
Annales Mathematicae Silesianae 32 (2018), 65–78
DOI: 10.1515/amsil-2017-0012

INFINITE TOWERS OF GALOIS DEFECT EXTENSIONS
OF KAPLANSKY FIELDS

Anna Blaszczok

Abstract. We give conditions for Kaplansky fields to admit infinite towers
of Galois defect extensions of prime degree. As proofs of the presented facts
are constructive, this provides examples of constructions of infinite towers of
Galois defect extensions of prime degree. We also give a constructive proof of
the fact that a henselian Kaplansky field cannot be defectless-by-finite.

1. Introduction

In this paper, we denote by (K, v) a field K equipped with a valuation
v. Its value group will be denoted by vK and its residue field by Kv. If L is
a field extension of K, then by (L|K, v) we denote a valued field extension,
where v is a valuation of L and K is equipped with the restriction of v to K.

Assume that (L|K, v) is a finite extension of valued fields and the valuation
v of K admits a unique extension to the field L. Then

[L : K] = pn · (vL : vK)[Lv : Kv],

where n is a nonnegative integer and, by the Lemma of Ostrowski, p is the
characteristic exponent of Kv, that is, p = charKv if it is positive and p = 1
otherwise. The factor d(L|K, v) = pn is called the defect of the extension
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(L|K, v). If d(L|K, v)> 1 then L|K is called a defect extension. If d(L|K, v)= 1
then we call L|K a defectless extension.

A valued field (K, v) is called henselian if v extends in a unique way to a
valuation of the algebraic closure K̃ of K, or equivalently, to every algebraic
extension of K. If in addition every finite extension of (K, v) is defectless, then
the valued field is called defectless.

A better understanding of defect extensions and their structure turned
out to be important for deep open problems of the model theory of valued
fields as well as the theory of valued rational function fields (see, e.g., [11], [13]
and [14]).

Since the existence of defect extensions shows a “bad behaviour” of the
valuation, we are interested in the question whether the problem of defect
extensions appears only in finite extensions, after which the defect vanishes.
In other words, we are interested if there are finite extensions (L|K, v) of
henselian fields such that (K, v) is not defectless, but (L, v) is a defectless
field. Such a field (K, v) is called defectless-by-finite.

A valued field extension (L|K, v) is called immediate if the corresponding
value group and residue field extensions are trivial, i.e.,

(vL : vK) = [Lv : Kv] = 1.

Note that finite immediate extensions of henselian fields are defect extensions.
If a valued field admits no nontrivial immediate extensions, then it is called
maximal. Hence, a maximal immediate extension of a valued field is a maximal
field.

In [8] Krull proved that every valued field admits a maximal immediate
extension. The structure and uniqueness of maximal immediate extensions
of valued fields are important topics, in particular in connection with the
applications to the model theory of valued fields.

A valued field (K, v) of residue characteristic p is called a Kaplansky field
if it satisfies the following conditions:
(K1) if p > 0 then the value group vK is p-divisible,
(K2) the residue field Kv is perfect,
(K3) the residue field Kv admits no finite separable extension of degree di-

visible by p.
Note that every valued field of residue characteristic 0 satisfies the above
conditions, hence is a Kaplansky field. It was shown by Kaplansky that if a
valued field (K, v) satisfies (K1)-(K3), then it admits a unique (up to valuation
preserving isomorphism over K) maximal immediate extension. For the proof
see Theorem 5 of [6]. See also Theorem 1 of [16], which shows the equivalence of
conditions (K1) - (K3) with the original “hypothesis A” assumed by Kaplansky.
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He gave also an example of a valued field admitting nonisomorphic maximal
immediate extensions (cf. [6, Section 5]).

The uniqueness of maximal immediate extensions of Kaplansky fields was
a key tool in the study of the model theory of Kaplansky fields. Moreover,
defectless Kaplansky fields are examples of so-called tame fields (for the defi-
nition see Section 2.2). The algebraic properties of tame fields made it possible
to prove strong model-theoretical properties of the elementary class of tame
fields and have been applied to questions related with algebraic geometry
([9],[14],[15]). Theorem 2.4 of [4] shows that if (K, v) is a henselian Kaplansky
field admitting a finite extension which is a defectless field, then (K, v) is itself
a defectless field. This shows that a Kaplansky field cannot be defectless-by-
finite. Hence, if a Kaplansky field admits a defect extension, then it admits
an infinite tower of defect extensions. However, the proof in [4] does not show
us possible constructions of such towers.

