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SOLUTIONS AND STABILITY OF GENERALIZED
KANNAPPAN’S AND VAN VLECK’S FUNCTIONAL
EQUATIONS

ELHOUCIEN ELQORACHI, AHMED REDOUANI

Abstract. We study the solutions of the integral Kannappan’s and Van Vleck’s
functional equations

/ Flayt)dpu(t) + / Fao@)t)du(t) = 2/ (2)f(y), .y € 5
S S

/ Fao(y))du(t) — / Flayt)du(t) = 2/ (@) f(y), =y €S,
S S

where S is a semigroup, o is an involutive automorphism of S and p is a linear
combination of Dirac measures (d:,)icr, such that for all ¢ € I, z; is in the
center of S. We show that the solutions of these equations are closely related to
the solutions of the d’Alembert’s classic functional equation with an involutive
automorphism. Furthermore, we obtain the superstability theorems for these
functional equations in the general case, where o is an involutive morphism.

1. Introduction

Throughout this paper S denotes a semigroup: a set equipped with an
associative operation. We write the operation multiplicatively. A function
x: S — C is said to be multiplicative if x(zy) = x(x)x(y) for all z,y € S.
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Let 0: S — S denotes an involutive morphism, that is ¢ is an involutive
automorphism: o(zy) = o(x)o(y) and o(o(z)) = = for all x,y € S, or o is
an involutive anti-automorphism: o(zy) = o(y)o(x) and o(o(z)) = = for all
z,y € 8.

Van Vleck [35], [36] studied the continuous solutions f: R — R, f # 0 of
the following functional equation

flx—y+z2)—flz+y+z2)=2f)f(y), zyeR,

where zg > 0 is fixed. He showed that any continuous solution with minimal
period 4zo has to be the sine function f(z) = sin(5-z) = cos(53-(z — 20)),
reR.

Kannappan [23] proved that any solution f: R — C of the functional
equation

T
220

f(a:—i—y—l—zo)—l—f(x—y—i—zo):2f(a:)f(y), $7y€R7

is periodic, if zg # 0. Furthermore, the periodic solution has the form f(z) =
g(x — zp), where g is a periodic solution of d’Alembert functional equation

gx+y)+g(x—y)=29(x)9(y), z,yeR

Stetkeer [31), Exercise 9.18] found the complex-valued solutions of the func-
tional equation

flay " 20) = f(ayzo) = 2f(2) f(y), =y€QG,

on group G, where zj is a fixed element in the center of G.

Perkins and Sahoo [27] replaced the group inversion by an involutive anti-
automorphism o: G — G and they obtained the abelian, complex-valued
solutions of the functional equation

(L.1) f(xo(y)z0) — f(xyzo) = 2f () f(y), @,y€q.

Stetkaer [33] extends the results of Perkins and Sahoo [27] about equation
to the more general case where G is a semigroup, the solutions are not
assumed to be abelian and zq is a fixed element in the center of G.

Recently, Bouikhalene and Elqorachi [4] obtained the solutions of an ex-
tension of Van Vleck’s functional equation

xW)f(xo(y)zo) — flzyzo) = 2f(2) f(y), @,y €S,
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on semigroup S, where y is a multiplicative function such that y(zo(z)) =1
for all x € S.

During the last ten years there has been quite a development of the theory
of d’Alembert’s functional equation

(1.2) g(xy) + g(zo(y)) = 29(x)g(y), =,y € G,

on non abelian groups. We know that the non-zero solutions of such equa-
tion for general groups, even monoids, are the normalized traces of certain
representations of the group G on C? [10, [11].

Stetkeer [34] expressed the complex-valued solutions of Kannappan’s func-
tional equation

(1.3) f(zyzo) + f(zo(y)zo) = 2f(2) f(y), x,y €S,

on semigroups in terms of solutions of d’Alembert’s functional equation (1.2]).
Elqorachi [13] extended the results of Stetkeer [34, [33] to the generalizations
of Kannappan’s functional equation

(1.4) /S flayt)dp(t) + /S Flao(y)dut) = 2f (@) f(y), 2.y € S,

and Van Vleck’s functional equation

(15) /S f(ao(y)t)du(t) — /S flayt)du(t) = 2f(2)f(y), =y €S,

where p is a linear combination of Dirac measures (0,,);ecr, with z; in the
center of the semigroup S, for all ¢ € I and where ¢ is an involutive anti-
automorphism of S.

Related studies of functional equations like can be found in [ [15]
16, [17].

Studies of the stability of functional equations highlighted a phenomenon
which is usually called superstability: consider the functional equation E(f) =
0 and assume we are in a framework where the notion of boundedness of f
and of E(f) makes sense. We say that the equation E(f) = 0 is superstable if
the boundedness of F(f) implies that either f is bounded or f is a solution of
E(f) = 0. This property was first observed in [3] where Baker, Lawrence, and
Zorzitto proved the following: Let V' ba a vector space. If a function f: V — R
satisfies the inequality |f(x 4+ y) — f(x)f(y)| < € for some ¢ > 0 and for all
x,y € V, then either f is bounded on V or f(z+y) = f(z)f(y) forall z,y € V.

The result was generalized by Baker [2], by replacing V' by a semigroup
and R by a normed algebra FE, in which the norm is multiplicative, by Ger
and Semrl [20], where E is an arbitrary commutative complex semisimple
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Banach algebra and by Lawrence [26] in the case where E is the algebra of
all n x n matrices. Different generalizations of the result of Baker, Lawrence
and Zorzitto have been obtained. We mention for example [5], [14], [19], [21],
[22], [24], |25] and [28].

