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INEQUALITIES OF HERMITE-HADAMARD TYPE
FOR GA-CONVEX FUNCTIONS

SEVER S. DRAGOMIR

Abstract. Some inequalities of Hermite-Hadamard type for G A-convex func-
tions defined on positive intervals are given.

1. Introduction

Let I C (0,00) be an interval; a real-valued function f: I — R is said to
be GA-conver (concave) on I if

(1.1) FE) < (2) 1 =X) f(2) +Af (y)

for all z,y € I and X € [0,1].
Since the condition ([1.1)) can be written as

foexp((1=AN)Inz+Alny) < (>)(1—A) foexp(Inz)+ Afoexp(lny),

then we observe that f: I — R is GA-convex (concave) on I if and only if
f oexp is convex (concave) on Inl := {lnz,z€ I}. If I = [a,b] then In] =
[lna,lnbd].

It is known that the function f(x) = In(1+ z) is GA-convex on (0, c0)
(see [I]).
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For real and positive values of x, the Fuler gamma function I' and its
logarithmic derivative 1, the so-called digamma function, are defined by

I (z)
INEON

It has been shown in [I7] that the function f: (0,00) — R defined by

F(:c):—/oootz te7tdt and o (x):=

is GA-concave on (0, 00) while the function g: (0,00) — R defined by

1

9@ =% (@) + 5+ 15

is GA-convex on (0, 00).
If [a,b] C (0,00) and the function ¢g: [Ina,Inbd] — R is convex (concave)
n [Ina,Inbd], then the function f: [a,b] — R, f(t) = g (Int), is GA-convex
(concave) on |[a, b].
Indeed, if z,y € [a,b] and X € [0, 1], then

f (:cl_AyA) = g (ln (xl_AyA)) =g[(1=XN)Inz+ Any]
< (2)A=Ngnz)+Ag(ny) = (1 =) f(z)+Af(y),

which shows that f is GA-convex (concave) on [a, b].
We recall the classical Hermite-Hadamard inequality that states that

f<a;b>§ f(a) + f(b)

2
for any convex function f: [a,b] — R.
For related results, see [2]-[5] and [7]-[15].
In [17] the authors obtained the following Hermite-Hadamard type in-
equality.

t)dt <

THEOREM 1.1. If b > a > 0 and f: [a,b] — R is a differentiable GA-
convez (concave) function on [a,b], then

(1.2) f(I(a,b)) <

— L(a,b)

L(a,b)—a
b f(b)+ﬁf(a).
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The identric mean I (a,b) is defined by

AN
I(a, b) = g <aa>

while the logarithmic mean is defined by

b—a
L(ab):= ——F—.
(a,) Inb—Ina
The differentiability of the function is not necessary in Theorem for
the first inequality from (|1.2)) to hold. A proof of this fact is proved below
after some short preliminaries. The second inequality in ([1.2]) has been proved
in [I7] without differentiability assumption.

2. Preliminaries

We recall some facts on the lateral derivatives of a convex function.

Suppose that I is an interval of real numbers with interior I and fI—R
is a convex function on I. Then f is continuous on I and has finite left and
right derivatives at each point of I. Moreover, if x,y € I and 7 < 1y, then
fl(x) < fii(x) < fL(y) < f) (y) which shows that both f’ and f/ are
nondecreasing functions on I. Tt is also known that a convex function must
be differentiable except for at most countably many points.

For a convex function f: I — R, the subdifferential of f denoted by df is
the set of all functions ¢: I — [—00, 00] such that go(I) C R and

f(x)> f(a)+ (xr—a)p(a) for any z,a € I.

It is also well known that if f is convex on I, then df is nonempty, f’,

fio€0f and if p € Of, then
fL () < p(x) < fi (x) for any z € I.