One of the important tasks is to better understand the structure of defect
extensions. Towers of Galois defect extensions of prime degree play a represen-
tative role for defect extensions. This follows from the fact that every finite
separable extension (L|K, v) of henselian fields, lifted up to a certain tame
extension of (K, v), becomes a tower of Galois extensions of degree equal to
the characteristic exponent of Kv. Furthermore, the defect of the lifted ex-
tension remains unchanged (for the details see Section 2.2). Therefore, we are
interested in examples of constructions of towers of Galois defect extensions
of prime degree.

In connection with problems related to resolution of singularities, such
as local uniformization, we are interested in the structure and construction
of defect extensions of rational function fields. The case of valued rational
function fields of positive characteristic p and p-divisible value group was
studied in [1]. That paper presents examples of constructions of infinite towers
of Artin–Schreier defect extensions of such fields. Examples of Artin–Schreier
defect extensions in the case of rational function fields with non-p-divisible
value group are presented in [2]. Note that for fields of characteristic p > 0,
Artin–Schreier defect extensions are precisely the Galois defect extensions of
degree p (cf. Theorem 2.4).

In the present paper we give conditions for Kaplansky fields to admit in-
finite towers of Galois defect extensions of prime degree. More precisely, we
show that if a Kaplansky field of positive characteristic p admits a Galois
defect extension then it admits an infinite tower of such extensions (cf. The-
orem 3.2). We prove a counterpart of the theorem for the class of Kaplansky
fields of characteristic 0 with positive residue characteristic p 6= 2 which con-
tain a primitive p-th root of unity. We also give conditions for a valued field
of characteristic 0 and residue characteristic 2 to admit a infinite tower of de-
fect extensions of degree 2 (cf. Theorem 3.6, Corollary 3.7 and Corollary 3.8).
As all of the proofs are constructive, this provides examples for the further
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study of defect extensions, in particular in the case of function fields which
are Kaplansky fields (which for instance can happen when they are immediate
extensions of Kaplansky base fields).

The facts mentioned above allow us to give a constructive alternative proof
of the fact that Kaplansky fields cannot be defectless-by-finite (cf. Corol-
lary 3.10).

2. Preliminaries

2.1. Galois extensions of prime degree

Take a field K. The algebraic closure of K will be denoted by K̃. Take a
prime number p. If p 6= charK, then denote by εp a primitive p-th root of
unity in K̃. We recall the form of Galois extensions of K of degree p. Note that
since p is a prime number, Galois extensions of K of degree p are precisely
cyclic extensions of K of degree p.

We start with the case of charK 6= p. A field extension E|K is called
irreducible radical if it is generated by a root of an irreducible polynomial
Xn − a ∈ K[X].

Theorem 2.1. If K is a field of characteristic distinct from p containing
a primitive p-th root of unity, then a field extension E|K of degree p is cyclic
if and only if it is irreducible radical.

For the proof see Lemma 1.1, Chapter 8 of [7].
Thus if charK 6= p and εp ∈ K, then cyclic extensions of degree p are

precisely the extensions generated by roots of irreducible polynomialsXp−a ∈
K[X]. The next lemmas give conditions for such binomials to be irreducible
(cf. Theorem 1.6 and Lemma 1.5, Chapter 8 of [7]).

Lemma 2.2. Let L be an arbitrary field. Take an element a ∈ L and assume
that the prime p is odd. Then for any natural number n, the polynomial Xpn−a
is irreducible over L if and only if a /∈ Lp.

Lemma 2.3. Assume that F is a field of characteristic distinct from 2.
Take an element a ∈ F and a natural number n ≥ 2. Then the polynomial
X2n − a is irreducible over F if and only if a /∈ F 2 and a /∈ −4F 4.

We are left with the case of charK = p. An Artin–Schreier extension of K
is an extension of degree p generated by a root ϑ of a polynomial Xp−X− a
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with a ∈ K. In this case, ϑ is called an Artin–Schreier generator of the ex-
tension. For the proof of the following theorem see Theorem 2.7, Chapter 7
of [7].

Theorem 2.4. Assume that K is a field of characteristic p.
(i) A field extension E|K of degree p is cyclic if and only if it is an Artin–

Schreier extension.
(ii) If a ∈ K, then the polynomial Xp −X − a is either irreducible or splits

into distinct linear factors over K.