The first purpose of this paper is to extend the results of Stetkeer [33] [34]
on the Kannappan’s functional equation and Van Vleck’s functional
equation to the case, where ¢ is an involutive automorphism of S.

By using similar methods and computations to those in [I3] we prove
that the solutions of and are also closely related to the solutions
of the d’Alembert’s classic functional equation (with o an involutive
automorphism) which has not been studied much on non-abelian semigroups.
Exceptions are Stetkeer [30, Example 6] (continuous solutions), Sinopoulos [29]
(general solutions) for a special involutive automorphism o of the Heisenberg
group. We show that any solution of is proportional to a solution of .
We prove that all solutions of the integral Van Vleck’s functional equation
are abelian and as an application we obtain some results about abelian
solutions of .

We do not need the crucial proposition |31, Proposition 8.14] used in the
proofs of the main results in [I3] and [33, [34].

The second purpose of this paper is to prove the superstability of equations
and . We show that the superstability of these functional equations is
closely related to the superstability of the Wilson’s classic functional equation

f(zy) + f(zo(y)) = 2f(x)g(y), =,y€S,

and consequently, we obtain the superstability theorems of equations ([1.4)
and (|1.5) on semigroups that are not necessarily abelian and where ¢ is an
involutive morphism.

2. Integral Kannappan’s functional equation on semigroups

In this section we study the complex-valued solutions of the functional
equation , where ¢ is an involutive automorphism and p is a linear com-
bination of Dirac measures (9, );cr, such that z; is in the center of S for all
1€1.

Throughout this paper we use in (all) proofs without explicit mentioning
the assumption that for all ¢ € I, z; is in the center of S and its consequence
o(z;) is in the center of S. The following lemma has been obtained in [I3] for
an involutive anti-automorphism o. It is still true, when ¢ is an involutive
automorphism. In the proof we adapt similar computations as used in [13].
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LEmMMA 2.1. If f: S — C is a solution of (1.4)), then for all x € S

/JﬁMMﬂ#0¢$f#Q

(2.1) ‘//fMﬂ$@@w /f@w

(2.2) //fxts dp(t)du(s /f )du(t)

The following notations will be used later:

— A consists of the solutions g: S — C of d’Alembert’s functional equation
(1.2) with [g g(t)du(t) # 0 and satisfying the condition

(2.3) /Sg(azt)d,u(t) = g(a:)/sg(t)d,u(t) for all x € S;

— to any g € A we associate the function Tg = [¢ g(t)du(t)g : S — C;
— K consists of the non-zero solutions f: .S — C of the integral Kannappan’s
functional equation .
In the following theorem the complex solutions of equation are ex-
pressed by means of solutions of d’Alembert’s functional equation .

THEOREM 2.2. (1) T is a bijection of A onto K. The inverse T™1: K — A
is given by the formula

1 [ f(at)dpu(t)
(T 0@ = T o autn

forall f € K and x € S.

(2) Any non-zero solution f: S — C of the integral Kannappan’s functional
equation (|1.4)) is of the form f = fs g du(t)g, where g € A. Furthermore,
f(z) = fsg (zt)du(t) = [q9(zo(t = [g9(t)du(t)g(z) for all z € S.

(3) f is central, i.e. f(xy) = f(yx) for all x,y €9, zf and only if g is central.

(4) If S is equipped with a topology and o: S — S is continuous then f is
continuous if and only if g is continuous.
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PROOF. Similar computations to those of [13|, where o anti-automorphism
involutive, can be adapted to the present situation. The only assertion we need
to prove is that the function

s Jt)du(o)
Js F0)dpu(1)

defined in [I3] satisfies the condition ([2.3)).
By replacing x by zks and y by r in (1.4]) and integrating the result with
respect to k, s and r we get

) [ [ [ [ raksrtauti)ucsdnryaut

N /S /S /S /S Fakso (r)t)du(k)du(s)du(r)dut)

g()

) /S /S F(aks)dp(k)du(s) /S F(r)dp(r)

24 [ f(S)du(8)>2-

By replacing « by zs and y by kr in (1.4) and integrating the result with
respect to k, s and r we obtain

@) [ [ [ [ steskrtyduts)due)dntrant

N /S /S /S /S F(so (k)o (r)t)dp(k)dp(s)dpa(r)dp(t)
_ /S /S /S /S Faskrt)du(s)du(k)du(r)du(t)
+/S/S/S/Sf(xsa(7“)U(k‘)t)d,u(k)dﬂ(s)dN(T)dﬂ(t)

= /S /S (k) dpa()du(r) /S F(@s)dp(s).
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From and we have
| ] [ sahsotindudutydntrdace
SJSJSJS

= /S /S Flaks)du(k)dp(s) /S f(s)dp(s) =f(:c)< /S f(S)du(S))2

and
/S/S/S/Sf(‘”""(k)w(S))dﬂ(k)du(S)du(r)du(t)

~ [ [ [ [ seratnantian [ st = s [ f(S)du(S)>2-

In view of (2.4)) and ([2.5)) we deduce that

/S/Sf(kr)du(k)du(r)/Sf(xs)du(s):/S/Sf(xks)du(k)d,u(s)/Sf(r)du(r)'

So, by using the expression of g we obtain

/S g(es)du(s) = g(x) /5 £(5)du(s)

for all x € S. This completes the proof. ([

REMARK 2.3. In Stetkaer’s paper [34] about Kannappan’s functional equa-
tion on semigroups, in the definition of the set A other assertions — equivalent
to — are needed to prove the main result in [34]. We notice here that we
do not need these statements. The same is also valid for the manuscript [13].