In particular, ¢ is a nondecreasing function.
If f is differentiable and convex on I, then df = {f'}.
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Now, since foexp is convex on [Ina,lnb], it follows that f has finite lateral
derivatives on (Ina,Inb) and by gradient inequality for convex functions we
have

(2.1) foexp(z) — foexp(y) > (z —y) ¢ (expy) expy,

where ¢ (expy) € [f_ (expy), f (expy)] for any z,y € (Ina,Inb).
If s,t € (a,b) and we take in (2.1) x = Int,y = In s, then we get

(2.2) F(H) = F(s) > (nt—Ins)p(s)s,

where i (s) € [/ (5). £} (s)].
Now, if we take the integral mean on [a, b] in the inequality (2.2)), we get

b b
b—la/ f@&)ydt— f(s) > (b—la/ lntdt—lns>g0(s)s

and since
1 b
b—a/a Intdt =1InI (a,b),
then we get
1 b
(2.3) b_a/ F(t)dt> f(s)+ (nT(a,b)—Ins)o(s)s

for any s € (a,b) and ¢ (s) € [f~ (s), f4 (s)]. This is an inequality of interest
in itself.

Now, if we take in s =1(a,b) € (a,b) then we get the first inequality
in for GA-convex functions.

If f is differentiable and GA-convex on (a,b), then we have from the
inequality

1 b
(2.4) b_a/ F(t)dt> f(s)+ (nT(a,b) —Ins) f' () s

for any s € (a,b).
If we take in li 5= “7% = A(a,b), then we get

b a
b—la/ f(t)ydt > f(A(a,b)) = f'(A(a,b)) A(a,b) In (A( ,b)>.

I(a,b)
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If we assume that f’ (A (a,b)) <0, then, since I (a,b) < A(a,b), we get

b
o [ 0z Fab)

provided that f is differentiable and GA-convex on (a,b).
Also, if we take in (2.4) s = L (a,b), then we get

b
@5 = | f(t)dt>f(L(a,b))+f’(L(a,b))L(a,b)ln(i({;’?)).

If we assume that f’ (L (a,b)) > 0, then we get from (2.5) that

b
i [ £ 0= f (L)

provided that f is differentiable and GA-convex on (a,b).
Now, if we take in (2.4) s = vab = G (a,b), then we get

b
20 5= [ FWd=[(E@h)+ 1 (C )G labh (é(cf{ . ) |

Since

In <é((‘;l;))) —1In1(a,b) —InG (a,b)

7b1nb—alna 1 Ina+1nb

b—a 2
B a+blnbflna_1_ A(a,b) — L(a,b)
2 b—a B L(a,b) ’

then (2.6]) is equivalent to

1

b —L(a
b—a/ f(t)dtZf(G(a,b))_{_f/(G(a’b))G(a’b)A(ajb) L(a,b)

L(a,b)

If f'(G (a,b)) > 0, then we have

b
i [ F 0= G )

provided that f is differentiable and GA-convex on (a,b).
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Motivated by the above results we establish in this paper other inequalities
of Hermite-Hadamard type for GA-convex functions. Applications for special
means are also provided.

3. New results

We start with the following result that provides in the right side of (1.2)
a bound in terms of the identric mean.

THEOREM 3.1. Let f: (0,00) D [a,b] — R be a GA-convex (concave)
function on [a,b]. Then we have

b no—Inifa a nl(a —lna
“”bialfWWﬁﬂzﬁlbII(””%ﬁfﬁi(”)1 ) f ()

:b—L(a,b) L (a,b)

T+~ —f(a).

PROOF. Since f is a GA-convex (concave) function on [a,b] then f oexp
is convex (concave) and we have

(3.2)  f(t) :foexp(lnt):foexp<(lnb—lnt)lna+(lnt—lna)lnb>

Inb—1Ina

(Inb—1Int) foexp(Ina) + (Int —Ina) f oexp (Ind)
Inb—Ina

< (>)

(Inb—1Int) f (a) + (Int —Ina) f (b)
Inb—1Ina

for any t € [a, b].
This inequality is of interest in itself as well.
If we take the integral mean in (3.2)), we get

b
bia/'ﬂwﬁ

. (mb— ﬁf:hudt) F(a)+ (ﬁf;lntdt—lna) 0

Inb—1Ina
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and since

1 b
b—a/a Intdt =1InI (a,b),

then we obtain the desired result (3.1)).
Now, we observe that

Inb—1InTl(a,b) Inp — blnb=alna 4
Inb—1Ina Inb—1Ina

_ (b—a)lnb—blnb+alna+b—a
B (b—a)(Inb—1Ina)
_b—a—a(Ilnb—1Ina)
(b—a)(Inb—Ina)
L(a,b)—a
 b—a

and, similarly

InI(a,b) —lna b— L(a,b)

Inb—Ina ~  b—a '
which proves the last part of (3.1)). O

If f: (0,00) D I — R is GA-convex (concave) on I, then we have the
inequality

fx)+ f ()

(33) 7 < (2) 22

for any xz,y € I.