Lemma 2.5. Take a field L of positive characteristic p and an element
a ∈ L. Assume that the polynomial f = Xp−X−a is irreducible over L. If ϑ
is a root of f , then the polynomial Xp −X − aϑp−1 is irreducible over L(ϑ).

For the proof see Lemma 1.10, Chapter 8 of [7].

2.2. Tame and defect extensions

Recall that a valued field (K, v) is called henselian, if v extends in a unique
way to a valuation of the algebraic closure of K. For every valued field (K, v)
there is a minimal henselian field extension of (K, v), in the sense that it
admits a valuation preserving embedding over K in every henselian extension
of (K, v). Such an extension is unique up to valuation preserving isomorphism
over K (cf. Theorem 17.11 of [5]). We call it the henselization of (K, v) and
denote by (K, v)h or, if v is fixed, by Kh. The extension Kh|K is always
immediate and separable-algebraic (cf. [5], Theorem 17.19). Furthermore, if
L is any algebraic extension of K and v is a fixed extension from K to the
algebraic closure of K, then

Lh = L.Kh.

Lemma 2.6. Take a valued field (K, v) and a finite extension L of K.Then
the extension of v to L is unique if and only if L|K is linearly disjoint from
some (equivalently, every) henselization of (K, v).

For the proof see Lemma 2.1 of [4].
Assume that (K, v) is a Kaplansky field of residue characteristic p > 0.

Note that this is equivalent to the conjunction of the following two conditions:
(K1) the value group vK is p-divisible,
(K2’) the residue field Kv admits no finite extension of degree divisible by p.
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Take a finite extension L of the field and assume that v extends in a unique
way from K to L. Let [L : K] = pnm, where m is coprime with p and n ≥ 0.
Then

pnm = [L : K] = d(L|K, v)(vL : vK)[Lv : Kv].

Note that the conditions (K1) and (K2’) imply that the ramification index
(vL : vK) as well as the inertia degree [Lv : Kv] are coprime with p and
consequently d(L|K, v) = pn. We thus obtain the following fact.

Lemma 2.7. Assume that (K, v) is a Kaplansky field of a positive residue
characteristic p. Take a finite extension (L|K, v) such that the valuation v
extends in a unique way from K to L.
a) If the degree of L|K is divisible by p, then the extension has a nontrivial

defect. More precisely, if L|K is of degree pnm, where n > 0 and p does
not divide m, then d(L|K, v) = pn.

b) If [L : K] = pn for some natural number n, then d(L|K, v) = [L : K] and
the extension is immediate.

Assume that (K, v) is a henselian field. A finite extension (E, v) of (K, v)
is called tame if it satisfies the following conditions:
(T1) the ramification index (vE : vK) is prime to the characteristic exponent

of Kv,
(T2) the residue field extension Ev|Kv is separable,
(T3) (E|K, v) is a defectless extension.
An algebraic extension (L, v) of (K, v) is called tame if every finite subexten-
sion (E|K, v) of (L|K, v) is tame. Directly from the above definition it follows
that every tame extension of valued fields is separable-algebraic. A henselian
field is called tame if every algebraic extension of the field is tame. Note that
if (L|K, v) is an algebraic extension of Kaplansky fields, then conditions (T1)
and (T2) are always satisfied. Hence an algebraic extension of a henselian Ka-
plansky field is tame if and only if every finite subextension of the extension
is defectless. Moreover, a henselian Kaplansky field is tame if and only if it is
defectless.

The next two facts are crucial for the study of the structure of defect
extensions. Ramification theory enables us to prove the following well known
property.

Lemma 2.8. Take a henselian field (K, v) of positive residue character-
istic p and a finite normal extension L of K. Then there is a finite tame
subextension N |K of L|K such that L|N is a tower of normal extensions of
degree p.
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Proof. Denote by E the relative separable algebraic closure of K in L
and by N the fixed field of the subgroup

Gr := {σ ∈ Gal (E|K) | v(σa− a) > va for all a ∈ OKsep \ {0}}

of Gal(EN |K). Then Theorem 5.8 of [10] yields that E|N is a tower of normal
extensions of degree p. As L|E is a purely inseparable extension, it is also a
tower of normal extensions of degree p. Moreover, Theorems 5.7 and 5.8 of [10]
show that N |K is a tame extension. �

Lemma 2.9. Take a henselian field (K, v) and a finite extension L|K.
Then for any tame extension N of K,

d(L|K, v) = d(L.N |N, v).