Now, we extend Stetkeer’s result [34] from anti-automorphisms to the more
general case of morphism, as follows.

COROLLARY 2.4. Let zy be a fixed element in the center of a semigroup
S and let o be an involutive morphism of S. Then, any non-zero solution
f: 8 — C of the functional equation is of the form f = g(z0)g, where
g 1s a solution of d’Alembert’s functional equation with g(z0) # 0 and
satisfying the condition g(xzo) = g(z0)g(x) for all z € S.
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COROLLARY 2.5. If 0 = I, where I is the identity map of S, then, any
non-zero solution f: S — C of Kannappan’s functional equation

[ 1wstdut) = f@1). wes,
is of the form f = stx (t)du(t), where x is a multiplicative function such
that [¢ x(t)du(t) # 0.

REMARK 2.6. The result stated in Corollary [2.5] is also true without the
assumption that p is a linear combination of Dirac measures 6, with z; in the
center of S (see [18§]).

COROLLARY 2.7. The non-zero central solutions of the integral Kannap-
pan’s functional equation (L.4)), where o is an involutive automorphism of S,
are the functions of the form

MO [ aute). aes.

where x: S — C is a multiplicative function such that

fz) =

[ x®dno #0 md [ xi@n = [ xoduo.

PRrooF. From Theorem if f is a central solution of then g is a
central solution of d’Alembert’s functional equation , with o an involutive
automorphism of S. In view of [32], there exists a non-zero multiplicative
function x: S — C such that

(2.6) g9(x) =

for all x € S. So, f(z) = [M ] [ x(t)dp(t) with fSX t)du( ) ;é 0 On
the other hand by substituting the condltlon f S g(xt)du(t) z) [ g9t
into (2.6) we get [ x(o(t))du(t) = [¢ x(t ). This completes the proof D
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3. Superstability of the integral Kannappan’s
functional equation ([1.4)

In this section we obtain the superstability result of equation (1.4 on
semigroups, not necessarily abelian. Later, we will need the following lemma.

LEMMA 3.1. Let o be an involutive morphism of S. Let p be a complex
measure that is a linear combination of Dirac measures (0, )icr, such that z;
is in the center of S for all i € I. Let 6 > 0 be fized. If f : S — C is an
unbounded function which satisfies the inequality

(3.1)

() + [ Feoty)in(s - 2f(fv)f(y)‘ <5
S

forall x,y € S, then, for allx € S

(32) flo()) = £(@),

(33) 1 [ [ faotnausiann - 1) [ st ] <2l

(3.4) ] [ [ fastian(siano - 16@) [ 5ot \ <2,
(3.5) /S F()dp(t) #0.
The function g defined by

Js f(xt)dpu(t)
Js f(®)dp(t)

is unbounded on S and satisfies the following inequalities:

(3.6) g(x) = forx e S

36 )
6D o) +9ow) = 20090 < 7 ac

(38) ) [ stetiant - ota) [ g(t)du(t)‘

(5/4)5HM||3+(1/4)5||M||2+ S|l
(s f(s)du(s)))? | [s £(s)dp(s)]
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for all x,y € S. Furthermore, g is a non-zero solution of d’Alembert’s func-

tional equation (1.2) and satisfies the condition (2.3). That is T~'f = g € A.

PRrROOF. Equation : Replacing y by o(y) in and subtracting re-
sulting inequalities we find, after using the triangle inequality, that |f(x)(f (y)—
f(o(y)))| < 26. Since f is assumed to be unbounded then f(o(y)) = f(y) for
all y € S.

Inequality : Replacing x by o(s) in and integrating the result
with respect to s we get

[ sestanoins) + [ [ so)odutut)
S JS SJS
=21 [ £(o(s)du(s)] < dlul.
S

which can be written

’/S/Sf(a(s)yt)dﬂ(t)dﬂ(s)+/S/Sf(a(s)yt)du(t)du(s)
—2f(y)/sf(s)dﬂ(s)‘ < 5ul,

because f oo = f. This proves (3.3).
Inequality (3.4)): By setting y = s in (3.1) and integrating the result with
respect to s we get

‘ /S /S f(@st)du(t)dp(s) + /S /S F(xa(s)t)dp(t)du(s)
=24(@) [ F)dn(s)] < bl

According to and the triangle inequality we deduce (3.4).

Condition (3.5): Assume that f is an unbounded function which satisfies
the inequality (3.1)) and that [ f(t)du(t) = 0. Replacing z by xs, y by yk in
and integrating the result with respect to s and k& we get

69 | [ [ [ stessoduoduts)dui)

+ /S /S /S F(wso (k) dp(t)du(s)du(k)
=2 [ fas)ints) [ tants] < sl
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In view of (3.3)) and (3.4 we have

’/5/S/Sf(fsg(t)a(y)k)du(t)du(s)dﬂ(k)

_/S[/Sf(t)du(t)f(a:sa(y))]dﬂ(s)’ gllull2

‘ /S /S /Sf (zsytk)dp(t)dp(s)dp(k)
- [ sy [ sevants)] < Sa

Since [ f(t)du(t) = 0, then we get

| /g /s /S flasa(®o()D)du(O)dn()du(b)] < 3l

L1 <x8ytk>dﬂ<t>dﬂ<s>du<k>1 <l

From we conclude that the function h(z) = [ f(2s)du(s) is a bounded
function on S, in particular the functions (m y = [ flzys)du(s); (x,y) —

Js f(zo(y)s)du(s) are bounded on S x S. So, from (3.1) we deduce that f is
bounded, which contradicts the assumption that f is an unbounded function

on S and this proves (3.5)).
Inequality (3.7)): In the following we will show that the function g defined

by is unbounded. If g is bounded, then there exists M > 0 such that
| [ f(zs)du(s)| < M for all z € S. From and the triangle inequality
we get that the function (z,y) — f(x)f(y) is bounded on S x S and this
implies that f is bounded. This contradicts the fact that f is assumed to be
unbounded on S.