The following refinement of , which is an inequality of Hermite—
Hadamard type, holds (see [16] for an extension to GA h-convex functions).
For the sake of completeness we give here a short proof.

LEMMA 3.2. Let f: (0,00) D [a,b] — R be a GA-convez (concave) function
on [a,b]. Then we have

(34 f(Vab) < () 1 /b T®) g < () L@ £ 0)

Inb—1Ina t 2
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PROOF. By the definition of GA-convex (concave) functions on [a, b] we
have

(3.5) F(a720Y) < (2) (L= X) f(a) +Af (D)

for any A € [0, 1].
Integrating the inequality (3.5]) on [0, 1] we get

36) /01f (@0 dr < (=) £ (a) /01 (1- ) d)\+f(b)/01>\d/\.

Since

1 1 1
/ (1—)\)d/\:/ AdA = =
0 0 2

and, by changing the variable t = a'=*b*, X\ € [0, 1], we have

e 1 " f()
/0 f (! )\b/\)d)\:lnblna/a t at,

then by (3.6 we get the second inequality in (3.4]).
By the inequality (3.3) we have

(3.7) 7 (Vab) = f (Val=202arp1=2)

S (Z)% [f (al—AbA) + f (aAbl—)\)]

for any A € [0, 1].
Integrating the inequality (3.7) on [0, 1] we get

(3.8) f (\/%) < (2)% [/Olf (a' %) d)\+/01f (a*o' ) dx} .

Since

- Inb—1Ina

1 B 1 B 1 bf(t)
ApA) dA = FAPY) dA d
L@ ya= [ |

then by (3.8)) we get the first inequality in (3.4]). O
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REMARK 3.3. The inequality (3.4) can be also written for any d > ¢ > 0
with ¢,d € I as

(3.9) f (@) < (Z)/O fc' 2 dN) dx < (=) M

provided that f is a GA-convex (concave) function on I.

We have the following representation result:

LEMMA 3.4. Let g: R D [x,y] — C be a Lebesgue integrable function on
[z,y]. Then for any X € [0,1] we have the representation

(3.10) /O g[(l—t)a:+ty]dt:(1—/\)/o g1 = 1) (1= N+ Ay) + ty] dt

+)\/1g[(1—t)a:+t((l—)\)x+/\y)]dt.
0

PROOF. For A =0 and A = 1 the equality (3.10]) is obvious.
Let A € (0,1). Observe that

/Og[(l—t)()\y+(1—)\)x)+ty]dt

= [Lol@- DA+ 0y 400N aa

and

1 1
/g[t()\y+(1—)\)x)+(1—t)x]dt:/ gty + (1= A) ] dt.
0 0

If we make the change of variable u := (1 — t) A + ¢, then we have 1 —u =
(1—-t)(1—=A) and du = (1 — X\)dt. Then

1 1 1
/g[((l—t)A—i—t)y—i—(l—t)(l—)\)x]dt—1)\ gluy + (1 — ) 2] du.