For the proof see Proposition 2.8 of [12].
Assume that (K, v) is a henselian field and charKv = p > 0. Take a fi-

nite separable defect extension (L|K, v) of henselian fields. Without loss of
generality we can assume that L|K is normal. Otherwise we replace L by
the normal hull of L over K. Then, by Lemma 2.8 there is a finite tame
subextension N |K of L|K such that L|N is a tower of Galois extensions of
degree p. Moreover, by Lemma 2.9 we have d(L|K, v) = d(L|N, v). Thus if L|K
has nontrivial defect, then the tower L|N contains a Galois defect extension
of prime degree. If in addition (K, v) is a Kaplansky field, then Lemma 2.7
yields that d(L|N, v) = [L : N ] and thus L|N is a nontrivial tower of Galois
defect extensions of degree p.

3. Towers of Galois defect extensions of prime degree

We consider now the case of Kaplansky fields of positive residue charac-
teristic. We show that the existence of at least one defect extension of prime
degree of a Kaplansky field (K, v) of positive characteristic implies the exis-
tence of an infinite tower of such extensions. In the case of Kaplansky fields
of characteristic 0 and positive residue characteristic we prove the theorem
under additional assumptions.

We treat first the case of valued fields of positive characteristic. We start
with general remarks about the existence of infinite towers of Galois extensions
of degree p for any field of positive characteristic p. As for such a field an
extension of degree p is Galois if and only if it is an Artin–Schreier extension
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(cf. Theorem 2.4), we consider the existence of infinite towers of Artin–Schreier
extensions.

Lemma 3.1. Assume that K is a field of positive characteristic. If it admits
an Artin–Schreier extension, then it admits already an infinite tower of such
extensions.

Proof. Assume that K0 := K admits an Artin–Schreier extension K1 of
degree p = charK. Then K1 = K0(ϑ1), where ϑ1 is a root of an irreducible
polynomial f1 = Xp −X − a1 ∈ K[X]. Consider the following construction.
For every n ≥ 1:

(3.1)


if Kn = Kn−1(ϑn) with ϑpn − ϑn = an ∈ Kn−1,

take Kn+1 = Kn(ϑn+1) with ϑn+1 a root of

fn+1 := Xp −X − anϑp−1n and set an+1 = anϑ
p−1
n .

Take a natural number n and suppose that Kn|Kn−1 is an Artin–Schreier
extension, that is, the polynomial fn = Xp−X−an is irreducible over Kn−1.
Then Lemma 2.5 yields that the polynomial fn+1 is irreducible over Kn and
Kn+1|Kn is an Artin–Schreier extension.

By induction on n we obtain an infinite tower of Artin–Schreier extensions
Kn|Kn−1, n ∈ N. �

We now apply the above result to the valued field extensions of Kaplansky
fields.

Theorem 3.2. Take a Kaplansky field (K, v) of positive characteristic.
Assume that K admits an Artin–Schreier extension E|K such that v extends
in a unique way to a valuation of E. Then (E|K, v) has nontrivial defect and
(K, v) admits an infinite tower of Artin–Schreier defect extensions contain-
ing E.

Proof. Set p := charK. Since K1 := E is an Artin–Schreier exten-
sion of K, it is of the form K(ϑ1), where ϑ1 is a root of a polynomial
f1 = Xp − X − a1 ∈ K[X]. From Lemma 3.1 we deduce that K0 := K
admits an infinite tower of Artin–Schreier extensions Kn|Kn−1, which can be
obtained by construction (3.1).

By our assumption, the valuation v admits a unique extension from K0

to K1. Take n ∈ N and assume that we have already shown that v admits a
unique extension from Kn−1 to Kn. From Lemma 2.6 it follows that Kn|Kn−1
is linearly disjoint from Kh

n−1|Kn−1. Hence [Kh
n−1(ϑn) : K

h
n−1] = p and thus

the polynomial fn is irreducible over Kh
n−1. By Lemma 2.5 the polynomial
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fn+1 is irreducible over Kh
n−1(ϑn) = Kh

n . Hence [Kh
n(ϑn+1) : Kh

n ] = p and
Kn+1|Kn is linearly disjoint from Kh

n |Kn. Applying again Lemma 2.6 we
deduce that v admits a unique extension from Kn to Kn+1. By induction on
n, this holds for every extension in the tower.