From the inequalities , and , we get
([ 16)au9) lotan) + a(eo)) — 20(a)ato)]|
= | [ #)ants) [ samtiane)+ [ fs)auts) [ faatnau

=2 [ sakaut) [ 1))
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= | [ sauts) [ swomauty= [ [ [ apthautantsin
/f d;w)/frw dut)—///f:w Jto(s)k)dp(t)dp(s)du(k)
+ /5 /S /S Fako(ys))du()du(s)dpu(k) + /S /S /5 Fakyst)dpu(t)du(s)du(k)

) )
=2 [ samyau) [ 1omdn(s)] < GlR + Sl + ol

which gives (3.7)).
Inequality (3.8)): For all z € S, we have

/ o(ws)du(s) — g(z) / o(t)du(t)
S S

_ fs fs xst)du(s)du( ) fs fs f(ks)du(k fS xs)du(s
Js F(s)du(s) (fs f( d,u (s))?
_ JsJst(@st)dp(s)du(t) [sF (s)dp(s) — 5 [ f (ks)dp(k)dp(s) [o f (ws)du(s)
fs s)du(s))?

Replacing x by zsk and y by r in (3.1]) and integrating the result with respect
to s, k and r we get

’ /S /S /S /5 f(@skrt)dp(s)dp(k)dp(r)dpu(t)
+/S/S/S/Sf(fﬂska(T)t)du(S)du(k)du(r)dM(t)

9 /S /5 F(wsk)dpa(s)dp(k) /S Fr)n(r)] < olulP.

By replacing x by xs and y by kr in (3.1)) and integrating the result with
respect to s, k and r we get

| /S /S /S /S F(@skrt)du(s)dp(k)du(r)dp()
; /S /g /S /S F (s (k) (r)t)dpu(s)dya()dpa(r) da(t)
=2 [ [ pEnaunt) [ sesaue) < sl
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Note that

//f(ks du(k)du s)/ fxs)du(s /f (xst)du(s)du t)/ f(s)du(s)
= Q/S/Sf(ks)d,u(k‘)d,u s /sf xs)dp(s)
~ [ ][ [ ssrtydutiodns)aurydne

_ /S /S /S /S Flasro(k)o (1)) dulk)du(s)du(r)du(t)

- [2 /S F(wst)du(s)dp(t) /S £()dp(s)

[ ][] rsrkaueiautyduteyant)
— [ [ [ asrkote)dnodns)autrydn)
[ ][ rasratio)dutiodunts)dutran
_ / / Flao(t)s)du(s)du(t) / F(&)du(t)
+ [ [ fao®sdnsiaute) [ saute) — ) [ foaute)?
=[] [ stasrkotendntodns)autryin)
- [ stestidutsiaute) [ ans)]
— [ [ sastiantsiante) [ ses)ants) - @) [ soancoy].
From inequalities (3.1), (3:3), (B4) and the above relations we get
‘ //f (ks)du(k)du s)/ F(as)du(s) /f (wst)du(s)dp t)/f SW(S

< 28l + 5ll® + Gl | Fedaus)] + 5ll? + el | F)dnts)
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which implies that

‘ /Sg(xt)du(t) —g(z) /S g(t)d,u(t)‘

(5/4)5||u||3 (1/4)0]| el Sl
(s f()dus)l)? | [s £(s)dp(s)]

and this proves (3.8)). Now, since ¢ is unbounded and satisfies the inequality
(3.7), we deduce (from [6]) that g satisfies the d’Alembert’s functional equation
(1.2). We will show that [ g(xt)du(t) = g(x) [4 g(t)du(t) for all z € S.

2!9(1/)!)/59(1’1?)@(15)g(w)/g(t)du(t))

‘/29 g(zt)du(t) —2g(x)g (y)/sg(t)du(t)‘

— ’ /S [g(zyt) + g(za(y)t)]du(t) — [S g(t)du(t)[g(zy) +g(-’w(y))]’
=| [stawtyintv- | aautaten)+ [ swotodnv-[ santatotw)|
<| [ stesautt) = ata) [ attauo)

+‘/Sg(xa(y)t)du(t)—g(xa(y))/sg(t)du(t)‘_

In view of inequality (3.8) we obtain

2o(w)| [ atetidn(®) = o(o) [ alt)dn(e)

(5/0)8]ul* + (1/4)3] 5
<2 (Js F&du&2 s fs)du(s) il

Since g is an unbounded function on S then we get

/ g(et)dp(t) = g(x) / o(t)du(t)
S S

for all z € S. This completes the proof. ([
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Now, we are ready to prove the main result of the present section. We
notice here that the same result has been obtained in [6] with different as-
sumptions on .

THEOREM 3.2. Let o be an involutive morphism of S. Let i be a complex
measure that is a linear combination of Dirac measures (0, )icr, such that z;
is in the center of S for alli € I. Let § > 0 be fized. If f : S — C satisfies the
inequality

G10) | [ fewtdut) + [ fao)odut) - 26 f)] <5

s s
for all z,y € S, then either f is bounded and |f(z)| < Nl llel+20 W for all
x € S or f is a solution of the integral Kannappan’s functional equation (1.4)).