0 —AJA

If we make the change of variable u := At, then we have du = Adt and

1 A
/Og[t)\y—k(l—)\t)x]dt:i/o gluy + (1 — ) 2] du.
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Therefore

(1—)\)/0 1= ) Oy + (1= \) ) + ty] e
+/\/1g[t()\y+(1—)\)m)—l—(l—t)x]dt
1 A
:/ g[uy+(1—u)$]du+/ gluy + (1 —u)z]du
A 0

1
:/ gluy+ (1 —u)zx]du
0
and the identity (3.10]) is proved. O

COROLLARY 3.5. Let f: (0,00) D [a,b] — C be a Lebesgue integrable
function on [a,b]. Then for any A € [0, 1] we have the representation

1 1
3.11 1op*) ds = (1 — A AT ) d
g [ r@ ) as=a=n [ ()i
1
A 1-s 1—/\b)\s ds.
+ /Of(a [a ]) s
Proor. Using we have
1 1
/f(al_sbs)dSZ/foexp((l—s)lna+slnb)ds
0 0
1
:(1—)\)/ foexp[(1—38)((1=A)Ilna+ Alnbd) + slnbd]ds
0
1
—|—)\/ foexp[(1—s)lna+s((1—A)lna+ Alnbd)]ds
0
1
=(1- /\)/ foexp[(1—s)ln [al_AbA} + sInb| ds
0
1
+)\/ foexp[(1—s)lna+ sln[a'"?b]] ds
0

—(1-)) /01 7 ([0 0] 700 ) ds + A/Ol f(at7 [0 ) ds

and the identity (3.11]) is proved. O
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We are able now to provide a refinement of (3.4]) as follows:

THEOREM 3.6. Let f: (0,00) D [a,b] — R be a GA-convexr (concave)
function on [a,b]. Then for any X € [0,1] we have

(3.12) F(Vab) <) (1= N 1 (a7 ) +Af (a7 07)

1 ()
<) lnb—lna/a t dt

<(2)5 7 (@70 + (1= 2 7 () + Af (@)

SRPAGEY (G}

PRrROOF. We prove the inequalities only for the GA-convex case.
Using the inequality (3.9) we have

f (Va=30%) s/olf([a“b*]l_szf) ds < f(aHb;) o,

that is equivalent to

(3813) f(aF0) < /0 1f([a1—kbk]1—sbs) ds <7 (al‘kb;)w(b)

for any A € [0, 1].
We also have

f (m) < /01 f (al’s [alf’\b)‘]s) ds < f(a) + fQ(al—)\b,\)’

that is equivalent to

(3.14) f (a¥b%) < /01 f (al’s [a“*b*]s) ds < fla) + f2(a1‘AbA)

for any X € [0, 1].
If we multiply (3.13) by 1 — A and (3.14) by A and add the obtained
inequalities, we get, by the identity (3.11]), that

1-N\)f (a%b%) S (a?b%) < /1f(a15b5) ds

0
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f (al_Ab;) + f(b) N )\f (a) + f2(a1‘*b*)

<(1-2)

1

5 [ (@ 70) + (1= X) F(0) + Af (a)]

for any A € [0, 1], which proves the second and the third inequality in (3.12)).
By the GA-convexity we have

A A+l

(1-N) f (a%bT) FAf (a;b’)

which proves the first inequality in (3.12)).
By the GA-convexity we also have

5 LF (@) + (1= 2) £ () + A7 (a)]
< %[(1—A)f(a)+)\f(b)+(1—/\)f(b)+>\f(a)]
_ fla)+ 1)
2 )
which proves the last inequality in . O

COROLLARY 3.7. With the assumptions of Theorem [3.6] we have

() < 20 1 (0 45 (o0

1 P f @)
<) lnb—lna/a t dt

< )3 [ (var) + {01

2



Inequalities of Hermite-Hadamard type for G A-convex functions 157

4. Related results

The following result also holds:

THEOREM 4.1. Let f: (0,00) D [a,b] — R be a GA-convex (concave)
function on [a,b]. Then for any t € [a,b] we have

L ")
(4.1) lnb—lna/a s ds

<)} [ry+ LOE 10 1/ () 1 oo
< () 10210

PrOOF. We give a proof only for the GA-convex case.
From the inequality (2.2]) we have that

(4.2) F()—f(s)> (nt—lns) f; (s) s

for any s € (a,b) and t € [a, b].
We divide (4.2)) by s > 0 and integrate on [a, b] over s to get

(4.3) f(t)/abids_/abfis)dsz (/abf;(s)ds> lnt—/abfjr(s)lnsds

for any ¢ € [a, b].
However,

/abids:lnb—lna, /:fj_()ds— f(b) = f(a)

and

b
/ fi(s)Insds

b
= f(s)ns|’ /f(s b)lnb—f(a)lna—/ fis)ds.

a
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Therefore, by (4.3]) we get

b
f (@) (Inb—1na) —/ @ds

FG5) g,

S

b
> (f (b) —f(a))lnt—f(b)lnb+f(a)lna+/

which can be written as
f(@)(Inb—1na)+ f(b) (Inb—1Int)+ f(a) (Int —Ina) > 2/b %S)ds

and the first inequality in (4.1)) is proved.