Take a natural number n. Since (K, v) is a Kaplansky field, the same holds
for (Kn−1, v). Hence, Lemma 2.7 yields that(Kn|Kn−1, v) is an immediate
extension and d(Kn|Kn−1, v) = p. As E = K1, we have that also (E|K, v) is
a defect extension. �

Constructions of infinite towers of Artin–Schreier defect extensions were
studied also in [1]. For the proof of the following fact see Theorem 1.4 of that
paper.

Theorem 3.3. Take a valued field (L, v) of positive characteristic p which
satisfies (K1) and (K2). If there is a purely inseparable extension of (L, v)
which does not lie in the completion of the field, then L admits an infinite
tower of Artin–Schreier defect extensions.

Note that if (K, v) is a Kaplansky field of positive characteristic p, then
vK is p-divisible and Kv is perfect. Hence, Theorem 3.3 gives another condi-
tion for Kaplansky field of positive characteristic to admit an infinite tower of
Artin–Schreier defect extension. Since the proof of the theorem is constructive,
it gives an alternative constructions of such a tower. Moreover, in Theorem 3.2
we require the existence of an Artin–Schrier (hence separable) defect exten-
sion, whereas in Theorem 3.3 we require the existence of a certain purely
inseparable defect extension to obtain an infinite tower of Artin–Schreier de-
fect extensions.

We consider now the case of valued fields of characteristic 0 and positive
residue characteristic p. We will study separately the case of odd primes and
p = 2.

As in the case of valued fields of positive characteristic, we start with
general remarks about the existence of infinite towers of Galois extensions of
degree p for the case of fields of characteristic zero. We will assume that the
fields admit primitive p-th root of unity. Hence we will investigate when such
fields admit infinite towers of irreducible radical extensions of degree p (cf.
Theorem 2.1).

The next two well known facts will be a basis of our constructions. We
treat first the case of an odd prime p.

Lemma 3.4. Assume that K is a field of characteristic 0. Take an odd
prime p and assume that K contains a primitive p-th root of unity. If K
admits a Galois extension of degree p, then it admits an infinite tower of such
extensions.
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Proof. Set K0 := K and assume that K1 is a Galois extension of K0

of degree p. Since εp ∈ K, we have that K1 = K0(η1), where η1 is a root
of an irreducible polynomial f1 := Xp − a ∈ K0[X]. By Lemma 2.2 we have
a /∈ Kp

0 . Applying again Lemma 2.2 we obtain that for every natural number n
the polynomial

(3.2) fn := Xpn

− a

is irreducible over K0. Denote by Kn, n > 1 the extension of K0 generated
by a root ηn of the polynomial fn. Then [Kn : Ko] = pn, n ∈ N. Hence
each of the extensions Kn|Kn−1 is of degree p. Assume additionally that we
have chosen the roots ηn in a way that ηpn+1 = ηn, n ∈ N. Then for every
natural number n ≥ 2, the extension Kn|Kn−1 is generated by a root ηn of
the polynomial Xp − ηn−1 ∈ Kn−1[X]. As [Kn : Kn−1] = p, the extension
Kn|Kn−1 is irreducible radical, hence Galois. �

It remains to consider the case of charK = 0 and p = 2. Note that in this
case every extension of degree 2 is Galois.

Lemma 3.5. Take a field K of characteristic 0 and assume that K admits
an extension K1 of degree 2 distinct from K(i), where i is a square root of
−1. Then the field admits an infinite tower of extensions of degree 2.

Proof. Set K0 = K. Then the extension K1|K0 is generated by a root
η1 of an irreducible polynomial f1 = X2− a ∈ K[X]. Hence, a is not a square
in K. Suppose that η21 = a ∈ −4K4. Then η1 = ±2ib2 for some b ∈ K.
Since η1 /∈ K, we obtain that i ∈ K(η1) \ K. Thus K1 = K(η1) = K(i), a
contradiction. Therefore a /∈ −4K4 and Lemma 2.3 yields that for every n ≥ 2
the polynomial

(3.3) fn := X2n − a

is irreducible over K0. As in the proof of Lemma 3.4 we construct an infinite
tower of extensions of degree 2. �

Note that assertion of the above lemma may not hold for K1 = K(i).
Indeed, if K is a real closed field, then K(i)|K is an extension of degree 2,
but K(i) is algebraically closed.

We are now able to prove the counterpart of Theorem 3.2 in the case of
Kaplansky fields of characteristic 0 and positive residue characteristic.