PROOF. Assume that f is an unbounded solution of (3.10]). Replacing y
by ys in (3.10)) and integrating the result with respect to s we get

‘//f zyst)dp(s)dp(t) //f zo(y)o(s)t)du(s)du(t)
—2f(x)/sf(ys)du(s)( < Ol

for all y € S. From (3.3)), (3.4) and the triangle inequality we get
1) | [ f6)due) 1w + [ 16)dut o)

=2£(@) [ fs)duto)| < 351l

for all z,y € S. Since, from (3.5), we have fs f(s)du(s) # 0, then the inequal-
ity (3.11)) can be written as follows

|f(xy) + f(zo(y)) — 2f (2)g(y)| < 35”#”
| Js f(

for all z,y € S, where g is the function defined in Lemma 3.1} Now, by using
the same computation used in [0, Theorem 2.2(iii)] we conclude that f, g are
solutions of Wilson’s functional equation

(3.12) flzy) + f(zo(y) = 2f(x)g(y)
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for all z,y € S. By replacing = by ¢ in (3.12) and integrating the result with

respect to t we get [¢ f(ty)du(t)+ [ f(to(y))du(t) = 29(y) [ f(t)du(t). Since
foo = f then we get

/ F(ty)du() / F(to(y))dpu(t)

/f yt)dpu(t) /f yo(t))du(t) = 2f(y )/ g(t)du(t).

d
Then we have f(y) fsg fs .50, g = fz ?Egdﬁgf

For all z,y € S we have
(3.13) /f;tyt dpu(t) /fma t)du(t)
= [ 1aty) + ato)idnt) =2 [ fatautiats) = 2551 w)

where = W%. Using this in 1} we obtain [2(8 —1)f(y)f(z)| <6
S
for all z,y € S. Since f is assumed to be unbounded then we deduce that

= 1 and then from (3.13) we deduce that f is a solution of ([l.4]). This
completes the proof. O

3.1. Superstability of the integral Kannappan’s functional
equation (1.4) on monoids

If S is a monoid (a semigroup with identity element e) then by elementary
computations we verify that the superstability of the integral Kannappan’s
functional equation follows from the superstability of d’Alembert’s functional

equation (|1.2)).
PROPOSITION 3.3. Let M be a topological monoid. Let o be an involutive

anti-automorphism of M and let i a complex measure with compact support.
Let 6 > 0 be fized. If a continuous function f: M — C satisfies the inequality

gy | [ serdut)+ [ faotndu® - 26 @) <

for all x,y € M, then either f is bounded or f is a solution of the integral
Kannappan’s functional equation (1.4)).
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PROOF. Let f be an unbounded continuous function which satisfies (3.14)).
Taking y = e in (3.14]) we get

(3.15) [ ratidu) - fe) )] < ’

for all x € M. Since f is unbounded then f(e) # 0, because if f(e) = 0 the
functions (x,y) — [,, f(ayt)du(t); (z,y) — [, f(zo(y)t)du(t) are bounded
and from and the triangle inequality we get f a bounded function on
M. This contradicts the assumption that f is unbounded. Now, from ,
and the triangle inequality we obtain

[f(e)f(zy) + f(e)f(za(y)) — 2f(x)f(y)]
<@ - [ samau)]+ |1 faaw) - [ reowdu)

o 6
+] [ s@undn)+ [ faonan® -2 @rw)] <5+ 5+5 =2
This inequality can be written as follows
) + Foot) - 26 @40 < FL wye

From [0, Theorem 2.2(iii)| we deduce that f, g are solutions of Wilson’s func-
tional equation

f(y)
fe)

f(ay) + flao(y)) = 2/(x)
for all x,y € M, then from [31] f is central. So,
/M f(yt)du(t)+ /M flao(y)t)du(t) = /M f(tay)du(t)+ /M f(tzo(y))du(t)
- /M () + F((t2)o(w)]du(t)

10 [ omane - 200
o /Mf(t Jiu(t) = 252 / f(t)du(t)
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Using the equality above with (3.14) after computation we get

I f(wt)du(t)ﬂ

o
fle) 2

) (f(@) - <
for all x,y € M. Since f is unbounded then f(z) = W for all x € M.
Thus, for all x,y € M we get

/ f(xyt)dp t)+/ f(zo(y)t)du(t) = f( )/ f(@t)du(t) = 2f(z)f(y).

That is: f satisfies the integral Kannappan’s functional equation (1.4)). This
completes the proof. O

4. Solutions of the functional equation (|1.5))

The solutions of the functional equation (1.5) with ¢ an involutive anti-
automorphism are explicitly obtained by Elgorachi [13] on semigroups not
necessarily abelian in terms of multiplicative functions. In this section we
express the solutions of where ¢ is an involutive automorphism in terms
of multiplicative functions. The following lemma is obtained in [I3] for the
case where ¢ is an involutive anti-automorphism. It still holds for the case
where o is an involutive automorphism.

LEMMA 4.1. Leto: S — S be a morphism of S. Let u be a complex measure
that is a linear combination of Dirac measures (3,,)icr, such that z; is in the

center of S for alli € 1. Let f be a non-zero solution of equation (1.5). Then
for all x € S we have

f(2) = —fo(2)),
/ F(t)dp(t) 0,
S

/ / F(ts)dpu(t)du(s / / F(o(t)s)du(t)dp(s) =
//fﬂw t)s)du(t)du(s /f(t du(t)
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(4.1) /S [S F(ats)du(t)du(s) = —f(x) /S F(O)dp(t),

/ F(o(@))du(t) = / f(at)du(t)
S S

The function defined by

fs f(xt) du

Js f(

is a non-zero solution of d’Alembert’s functional equation (1.2). Furthermore,

g(x) = forxeS

/S/SQ(ts)dM(t)du(s) # 0; /Sg(s)dﬂ(s) —0.

