is
true.

Let now p = 3 mod 4 and a € G have maximal order. Then the cyclic
group {ay N {f(a)) admits an inverse ambiguous automorphism by Lemma
[3.3] Hence Lemma [3.6] and our assumption that p = 3 mod 4 imply that
{ay n{f(a)y = 1. Thus 1 # A = {a, f(a)) has rank 2 and a complement in
G by the previous investigation. As f(A) = A by Lemma we obtain the
assertion. O

THEOREM 3.11. Let G be a non-trivial abelian p-group for some prime p
such that p = 3 mod 4. Then G admits an inverse ambiguous automorphism
if and only if G = Ay x ... x A, for some positive integer n and such that for
all i € {1,...,n} the group A; is the direct product of two cyclic groups of the
same order.

PROOF. Let first n be a positive integer and G = A; x ... x A,, be such
that for all ¢ € {1,...,n} the group A; is the direct product of two cyclic
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groups of the same order. Then Lemma [3.9) shows that A; admits an inverse
ambiguous automorphism. From Lemma [3.5] we deduce that G admits an
inverse ambiguous automorphism.

Suppose now that G admits an inverse ambiguous automorphism. We
prove the structure assertion of G via induction on the rank r of G.

If r = 1, then G is cyclic and Lemma [3.6] yields a contradiction. For r = 2
we obtain the assertion from Lemma [3.91

Let r = 3. Then Lemma [3.10] provides an f-invariant subgroup A # 1 of
G of rank at most 2 and such that A has a complement, say B, in G.

By Lemma|3.4]the mapping f induces an inverse ambiguous automorphism
fonG/Avia f(Ax) = Af(x) for all x € G, since A is f-invariant. In particular
B =~ G/A admits an inverse ambiguous automorphism. Induction yields that
B = A; x ... x A, for some positive integer n and such that for all i € {1,...,n}
the group A; is the direct product of two cyclic groups of the same order.

We set Ap41 := A. As A has rank at most 2, Lemma [3.6]implies that 4,44
has rank 2. Since A is f-invariant, Lemma [3.9| shows that A,11 = A is the
direct product of two cyclic groups of the same order.

Altogether we have G = Bx A = Ay x...x A,q1 and for alli € {1,...,n+1}
the group A; is the direct product of two cyclic groups of the same order. [

4. Inverse ambiguous automorphisms on 2-groups

We now turn our attention to the remaining prime 2. The next lemma
shows that the structure of 2-groups of rank 2 admitting an inverse ambiguous
automorphism is more complicated to describe.

LEMMA 4.1. Let G = {a) x {b) be an abelian 2-group. If o(a) = So(b),
then f: G — G defined via f(a't’) = a2 is an inverse ambiguous

automorphism.

PROOF. Notice that o(ab?) = o(a), o(b) = of(ab) and G = {(ay x {b) =
{ab®y x {aby. So the function f: G — G defined via f(a) = a~'b=2 and
f(b) = ab is an isomorphism. From f2(a) = a7, f2(b) = b=! and Lemma [3.1]
we see that f is an ambiguous isomorphism. ([

LEMMA 4.2. Let p be a prime and G be a non-trivial abelian p-group. If
G admits an inverse ambiguous automorphism f such that f(x) = x for all
elements x of order p, then G is an elementary abelian 2-group.
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PROOF. As G # 1, there is some element z € G of order p. The assumption
implies that (z) is f-invariant. Thus Lemma [3.1|shows that 2! = f(f(z)) =
f(z) = z. We deduce that 2 = o(z) = p.

Suppose for a contradiction that G has some element y of order 4. Then
we have f(y)? = f(y?) = y? € (y)n{f(y)). This implies together with Lemma
and Lemma [3.6 that the cyclic group {y) n {f(y)) has order 2. With 1.1.6
of [6] we calculate that A := {(y, f(y)) has order

_o(y)-o(fy) _4-4
Ky n {fyDl 2

Since A is not cyclic 2.1.2 of [6] provides some element b € A of order 2 such
that A = (y) x (by. Furthermore f(y) € A\(y) and hence there is some integer
i such that f(y) =y’ - b. We conclude from Lemma

<y - {F(y))] = 8.

vl = f(f(y) = fy) - f0) = (v -0) b=y BT,

This implies that b'*! = 1 and 2> = —1 mod 4; a contradiction. We conclude
that 22 = 1 for all € G and so G is an elementary abelian 2-group. O

LEMMA 4.3. Let G be an abelian 2-group of rank 2. If G admits an in-
verse ambiguous automorphism f, then G is elementary abelian and f is
the identity, or there is an element a € G such that G = {a, f(a)) and
Gl € {o(a)?, Lo(a)?}.