Using we have
f(b)(Inb—1Int) + f (a) (Int —Ina)
Fe)+ Inb—1Ina
< (Inb—1Int) f(a)+ (Int —Ina) f(b)
- Inb—1Ina
f()(Inb—1Int)+ f(a)(Int —Ina)
* Inb—Ina BARREAY
for any t € [a, b]. That proves the last part of . O

By taking the integral mean in the inequality (4.1) we have:

COROLLARY 4.2. With the assumptions of Theorem [A.1] we have

b S b
(44) lnbilna/ fi)dsg(z);bia/f(t)dt

N 1f()(Inb—1nT(a,b))+ f(a)(nl(a,b) —Ina) <(>) f (a) —I—f(b).
2 Inb—1Ina 2

Since a simple calculation reveals (see the proof of Theorem that

f(b)(Inb—1In1(a,b)) + f(a)(InI(a,b) —Ina)

Inb—1Ina

L(a,b)—a

= Tp-a 1Ot T
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then the inequality (4.4]) is equivalent to

lnb—lna/ e ;—a/f

+2[L%fil.ﬂw+;§zwfw4§(z)

REMARK 4.3. Taking specific values for ¢ € [a,b] in (4.1) we get the fol-
lowing results:

1 b f(s) 1, a+b
lnb—lna/a s d$§(2)2f< 2 )

1 [f(b) (Inb —In 242 + £ (a) (In &£ —lna)}

2 Inb—1Ina
NRYICESI0)
1 " f(s) 1 f(a)+ f(b)
lnb—lna/a s d8§(2)2{f<‘/‘%>+ 2 ]
NRFCEIL)

b
lnbllna/a fis)ds <(>) %f(l(a,b))

1[f(b)(Inb—1InI(a,b))+ f(a)(InI(a,b) —Ina)
+2[ Inb—Ina ]

1 L(a,b) —a b— L (a,b)

— 3 [y + ED = ) P2 )
BRYIGES L]

and

s [ s <) b @)

41 [f(b) (Inb—InL(a,b))+ f(a) InL(a,b) —Ina)
2

Inb—1Ina
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Now, observe that

f(O)(Inb—1Int)+ f(a)(Int —Ina) =0
iff
f(O)mb—f(a)na _ (b HOEHO
fO-rf@ " (af(a)> !

Int =

which is equivalent to

pf () \ T 7@
t= (af(a)> )

Therefore, if

pf®) T~ @
t= (af@) S [(I, b] N

then by (4.1) we get

1 b (s) 1 [ (BT @ @)+ f(b)
lnb—lna/a s ds§(2)2f<(af@)> > =(2) 2 '

The following result also holds.

THEOREM 4.4. Let f: (0,00) D [a,b] — R be a GA-convex (concave)
function on [a,b]. Then for any t € [a,b] we have

1

! [f<t>+

(45) 3

nb—In af(a)(Int —1Ina b
FOb(nb—Int) +a (@) (ot -] )}_bla/a £ (s) ds

b b
>(<);{b—la/ f(s)lnsds—(b_la/ f(s)ds)lnt].