That is Jf = g € B, where J and B are the function and the set defined in
Theorem [{.3.

THEOREM 4.2. Let 0: S — S be an involutive morphism of S. Let p be a
complex measure that is a linear combination of Dirac measures (3,,)icr, such
that z; is in the center of S for all i € 1. Let B consists of the solutions g :
S — C of d’Alembert’s functional equation such that fsg Ydu(t) = 0
and [g [ g(st)du(s)du(t) # 0. Let V consists of the non-zero solutions of the
extension of Van Vieck’s functional equation . Then the function J:V —
B defined by

Jg flat)du(t)
Js f@)du(t)

is a bijection of V onto B. In particular J(V) = B.

(4.2) Jf(x) = z €S,

ProOOF. From Lemma the formula makes sense, and we have
g:=Jf e Bforany feV.

Injection: Let f; and fa be two non-zero solutions of . IfJfi =Jf
then we get

(4.3) / folt)d(t / £ (at)dpu(t) / f1(t)du(t / foat)dpu(t)

for all x € S. Since f; and fo are solutions of ([1.5)), we have

(4.4) / fi(xo()t)du(t) / f (et dult) = 2£(2) f1 ()
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and

| £ataotundu®) - [ fatantiin® =21 L)
By multiplying by [g f2(t)du(t) and using we get
@5 2h@AW) [ fOdu) =260 [ AOdw
s s

By replacing y by s in (4.5) and integrating the result with respect to s we
get

2f1(x) /S £1(5)du(s) [S Fa()dult) = 2/ (x) /5 fols)du(s) /S £1(t)du(t)

Since [q fa(s)du(s) [ f1(t)du(t) # 0, then f1 = fo.
Surjection: Let g € B. First we notice that since g is a solution of (1.2)

and ng s)du(s) = 0 then if we let y = s in and integrating the result
with respect to s we deduce that [ g(xa(s))du(s) = — [gg(xs)du(s). We
may define f: S — C by

@) = 5 [ ateats)duts) - [ glas)aus)

:/Sg(xa(s))du(s) = —Lg($5)dﬂ(5)~

For all z,y € S we have

/ f (o (y)t)dp(t) / F(eyt)du(t)

_ /S /S 9o (y)to(s))dp(t)du(s) - /S /S o(oyto(s)du(t)du(s)
:/S/Sg(xta(ys))d”(t)d“(s)+/S/Sg(mt3/3)du(t)du(s)

_ /S g(at)du(?) /S o(ys)du(s) = 2 () f ().
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Furthermore,

/f(s du(s // so(t))du(s)dpu(t) // (st)du(s)du(t) #

Thus, we get f # 0. On the other hand, for all z € S we have

Js f(at) du(t) _ Js Jsgato( ))du(t)du()

T = [0~ o Js oo()duttdu(s)
_ s fs g(@to(s))du(t)du(s) + fs Js g(ato(s))dp(t)dpu(s)
2[5 [ 9(ta () dn(t)dn(s)
_ 200) [ [s olto(s)du®)dnts) _ o
2[5 J5 9(to(9))du(t)dn(s) |
This completes the proof. [l

In [13] we use [31, Proposition 8.14] to derive the form of the solutions
of where o is an involutive anti-automorphism of S. This reasoning no
longer works for the present conditions. We will use an elementary approach
which works for both situations.

THEOREM 4.3. Let 0: S — S be a morphism of S. Let p be a complex
measure that is a linear combination of Dirac measures (6, )icr, such that z;
is in the center of S for alli € I. The non-zero central solutions of the integral
Van Vleck’s functional equation are the functions of the form

£ = X520 [ sttt

where x : S — C is a multiplicative function such that [¢x(t)du(t) # 0 and

Jsx(o()du(t) = — [ x(#)

Furthermore, if S is a topological semigroup and o : S — S is continuous,
then the non-zero solution f of equation is continuous if and only if x
18 continuous.

PROOF. Let f be a non-zero solution of (1.5). Replacing x by xs in (|1.5))
and integrating the result with respect to s we get

(4.6) //f(xsa t)dp(s)du(t) //f xsyt)du(s)du(t)
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— 21 (y) /S flas)du(s) = /3 /g F (o (y)st)dpu(s)du(t)

_/S[gf(xyst)du(s)dﬂ(t)-

By using (4.1) equation (4.6)) can be written as follows
(4.7) — flzo(y) + f(zy) = 2f(y)g(z), z,y € 5,

where ¢ is the function defined in Lemma If we replace y by ys in ((1.5)
and integrate the result with respect to s we get

/ / f(xo(y)o(s)t)du(s)du(t) — / / f(zyst)du(s)du(t)

— 27 (a) /S F(ys)du(s).

By using (4.1) we obtain that

(4.8) f(za(y)) + f(zy) =2f(x)g(y), =x,y€S.

Adding (4.8) and (4.7 we get that the pair f, g satisfies the sine addition law

f(zy) = f(x)g(y) + f(y)g(z) forall z,yeS.

