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GENERALIZATIONS OF SOME INTEGRAL INEQUALITIES
FOR FRACTIONAL INTEGRALS

Ghulam Farid, Atiq ur Rehman

Abstract. In this paper we give generalizations of the Hadamard-type in-
equalities for fractional integrals. As special cases we derive several Hadamard
type inequalities.

1. Introduction

For the last few years many researchers have considered the field of inequal-
ities; many extensions and generalizations of several well known inequalities
have been found so far. Convexity and theory of inequalities provide funda-
mental assistance in various branches of mathematics, especially mathematical
analysis, functional analysis etc. The Hadamard and Fejér–Hadamard inequal-
ities are of great interest for the researchers, and their various extensions and
generalizations have been found (see, [1–3, 6, 8, 11–14, 18–20] and references
therein).

Convex functions play a vital role in various fields of mathematics, science
and engineering.

A function f : [a, b]→ R is said to be convex if

f (λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)
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holds for all x, y ∈ [a, b] and λ ∈ [0, 1]. If −f is convex, then f is called concave
function and vice versa.

In literature double integral inequality

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
,

where f : I → R is a convex function on the interval I of real numbers and
a, b ∈ I with a < b, is known as the Hadamard inequality. If f is concave then
the above inequalities hold in the reverse direction.

In [10] Fejér gave the following generalization of the Hadamard inequality.

Theorem 1.1. [5] Let f : [a, b]→ R be a convex function and g : [a, b]→ R
is a nonnegative, integrable and symmetric to a+b

2 . Then the following inequal-
ity holds:

f

(
a+ b

2

)∫ b

a

g(x)dx ≤
∫ b

a

f(x)g(x)dx ≤ f(a) + f(b)

2

∫ b

a

g(x)dx.

In literature above inequality is known as the Fejér-Hadamard inequality.
Nowadays the Hadamard and Fejér–Hadamard inequalities came into focus

of many researchers via fractional calculus. Recently a lot of papers have been
dedicated to this subject (see, [12, 17,19] and references therein).

In [17] k-fractional Riemann–Liouville integrals are defined.
Let f ∈ L1[a, b]. Then k-fractional integrals of order α, k > 0 with a ≥ 0

are defined as:

Iα,ka+ f(x) =
1

kΓk(α)

∫ x

a

(x− t)αk−1f(t)dt, x > a

and

Iα,kb− f(x) =
1

kΓk(α)

∫ b

x

(t− x)
α
k−1f(t)dt, x < b,

where Γk(α) is the k-Gamma function defined in [4] as:

Γk(α) =

∫ ∞
0

tα−1e−
tk

k dt,

also

Γk(α+ k) = αΓk(α).
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For k = 1, k-fractional integrals give well-known Riemann–Liouville frac-
tional integrals.

In [18] Sarikaya et al. proved the following results of Fejér–Hadamard type
inequalities for convex functions.

Theorem 1.2. Let f : Io → R be a differentiable mapping on Io, a, b ∈ Io
with a < b and let g : [a, b] → R be continuous on [a, b]. If |f ′| is convex on
[a, b], then the following inequality holds with α > 0 and ‖g‖∞ = sup |g(t)|:∣∣∣∣∣
( ∫ b

a

g(s)ds

)α
[f(a) + f(b)]− α

∫ b

a

(∫ t

a

g(s)ds

)α−1
g(t)f(t)dt

− α
∫ b

a

(∫ b

t

g(s)ds

)α−1
g(t)f(t)dt

∣∣∣∣∣ ≤ (b− a)α+1‖g‖α∞
α+ 1

[|f ′(a)|+ |f ′(b)|].

Theorem 1.3. Let f : Io → R be a differentiable mapping on Io, a, b ∈ Io
with a < b and let g : [a, b] → R be continuous on [a, b]. If |f ′|q is convex on
[a, b], where q > 1, then the following inequality holds with α > 0, 1p + 1

q = 1

and ‖g‖∞ = sup |g(t)|:∣∣∣∣∣
( ∫ b

a

g(s)ds

)α
[f(a) + f(b)]− α

∫ b

a

(∫ t

a

g(s)ds

)α−1
g(t)f(t)dt

−α
∫ b

a

(∫ b

t

g(s)ds

)α−1
g(t)f(t)dt

∣∣∣∣∣ ≤ 2(b− a)α+1‖g‖α∞
(αp+ 1)

1
p

[
|f ′(a)|q + |f ′(b)|q

2

] 1
q

.

In this paper we generalize Theorem 1.2 and Theorem 1.3 via k-fractional
integrals. We give also some refinements of results shown in [21]. We deduce
the results of [5, 7, 18,21] as special cases of ours.

2. Main results

In this section we give generalizations of Theorem 1.2 and Theorem 1.3.
We also obtain results of [7, 18]. First, we need the following lemma.

Lemma 2.1. Let f : Io → R be a differentiable mapping on Io, a, b ∈ Io
with a < b and let g : [a, b] → R be continuous on [a, b]. If f ′ ∈ L1[a, b], then
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the following equality holds for k-fractional integrals:

(2.1)
(∫ b

a

g(s)ds

)α
k

[f(a) + f(b)]− α

k

∫ b

a

(∫ t

a

g(s)ds

)α
k−1

g(t)f(t)dt

− α

k

∫ b

a

(∫ b

t

g(s)ds

)α
k−1

g(t)f(t)dt

=

∫ b

a

(∫ t

a

g(s)ds

)α
k

f ′(t)dt−
∫ b

a

(∫ b

t

g(s)ds

)α
k

f ′(t)dt.