In particular, G admits an inverse ambiguous automorphism if and only

if we have G = {ay x (by with o(b) € {o(a), 30(a)}.

PRrROOF. Let f be an inverse ambiguous automorphism of G. Similarly to
the proof of Lemma [3.9] we investigate an element a € G of maximal order.
Then, since GG is generated by two elements and f is an automorphism, we

have |G| < o(a)? and o(f(a)) = o(a). Hence Lemma 3.3 and Lemma [3.6] yield

[Kay n(f(a))| < 2.
Thus <a, f(a)) < G and

_ o@olf@) |1
T =Ty o Gty = 22

by 1.1.6 of [6].

If G = {a, f(a)), then the first statement holds. Hence we may suppose
that G # {a, f(a)). This is only possible in the case of [(a) n {f(a))| = 2 and
|G| = o(a)?. Since a has maximal order 2.1.2 of [6] implies that {a) has a
complement in G. Hence, there is some element b € G such that G = {a) x {b)
and our assumption implies that o(b) = |G : {(a)| = o(a).
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Again, if G = (b) x {f(b)), then the first statement holds, as G = <b, f(b))
and |G| = o(a)? = o(b)?. Hence we may suppose that G # (b, f(b)). Then, as
above, we have [{b) n (f(b))| = 2. In particular f fixes the element of order
2 in (by and f fixes the element of order 2 in {a). These elements of order 2
are different, as G = {a) x {b). It follows from 2.1.9 of [6], that G has exactly
three elements of order 2. Hence we conclude that f fixes every element of
order 2. Then Lemma [4.2] implies that G is elementary abelian and f is the
identity.

Altogether we have shown that G = {a, f(a)), or G = <b, f(b)), or that G
is elementary abelian. This is the first statement.

In all cases G = {a) x {(c) with o(c) € {0(a), 0(a)) for some c € {f(a),b}.

Let conversely G = {(a) x by with o(b) € {o(a), 30(a)}. Then G admits an
inverse ambiguous automorphism by Lemma [3.8| or Lemma ([

The next lemma generalises Lemma [3.10}

LEMMA 4.4. Let G be a non-trivial abelian 2-group admitting an inverse
ambiguous automorphism f. Then G contains an element a of maximal order
such that {a, f(a)) has a complement in G.

PROOF. Suppose for a contradiction that the lemma is false. Then let G
be a counterexample of minimal order.

(I) For every g € G of maximal order the group {f(g)) n {gy has order 2.

Proof. Let g € G have maximal order. Then Lemma [3.10] and our assumption
that G is a counterexample imply that {f(g)) n {g) # 1. Since {f(g)) n{g) is
a cyclic and f-invariant 2-group by Lemma [3.3] we obtain the assertion from
Lemma

(II) G is not elementary abelian.

Proof. Suppose for a contradiction that G is elementary abelian and let g €
G\1. Then o(g) = 2 and ¢ has maximal order. Thus {g) has a complement in
G by 2.1.2 of [6]. From 1 # {(g)n{f(g)) < gy = {1, g} it follows that f(g) = ¢
and so (g, f(g)) = {g) has a complement in G.

(ITT) If a € G has maximal order, then exactly one element of order 2 in
{a, f(a)) is fized by f. This fized element of order 2 is an element of
(ay n {f(a)).
Proof. From Lemma [3.3| we see that (a, f(a)) and {a) n {f(a)) admit inverse
ambiguous automorphisms. In addition (a) n {f(a)) has two elements by ().
Therefore the element of order 2 in {ay n {f(a)) is fixed.
On the other hand o(a) > 4 by (). Hence Lemma3.6|implies that {a, f(a))
is not cyclic. Consequently {a, f(a)) has rank 2. From Lemma it moreover
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follows that {a, f(a)) contains an element of order 2 that is not fixed by f.
We deduce that at least two elements of order 2 are permuted by f. Since
{a, f(a)) has exactly three elements of order 2 (see 2.1.9 of [6]), we see that
exactly one element of order 2 in {a, f(a)) is fixed by f.