Now, in view of [I12, Lemma 3.4], |31, Theorem 4.1] g is abelian. Since g is
a non-zero solution of d’Alembert’s functional equation there exists a
non-zero multiplicative function x: S — C such that g = HTXW The rest of
the proof is similar to the one used in [I3]. This completes the proof. O

COROLLARY 4.4. Let S be a semigroup, let o be an involutive automor-
phism of S. Let g be a solution of d’Alembert’s functional equation . If
there exists a complex measure p that is a linear combination of Dirac mea-
sures (02, )ier, such that z; is in the center of S for alli € I and [g g(t)du(t) =
0, g [g9(ts)du(t)du(t) # 0, then there exists a non-zero multiplicative func-
tion x: S — C such that g = HTXOU
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PRrROOF. Let g: § — C be a non-zero function which satisfies the condi-
tions of Corollary [£.4] From Theorem there exists a non-zero solution of
the integral Van Vleck’s functional equation such that T f = g. From the
proof of Theorem[£.3] we get that g is an abelian solution of d’Alembert’s func-
tional equation . That is there exists a non-zero multiplicative function
x: S — C such that g = L;“’” This completes the proof. O

5. The superstability of the integral Van Vleck’s functional
equation ([1.5)

In the present section we prove the superstability theorem of the inte-
gral Van Vleck’s functional equation (1.5)) on semigroups. First, we prove the
following useful lemma.

LEMMA 5.1. Let o be an involutive morphism of S. Let p be a complex
measure that is a linear combination of Dirac measures (0, )icr, such that z;
is in the center of S for all i € I. Let 6 > 0 be fized. If f : S — C is an
unbounded function which satisfies the inequality

6.0 | [ faownan® - [ faunduo =25 @1w)| <o
for all z,y € S, then, for all z € §

(5.2 flo(@) = —f(@)

63 | [ saonausin® - fa) [ o)< 5l

60 [ [ sestdusidun + o) [ o) < 2P

(5.5) /3 F(O)dp(t) #0,

(5.6) [ [ rnautsins ~o.

(5.7) ]/fa:s du(s /f(U )’—m
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The function g defined by

Js f(l’t)du(t)
5.8 x == forxeS
6 o) = Sy
is unbounded on S and satisfies the following inequality
35HMH2
(5.9) lg(zy) + g(zo(y)) — 29(2)g(y)| < 077 STE for allz,y € S.
S

Furthermore

i) [g9(t)du(t) =0, [§ [s9(ts)du(t)du(t) # 0,
(11) g s an abelian solution of d’Alembert’s functional equation (1.2) and
Jf=9g€B,

(iii) f,g are solutions of Wilson’s functional equation

(5.10) f(zy) + flzo(y)) = 2f(x)g(y)

for all x,y € S.
PROOF. Equation (5.2)): Replacing y by o(y) in we get
Gay | [ fayidutt) - [ feo@nau® - 20@) W) <
s s

for all z,y € S. By adding the result of and and using the triangle
inequality we obtain |2f(z)(f(y) + f(o(y)))| < 26 for all z € S. Since f is
assumed to be unbounded we get .

Inequality : By replacing x by o(s) in and integrating the result
with respect to s we have

6.2) | [ [ re@awnansinn - [ [ s

~24(y) /S F(o(s))dpu(s)| < Bl

for all y € S. By using (5.2]) we have

/S /S F(0(5)o(y)t)dpu(s)du(t) = — /S [5 Flyo(t)s)dp(s)du(t)
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and [g f(o(s))du(s) = — [ f(s)du(s). So, equation (5.12) can be written as
follows:

‘—//f yo(s)t)du(s)du(t) //fya(s Ydp(s)du(t)

+21(0) [ F)dn(s)] < bl

for all y € S. This proves (j5.3]).
Inequality (5.4): Taking y = s in (5.1)) and integrating the result with
respect to s we get

‘/S/Sf@a(s)t)dﬂ(s)dﬂ(t)—/S/Sf(xst)du(s)du(t)
~2£(@) [ F)dn(s)] < bl

for all x € S. Note that

[ [ rastiusin® + 560) [ s1aut)

=| [ [ swsvineaue +20@) [ fe)aue = [ [ raonddne

/ / F(wo(s)t)dp(s)dia(t) — / F(5)dus

So, by using (5.3), (5.12)) and the triangle inequality we deduce (5.4).
Condition (5.5)): Since f is assumed to be an unbounded solution of the

inequality (5.1) then f # 0. Now assume that [ f(¢)du(t) = 0. Replacing =

by zs in (5.1) and integrating the result with respect to s and using the fact
that p is concentrated in the center of S we get

‘//f zo(y)st)du(s)du(t) //f(:pyst du(s)dpu(t)

~24(y) /S F(@s)dp(s)] < 8llul
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for all z,y € S. Note that

y)/ f(xs)du(s /f(:vs)d,u

//fxystd,u )dp(t) //fﬂw )st)du(s)du(t)

- / / F(xyst)du(s)du(t) + f(zy) / F(s)dn(s))
SJS S
+ /S /S fao(y)st)du(s)du(t) + f(zo(y)) /S £(5)du(s)
+ flay) /S F(8)duls) — flzo(y)) /S £(5)d(s).

So, by using (5.4), , S s f(t)du(t) = 0 and the triangle inequality we get
that y — f(y) |4 f(xs)du(s) is a bounded function on S. Since f is unbounded
then we obtain [g f(zs)du(s) = 0 for all z € S. By applying this to (5.1) we
get f a bounded function on S and this contradicts the assumption that f is
an unbounded function. So, we have ([5.5)).