Theorem 3.6. Take a Kaplansky field (K, v) of characteristic 0 and with
charKv = p > 0. Assume that one of the following cases holds:
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1) p 6= 2, the field K contains a primitive p-th root εp of unity and admits a
Galois extension E of degree p such that v extends in a unique way to a
valuation of E,

2) p = 2, the field K admits an extension E of degree 2 not contained in the
henselization of K(i).

Then (E|K, v) has defect equal to the degree of the extension and (K, v) admits
an infinite tower F of Galois extensions of degree and defect p such that
E ⊆ F .

Proof. Fix an extension of the valuation v to K̃ and call it again v. Set
K0 = K.

In each of the cases K0 admits a Galois extension E of degree p and the
valuation v extends in a unique way from K0 to E. As εp ∈ K0, the extension
is generated by a root η1 of a polynomial f1 = Xp − a ∈ K0[X]. Moreover,
if p = 2, then by assumption E 6= K(i). From Lemmas 3.4 and 3.5 it follows
that K0 admits an infinite tower of Galois extensions Kn|Kn−1 of degree p.
Furthermore, we can choose K1 = E and Kn = K0(ηn), where ηn is a root of
a polynomial (3.2) or (3.3), depending on charKv, and ηpn = ηn−1, for every
n ≥ 2.

Since by assumption the valuation v extends uniquely to K1 = K0(η1),
by Lemma 2.6 we have that K1 is linearly disjoint from Kh

0 over K0, and
we obtain that [Kh

0 (η1) : Kh
0 ] = p and f1 is irreducible over Kh

0 . Moreover,
if p = 2, then by assumption η1 /∈ K(i)h = Kh(i). Hence, η1 /∈ ±2i(Kh)2

and thus a /∈ −4(Kh)4. By Lemmas 2.2 and 2.3, this yields that also the
polynomials fn, n ≥ 2, are irreducible over Kh

0 . Hence, [Kh
0 (ηn) : K

h
0 ] = pn

and the extensions Kn|K0 and Kh
0 |K0 are linearly disjoint. It follows that v

has a unique extension from Kn−1 to Kn for every n.
As in the proof of Theorem 3.2 we deduce that each of the extensions

Kn|Kn−1 is immediate and thus has defect equal to the degree of the exten-
sion. This yields that in each of the cases (K, v) admits an extension F which
is an infinite tower of Galois extensions of degree and defect p. Moreover, by
our construction E ⊆ F . �

Corollary 3.7. Take a Kaplansky field (K, v) of characteristic 0 and
residue characteristic 2. Assume that one of the following cases holds:
2) the field K contains a square root i of −1 and admits an extension E of

degree 2 such that v extends in a unique way to a valuation of E,
3) the field K admits an extension E which is a tower of two extensions of

degree 2 and v extends in a unique way to a valuation of E(i).
Then (E|K, v) has defect equal to the degree of the extension and (K, v) admits
an infinite tower F of defect extensions of degree 2 such that E ⊆ F .
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Proof. Fix an extension of v to K̃ and call it again v. The assumptions
yield that E(i)|K(i) is either an extension of degree 2 or a tower K(i) ⊆ L ⊆
E(i) of two such extensions. In the first case set K ′ = K(i); in the latter one
take K ′ = L. Furthermore, in both cases set E′ = E(i).

Since v extends in a unique way from K to E′, it extends also in a unique
way from K ′ to E′. Thus E′ * K ′h = K ′(i)h. Hence, Theorem 3.6 yields
that (K ′, v) admits an extension F which is an infinite tower of extensions of
degree and defect 2. By our construction E ⊆ F . Furthermore, since (K, v) is a
Kaplansky field and v admits a unique extension fromK toK ′, we deduce that
(K ′|K, v) is a defect extension of degree 2 or a tower of two such extensions.
Hence F |K is an infinite tower of extensions of degree and defect 2. �

Note that if i /∈ K and K(i)|E is an extension of degree 2 such that v
extends in a unique way from K to E but not to E(i), we may have that E ⊆
K(i)h, that is Eh = K(i)h = Kh(i). Then the assumptions of Lemma 2.3 may
not be satisfied for F = Kh. Thus the construction presented in Theorem 3.6
may not give an infinite tower of defect extensions. However, the next corollary
shows that we can construct such a tower over the henselization of K.