(IV) G has rank at least 3.

Proof. If G was cyclic, then G had order 2 by Lemma contradicting (I)).
Suppose for a contradiction that G has rank 2. Then G contains exactly
three elements of order 2 by 2.1.9 of [6]. Further there are a,b € G such
that G = {ay x {b). We choose notation such that o(a) = o(b) and set A :=
a, (@) = @) f(a).
Then a is an element of maximal order in G. From this and 1.1.6 of [6] we
deduce that |G| = o(a)o(b) < o(a)?. In addition

. 1
|G| > |<CL>| |<f(a)| — 70((1)2
Kay n (fla)l 2
by (). In particular A = G or |G : A| = 2. In the first case we obtain a
contradiction, since 1 is a complement of G in G. We conclude that

2|6 A= Gl K x bl

A~ KayF(a))
_ofa) - o(b) Ky n (f(a)] _ 2-0() ) o(b)
o(a) - o(f()) o(f(@) ~ o(f(a))

by 1.1.6 of [6]. Hence o(b) = o(a) is maximal and so (III) yields that the
element of order 2 in {(a) n {f(a)) and the element of order 2 in {(b) n {f(b))
are fixed. From G = {a) x {(by and 2.1.9 of [6] we see that at least two of the
three involutions in G are fixed by f. Consequently every element of order 2

in G is fixed by f. But now contradicts Lemma
(V) G contains at least two elements of order 2 that are fized by f.

Proof. Suppose for a contradiction that G has exactly one element of order
2 fixed by f. Then we apply 9.1.1 (b) of [6] on V := {g € G | g*> = 1}. Since
G is abelian, V' is an elementary abelian subgroup of G that is f-invariant. In
particular we see that f(g) = f(g)~! for all g € V. It follows that [g, f, f] =
9= f(9), f1=9f(9)"" flg~")f(f(9)) = 9f(9)f(9)~"9~" = 1. In addition our
assumption implies that Cy (f) :=={ge€ V| f(g) = g} has order 2. Thus 9.1.1
of [6] is applicable and Part (b) implies that |{g € G | g* = 1}| < 22 = 4. This
and 1.29 of [6] force G to have rank at most 2. This contradicts ([[V]).

Let now b € G have maximal order and set B = (b, f(b)). Then and
provide some ¢ € G\B such that ¢ = 1 and f(c) = c. Let —: G — G/{c)
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be the natural homomorphism. Then Lemma shows that G' admits the
inverse ambiguous automorphism f defined via f(z) = f(z).

Since G is a minimal counterexample and |G| < |G| we find some @ € G of
maximal order such that (a, f(@)) has a complement C' in G. Let C' < G be
the full pre-image of C' and choose a € G as a pre-image of a.

(VI) o(b) = o(a) = o(a).
Proof. From ¢ ¢ B and 1.2.6 of [6] we obtain that B = B{c)/{c) =~ B/(B n
{¢)) = B. In particular we get o(b) = o(b). From o(b) = o(a) = o(a) = o(b) =
o(b) we finally see that o(b) = o(a) = o(a).

(VI) c ¢ {f(a),a)

Proof. Suppose for a contradiction that ¢ € {f(a),ay. Then and
imply that ¢ € {a) n {f(a)) < {(ay. But this implies the contradiction that

o(a) = 30(a).
We will finally show that C' is a complement of <a, f(a)) =: A in G.
For this we first observe that A = (a, f(a)) = (a, fla)y = <a, f(a)). T

follows that G = = A-C. As C is the full pre-image of C in G, we get G = AC
Moreover A n C = 1 implies that AnC <{c)andso AnC < Anlc)y=1

by (VII). O

THEOREM 4.5. Let G be a non-trivial abelian 2-group. Then G admits an
inverse ambiguous automorphism if and only if G = A1 x ... x A,, for some
positive integer n, where for all i € {1,....,n} the group A; is elementary
abelian, or of the form in Lemma[].3

PROOF. Suppose first that G = A; x ... x A, for some positive integer n
and for all i € {1,...,n} the group A; is elementary abelian, or of the form in
Lemma[4:3] If A4; is an elementary abelian 2-group, then the identity is inverse
ambiguous. Otherwise Lemma [4.3]shows that A; admits an inverse ambiguous
automorphism. From Lemma we deduce that G := A; x ... x A,, admits
an inverse ambiguous automorphism.