Inequality : By similar computation as above the function g defined
by is an unbounded function on S. Furthermore,

/ F(s)du(s / FR)du(E)g(zy) + g(zo(y)) — 20(x)g(y)
_ /S F(k)dpa(k) /S flayt)dp(t) + /S £(5)du(s) /S flao(y)du(t)

9 /S f(ws)dpu(s) /S £ (ys)dps)

- / flayt) / F(R)du(k) + / / f(xytkS)du(k)du(S)]du(t)
/ / F(5)dps / / (o (y)to () )dp (k) du(s) du(t)

—i—/s/s /Sf(a?sa(yk)t)dﬂ(t)—/Sf(msyk'st)du(t)—2f(x3)f(yk)}d'u(k;)dlu(s).
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So, by using (53), (B4) and (51) we get

| [ 56)aute) [ 1010 [ata) + a(wo) = 20(a)at0)]

300l Sllul?
<
-2 + 2

+ 6] |pll* = 36|l

which proves (5.9

(5.9)
Equation (5.6): Since g is unbounded, from [6] ¢ satisfies d’Alembert’s
functional equation ((1.2). From (5.3), (5.4) and the triangle inequality we

have

63 || [ seonausin® + [ fastautsno) < 28]l

Js fzk)dp(k)
s f(D)du(t)

for all z,y € S. Since g = the inequality (5.13)) can be written

as follows

)/Sf(k‘)dﬂ(k‘)/ g(xzo(k))du(k /f Ydu(k / (l“k‘)du(k’)’ < 251 ]|.

On the other hand g is a solution of d’Alembert’s functional equation (1.2]),

then we get [2g(x) [¢g(k)du(k)| < \ff%% for all x € S. Since g is

unbounded, we deduce that [ g(k)du(k) = 0. That is [ [ f(st)du(s)du(t) =

0, which proves (5.6)).

Inequality By replacing x by sk in , integrating the result with
respect to s and k and using and the fact that p is concentrated in the
center of S we obtain

(5.14) | /S /S F(o(y)skt)dp(s)dpu(k)dp(t)

_ /S /S Flyskt)dp(s)dp(k)dp(t)| < 8)|ul)?

for all y € S. Note that

///f y)sht)dp(s)dpk ///fyskt)du )du(k)dpu(t)
///fa(y )skt)dp(s)dp(k)dp(t) /fa(y t)dp(t) /f )dp(s
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- ([ [ [ ssktauantian + [ sanan) [ o)
— /S F(o(y)t)du(t) - /S Flyt)dp(t)) /S £(5)dp(s).

So from (5.14)), (5.4) and the triangle inequality we get

. 451}
[ Hotmant) — [ sanann] < e

This proves (5.7)).
Equation (5.10): From (5.1)), (5.3), (5.4) and the triangle inequality we get

6.15) | [ rdus) 1w + [ 1du(s) 1 wotu) ~27(w) [ 1))
<| [ s s+ [ [ raystidnts)an)

#| [ 1o - [ [ stastsnausinsia

-|-‘/S/Sf(ajo(y)st)du(s)du(t)—/S/Sf(wysﬂdﬂ(s)dﬂ(t)
=2£(@) [ fs)duts)| < 351l

for all z,y € S. Since from (5.5) we have [ f(s)du(s) # 0, then the inequality
(5.15)) can be written as follows

N - 3ol
)+ Fao(w) = 2 @) < [

for all x,y € S, where g is the function defined in Lemma Now, by using
the same computation as used in [6, Theorem 2.2(iii)| we conclude that f, g are
solutions of Wilson’s functional equation (5.10]). This completes the proof. [J

Now, we are ready to prove the main result of the present section.
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THEOREM 5.2. Let o be an involutive morphism of S. Let i be a complex
measure that is a linear combination of Dirac measures (0, )icr, such that z;
is in the center of S for alli € I. Let § > 0 be fized. If f : S — C satisfies the
inequality

G16) | [ fasnau [ fedut —20@50]| <8

for all x,y € S, then either f is bounded and |f(x)| < Neelit o/ N l® 20 W for all
x € 8, or f is a solution of the integral Van Vleck’s functional equation (1.5)).

PROOF. Assume that f is an unbounded solution of (5.16)). From Lemma

[.1{iii) f,g are solutions of Wilson’s functional equation ([5.10). Taking y = s
in (5.10) and integrating the result with respect to s we get

(5.17) /fxs)du /f:w Vdu(s) =

because [g g(s)dpu(s) = 0. By replacing y by so(k) in in (5.10) and integrating
the result with respect to s and k we obtain

//fxsa(k Ydp(s)du(k //fxo w(s)du(k)
0) [ [ otso k) dute)ntt
//fa:sa Ydp(s)du(k //ka:a Ydp(s)du(k)

2 /S /S F (s (k))dpu(s)dpa(F).
That is
(5.18) //f xso(k))du(s)du(k :c)// so(k))du(s)du(k).
Now from and ( - we get

/ / so ) dp(s)duh / o) < 20
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for all x € S. Since f is assumed to be unbounded, we get

(5.19) // so(k))du(s)du(k /f )dp(t)

The function g satisfies d’Alembert’s equation (1.2) and [gg(s)du(s) = 0,

then we have [g g(yk)du(k) f g ya(k))du(k) for all y € S. So, by using
the definition of g, equatlons and ((5.19) we have

o — [ Js flyo(k)t)du(k)du(t)
(5.20) /Sg(yk:)du(k:)— /Sg( o(k))du(k) = s F(s)du(s)
= —f(y) fs fs 9o (k)t)dp(k)dp(t) = —/w) fsf(t)d,u(t) =—f(y)
Js f(s)du(s) Js f(s)du(s) .

Finally, from (5.10)), (5.17) and (5.20) for all z,y € S we have

/ Fao(y)t)du(t) / F(ayt)du(t) = / Fao(y)o(t))du(t)
- / Flayt)du(t) = — / F(ao(yt)) + Flayt)du(t)
S S

- _2f(x)/gg(yt)dﬂ(t) =2f(2)f(y).

That means f is a solution of Van Vleck’s functional equation ([1.5). This
completes the proof. O
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