Corollary 3.8. Assume that (K, v) is a henselian Kaplansky field of
characteristic 0 and residue characteristic 2. If it admits a defect extension L
of degree 2, then it admits an infinite tower of such extensions containing L.

Proof. Note that since (K, v) is henselian, v extends in a unique way to
any algebraic extension of K.

Assume that K contains a square root i of -1. Then, applying part 2) of
Corollary 3.7 to E = L we obtain that (K, v) admits an infinite tower of defect
extensions of degree 2 containing L. Assume that L admits an extension E of
degree 2. Then E|K is a tower of two extensions of degree 2, thus the assertion
of the corollary follows from part 3) of Corollary 3.7.

It remains to consider the case when i /∈ K and L admits no extensions
of degree 2. Then L = K(i), as otherwise L(i)|L would be an extension of
degree 2. Take a, b ∈ K. Since K(i) admits no extensions of degree 2, a+bi is a
square of some element η = c+di with c, d ∈ K. Then a2+b2 = (c2+d2)2 ∈ K2.
Hence, every sum of squares in K is a square in K. Moreover −1 /∈ (K×)2 =∑

(K×)2, as i /∈ K. Therefore, K is a formally real field. Since (K, v) is
henselian, Lemma 2.3 of [4] yields that charKv = 0, a contradiction. �

We use the above facts to show that if a henselian Kaplansky field (K, v)
admits any defect extension (E|K, v), then it admits an infinite tower of de-
fect extensions. As the proof is based on the above theorems, we obtain in
particular a possible construction of an extension of (K, v) of arbitrarily high
defect.



Infinite towers of Galois defect extensions of Kaplansky fields 77

Corollary 3.9. Assume that (K, v) is a henselian Kaplansky field of
positive residue characteristic p which admits a finite normal defect extension
(L|K, v). Then there is a finite tame subextension N |K of L|K which admits
an infinite tower of normal defect extensions of degree p containing L.

Proof. Since L|K and K(εp)|K are normal extensions, L.K(εp) is also
a normal extension of K. Moreover, K(εp)|K is of degree dividing p− 1 and
thus is a tame extension. By the multiplicativity of the defect, we obtain that
d(L(εp)|K, v) = d(L|K, v). Hence we can replace L by L(εp).

By Lemma 2.8 there is a finite tame subextension N |K of L|K such that
L|N is a tower of normal extensions of degree p. Note that εp ∈ N . Moreover,
(N, v) is a henselian Kaplansky field, as already (K, v) is. Hence, by Lemma 2.7
each of the extensions in the tower L|N is immediate and thus is a defect
extension. Together with Lemma 2.9 this yields that

[L : N ] = d(L|N, v) = d(L|K, v).

Therefore, the extension L|N is nontrivial.
Assume first that (L|N, v) is not separable. Then in particular charN = p

and the field N is not perfect. Consequently, L is not perfect, as L|N is a finite
extension. Take a ∈ L such that a1/p /∈ L. Set F = L(a1/p

i | i ∈ N). Since vL
is p-divisible and Lv is perfect, F |L is an infinite tower of purely inseparable
defect extensions of degree p. Thus F |N is an infinite tower of normal defect
extension of degree p.

Assume now that (L|N, v) is a separable extension. Then we obtain a tower
N =: L0 ⊆ L1 ⊆ . . . ⊆ Lm := L, where Lj |Lj−1 is a Galois defect extension of
degree p for every j ∈ {1, . . . ,m}. If charK = p, then (Lm|Lm−1, v) satisfies
the assumptions of Theorem 3.2. Assume that charK = 0. Then the exten-
sion (Lm|Lm−1, v) satisfies the assumptions of Theorem 3.6 or Corollary 3.8,
depending on the residue characteristic. Hence, in each of the cases we deduce
that Lm−1 admits an infinite tower of Galois defect extensions of degree p
containing Lm = L. Thus already N = L0 admits such a tower. �

Take (E|K, v) to be any finite defect extension of a henselian Kaplansky
field of positive residue characteristic p. If L is the normal hull of E|K, then
L|K satisfies the assumptions of the above corollary. Consequently, there is a
finite tame extension N |K such that the field (N, v) admits an extension (F, v)
which is an infinite tower of normal defect extensions of degree p. Furthermore,
F can be chosen such that E ⊆ F . This shows in particular that (E, v) is not
defectless. We thus have proved the following fact.

Corollary 3.10. A henselian Kaplansky field cannot be defectless-by-
finite.
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