Conversely, suppose that G admits an inverse ambiguous automorphism.
We prove the structure assertion of G via induction on the rank r of G.

If r = 1, then G is cyclic. In this case Lemma [3.6] implies that G is ele-
mentary abelian of order 2 and hence the assertion is true.

If r = 2, then the second part of Lemma implies the assertion.

Suppose that 7 > 3. Then Lemma [£.4] provides an f-invariant subgroup
A # 1 of G of rank at most 2 and such that A has a complement, say B, in G.

By Lemma[3.4]the mapping f induces an inverse ambiguous automorphism
fonG/Avia f(Ax) = Af(x) for all x € G, since A is f-invariant. In particular
B ~ G/A admits an inverse ambiguous automorphism. Induction yields that
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B = A; x ... x A, for some positive integer n and such that for all i € {1,...,n}
the group A; is elementary abelian, or of the form in Lemma

We set A, 41 := A. If A is cyclic, then Lemma [3.6] implies that A = A,,+1
has order 2 and is hence elementary abelian. If A has rank 2, then we see from
Lemma [£.3] that A = A,, 1 has the desired structure, as A is f-invariant.

In both cases we have G = B x A = A; x ... x A,4+1 and for all
i € {1,...,n + 1} the group A; is elementary abelian, or of the form in
Lemma [4.3] O

THEOREM 4.6. Let G be a finite group, then G admits an inverse ambigu-
ous automorphism if and only if G = Ay x ... x A, for some positive integer n
and for every i € {1,...,n} one of the following holds:

(a) A; is an abelian p-group for some prime p =1 mod 4,
(b) A; is a direct product of two cyclic groups of the same order,
(c) there is a positive integer r such that A; is a direct product of two cyclic

groups of order 2" and 2711,

(d) A; is an elementary abelian 2-group.

PROOF. For every U < G we denote by 7(U) the set of all primes divid-
ing |U].

Let first G admit an inverse ambiguous automorphism f. Then Lemma
forces G to be abelian. So 2.1.6 of [6] yields that G = X ¢, (g) Gp, Where
for all p € 7(G) we have G, := {x € G | o(z) is a power of p}. Furthermore
2.1.5 of [6] implies that f(G,) = G, for all p € 7(G). In particular for every
p € m(G) the group G, admits an inverse ambiguous function.

We choose p € m(G). If p=1 mod 4, then G, has the structure described
in (a). If p = 3 mod 4, then Theoremyields that G, = A(p)1 X ... < A(p)n,
for some positive integer n,, where for all i € {1,...,n,} the group A(p); is
the direct product of two cyclic groups of the same order. In the last case,
if p = 2, then Theorem gives that Gy = A(2)1 x ... x A(2),, for some
positive integer na, where for all i € {1,...,n2} the group A(2); is elementary
abelian, or of the form in Lemma In particular A(2); has one of the
structures described in (b), (c), or (d).

Altogether we have

G= X Gpo=Gax X Gpx X G,

pen(G) pen(G) pen(G)
p=1 mod 4 p=3 mod 4
= (A2)1 X .. x A(2)ny) x X Gpx X (AP X ... X A(D)n,)-
pem(G) pem(G)
p=1 mod 4 p=3 mod 4

Hence, G has the desired structure.
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Let, conversely, n be a positive integer such that G = A; x ... x A, is an
abelian group and for every i € {1, ..., n} the group A; has one of the structures
described in (a), (b), (c) or (d).

Let i € {1,...,n}. If A; is asin (a), then Theoremshows that A; admits
an inverse ambiguous automorphism. If A; satisfies (b) or (c), then Lemma3.§]
or Lemma respectively, provide an inverse ambiguous automorphism on
A;. Finally if A; is an elementary abelian 2-group, then the identity is inverse
ambiguous on A;.

Consequently for each i € {1,...,n} the group A; admits an inverse am-
biguous automorphism. Thus Lemma [3.5] implies that G admits an inverse
ambiguous automorphism, too. O
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