PrOOF. We give a proof only for the GA-convex case.
Integrating (4.2) with respect to s we get

b b b
(4.6) f(t)(b—a)—/ f(s)ds>lnt/ f;(s)sds—/ fi(s)slnsds

for any t € [a, b].
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Observe that, integrating by parts, we have
/ fl(s)sds=bf (b) —af (a / f(s

b b
/fjr(s)slnsdszf(b)blnb—f(a)alna—/ (slns) f(s)ds

and

b
:f(b)blnb—f(a)alna—/ (Ins+1) f(s)ds
b b
—f(b)blnb—f(a)alna—/ f(s)lnsds—/ f(s)ds.
Using the inequality we get

b
f(t)(b—a)—/ £ (s)ds

>1nt<bf )—af (a / f(s )

b
—f(b)blnb+f(a)alna+/ f(s)lnsds+/ f(s)ds
b
:bf(b)lnt—af(a)lnt—lnt/ f(s)ds

b b
— f(b)blnb+ f(a)alna+/ f(s)lnsds+/ f(s)ds,
a a
that is equivalent to

f@)(b—a)—>bf (b)lnt+af (a)lnt+ f(b)blnb— f(a)alna

—Q/be(s)dsz/abf(s)lnsds—lnt/abf(s)ds,

f@)b—a)+ fb)b(Inb—1nt)+af (a)(Int —Ina)

—Z/lbf(s)dsZ/abf(s)lnsds—lnt/abf(s)ds

for any t € [a,b] and the inequality (4.5) is proved. O

i.e.,
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COROLLARY 4.5. Let f: (0,00) D [a,b] = R be a GA-convez function on
[a,b]. Then

b—a

b b
Zia/ f(s)lnsds—(b_la/ f(s)ds)ln[(a,b).

Moreover, if f is nondecreasing then

no—m a a a n a —1na b
(a7 YO b=nl(ab)+af()(nl(ab) ] )_bia/f(s)ds

no—m a a a n a —1na b
(g WO 1I(,b)2iaf()(1 I(ab) -1 )_bia/f(s)ds

b b
Zbla/a f(s)lnsds—(bla/a f(s)ds)ln[(a,b)zo.

PROOF. Integrating over t on [a,b] and dividing by b — a in (4.5 we get

bia/abf(s)ds

F o) (nb— 5 [Vntdt) +af (o) (52 f;lntdt—lna>}
b—a

1
2

_|_

b b
= f(S)dSZ(S);[bla/ f(5)nsds

I I
— ds | —— [ Intdt
= | reas) s [meal.
that is equivalent to (4.7]).

Now, if f is nondecreasing on [a, b], then by Cebysev inequality for syn-
chronous functions, we have

1 b 1 b 1 b
b—a/a f(s)Insds > (b—a/a f(s)ds>b_a/a Intdt

that proves (4.8]). O
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COROLLARY 4.6. Let f: (0,00) D [a,b] = R be a GA-convez function on
[a,b]. Then

£ (exp (ug)) + LW oMb —pg) +af (@) s = lna>]

b—a

N

b
zbia/a f(s)ds

provided that

b
Insd
pg = M € [lna,Inb].
fa f(s)ds
PRrOOF. Follows from (4.5 by taking
b
Insd
lntzwe[lna,lnb]. O
fa f(s)ds

REMARK 4.7. If we take t = Vab in 1} then we get

o) L] [

b b
>;[bia/a f(s)lnsds—(lj_la/a f(s)ds)ln\/%].

If we take t = I (a,b) in (4.5)), then we get

N | —

fO)b(Inb—1InI (a,b)) +af(a)(Inl(a,b) —Ina)
)+ )1 ]

b b
_bia/ f(s)dszélb_la f(s)lnsds

b
_ <bia/ f(s)ds) lnI(a,b)}.

We use the following results obtained by the author in [5] and [6].
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LEMMA 4.8. Let h: [a, 8] — R be a convex function on [o, B]. Then we
have the inequalities

(4.9) ;[h;<o‘;5>—h’ <a+5>](ﬁ—a)
MO 1

<2 S (8)— K, (a>] (B —a)

| /\

and

(4.10) ;[h’ <O‘J2r5>—h’ <a+ﬁ>](ﬁ— a)
_ﬁf /h ya-n(45E)

W (B) = by ()] (B —a).

<3 [
The constant 1s the best possible in and -

Finally, we have

THEOREM 4.9. Let f: (0,00) D [a,b] — R be a GA-convexr (concave)
function on [a,b]. Then we have

(4.11) é |74 (Vab) = f. (Vab)| Vab (inb — na)
=(2) f(a);f(b) N lnbilna/ab fiS)ds
< ()5 [f2 )b~ F} (a)a] (b~ na)

and

(4.12) é (71 (Vab) — £~ (Vab)| Vab (b~ na)
<2 g [, o1 (V)

< (2)5 [f2(®)b~ f} (a)a] (b~ na).
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PRrOOF. Consider the function A: [Ina,lnb] — R defined by h(t) = f o
exp (t). Since f is a GA-convex (concave) function on [a, b], then we have the
lateral derivatives

Wy (t) = (fioexp(t)) expt, t€ [Ina,lnb].

If we apply the inequality (4.9) for the convex function f o exp on the
interval [Ina,Inb], then we have

1], Ina+1Inbd , Ina+1Inbd Ina+1Inbd

3 [f+o exp (#> — floexp (2>] exp (#ylnb—lna)
foexp(Ina)+ foexp(Inbd) 1 Inb

< —

- 2 Inb—Ina J,, Joexp(t)dt
1 / !

< 3 [(f- oexp(Inbd)) exp (Inb) — (f} oexp(Ina)) exp (Ina)] (Inb —Ina),

that is equivalent to

(4.13) é (1 (Vab) — 1 (Vab)| Vab (b~ na)
Inb
Sf(a);‘f(b)_lnbilna 1 foexp(t)dt
< é 7" (5)b— f. (a)a] (Inb—Ina).

If we change the variable s = expt, then ¢t =Ins and dt = %. Therefore

Inb B bf(S)
/1 foexp(t) dt/a ds

na S

and by (4.13) we get the desired inequality (4.11)).
The inequality (4.12)) follows by (4.10)). O

REMARK 4.10. If the function f: (0,00) D I — R is differentiable and
GA-convex on [a,b] C I, then we have the following inequalities:

@)+ (b) 1 "1 (s)
(4.14) 0= 2 _lnb—lna/a s ds

<

[f" ()b~ f"(a)a] (Inb —Ina)

0|
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and

(4.15) 0< lnbilna/ab fis)ds—f (\/%)

Sé[f (b)b— f"(a)a] (Inb—1na).

5. Some applications

Let p # 0 and consider the convex function ¢ (¢) = exp (pt), t € R. Then
the function f: (0,00) = R, f(t) = g(Int) = exp (pIlnt) = tP, is a GA-convex
function on (0, 00). Observe that for 0 < a < b we have

1 pptl_gptl

1 btpdt— e o PFE L
b—a o o Inb—Ina p:—l

b—a ’
_ Lg(a)b)a p7é_]-7
L= (a,b), p=—1,
where Ly, (a,b) (p # —1) is the p-logarithmic mean and L is the logarithmic

mean defined in the introduction.
Using the inequality

L rwans bHED g BB Za g,

b—a

for f(t) =1tP (p #0), we get

bfL(a,b)bp+L(a,b)f

p <
Ly (a;b) < b—a b—a

a?

for p # 0, where L:} (a,b) := L™t (a,b).
Observe that

1 1
/ 1) g /tp—ldt
b—a/J, t b—a /,

1P —a?

pb—a
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If we use the inequality

f(x/%) < (1fA)f(a1%b*“) +>\f< 2 A)

1 1)
= lnb—lna/a t dt
[F (@29 + (1= 0 £ )+ Af (@] < L2HTO)

—_

< —
-2
for A € [0,1] and f (t) =t? (p # 0), then we get

G (a,b) < (1= A)GP (a2, 0M1) + AGP (a® 7, b%)

< L(a,b) LV_] (a,b)

1 aP + bP
< Z D 2(1=X) 12X o D P| <
_2[G (a17,62) + (1= )07 + 2] < >
for A € [0,1].
If we use the inequalities (4.14) and (4.15) for f (t) = t? (p # 0), then we
get
aP +bP , 1 ,Lb7] (a,b) 2
< _ P - 2 P b—
0< L (a,b) Lp_ (a,b) < YA @) (b—a)
and
1 ,LP"1 (a,b)
< p—1 P < 2V g)?
0< L(a,b) L,~; (a,b) — G" (a, b)_8p L(a.D) (b—a)
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