Proof. One can have

(2.2)
∫ b

a

(∫ t

a

g(s)ds

)α
k

f ′(t)dt

=

(∫ b

a

g(s)ds

)α
k

f(b)− α

k

∫ b

a

(∫ t

a

g(s)ds

)α
k−1

g(t)f(t)dt

and

(2.3)
∫ b

a

(∫ b

t

g(s)ds

)α
k

f ′(t)dt

= −
(∫ b

a

g(s)ds

)α
k

f(a) +
α

k

∫ b

a

(∫ b

t

g(s)ds

)α
k−1

g(t)f(t)dt.

Subtracting (2.3) from (2.2) we get (2.1). �

Using above lemma we obtain the following generalization of Theorem 1.2.

Theorem 2.2. Let f : Io → R be a differentiable mapping on Io, a, b ∈ Io
with a < b and let g : [a, b] → R be continuous on [a, b]. If |f ′| is convex on
[a, b], then the following inequality holds for k-fractional integrals:∣∣∣∣∣
( ∫ b

a

g(s)ds

)α
k

[f(a) + f(b)]− α

k

∫ b

a

(∫ t

a

g(s)ds

)α
k−1

g(t)f(t)dt

− α

k

∫ b

a

(∫ b

t

g(s)ds

)α
k−1

g(t)f(t)dt

∣∣∣∣∣ ≤ (b− a)
α
k+1‖g‖

α
k
∞

α
k + 1

[|f ′(a)|+ |f ′(b)|].
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Proof. Obviously f ′ has Darboux property (as a derivative). Moreover,
since |f ′| is convex, |f ′| has a bounded variation on [a, b]. Consequently, by [16,
Proposition 3.2], f ′ is continuous and therefore f ′ ∈ L1[a, b]. Hence, from (2.1)
of Lemma 2.1, we have∣∣∣∣∣

( ∫ b

a

g(s)ds

)α
k

[f(a) + f(b)]− α

k

∫ b

a

(∫ t

a

g(s)ds

)α
k−1

g(t)f(t)dt

− α

k

∫ b

a

(∫ b

t

g(s)ds

)α
k−1

g(t)f(t)dt

∣∣∣∣∣
≤
∫ b

a

∣∣∣∣ ∫ t

a

g(s)ds

∣∣∣∣αk |f ′(t)|dt+

∫ b

a

∣∣∣∣ ∫ b

t

g(s)ds

∣∣∣∣αk |f ′(t)|dt.
As g(t) ≤ ‖g‖∞, so we have∣∣∣∣∣

( ∫ b

a

g(s)ds

)α
k

[f(a) + f(b)]− α

k

∫ b

a

(∫ t

a

g(s)ds

)α
k−1

g(t)f(t)dt

− α

k

∫ b

a

(∫ b

t

g(s)ds

)α
k−1

g(t)f(t)dt

∣∣∣∣∣
≤ ‖g‖

α
k∞

[∫ b

a

(t− a)
α
k |f ′(t)|dt+

∫ b

a

(b− t)αk |f ′(t)|dt

]

= ‖g‖
α
k∞

[∫ b

a

(t− a)
α
k

∣∣∣∣f ′( b− tb− a
a+

t− a
b− a

b

)∣∣∣∣dt
+

∫ b

a

(b− t)αk
∣∣∣∣f ′( b− tb− a

a+
t− a
b− a

b

)∣∣∣∣dt
]
.

Using convexity of |f ′| we get∣∣∣∣∣
( ∫ b

a

g(s)ds

)α
k

[f(a) + f(b)]− α

k

∫ b

a

(∫ t

a

g(s)ds

)α
k−1

g(t)f(t)dt

− α

k

∫ b

a

(∫ b

t

g(s)ds

)α
k−1

g(t)f(t)dt

∣∣∣∣∣



206 Ghulam Farid, Atiq ur Rehman

≤ ‖g‖
α
k∞

[∫ b

a

(t− a)
α
k

(
b− t
b− a

|f ′(a)|+ t− a
b− a

|f ′(b)|
)
dt

+

∫ b

a

(b− t)αk
(
b− t
b− a

|f ′(a)|+ t− a
b− a

|f ′(b)|
)
dt

]
,

from which, after a little computation, we get the required result. �

Corollary 2.3. For g(s) ≡ 1 we have the following Hadamard-type in-
equality for k-fractional integrals:∣∣∣∣∣f(a) + f(b)

2
− Γk(α+ k)

2(b− a)
α
k

[
Iα,ka+ f(b) + Iα,kb− f(a)

] ∣∣∣∣∣
≤ b− a

2(αk + 1)
[|f ′(a)|+ |f ′(b)|] .

Remark 2.4. For k = 1 in Theorem 2.2 we get Theorem 1.2. For g(s) ≡ 1
along with k = 1 we get [18, Corollary 2]. Further, if α = 1 along with k = 1
we get [18, Corollary 3].

Now we give the generalization of Theorem 1.3.

Theorem 2.5. Let f : Io → R be a differentiable mapping on Io, a, b ∈ Io
with a < b and let g : [a, b] → R be continuous on [a, b]. If |f ′|q is convex on
[a, b], where q > 1, then the following inequality for k-fractional integrals holds
with 1

p + 1
q = 1 and ‖g‖∞ = sup |g(t)|:

∣∣∣∣∣
(∫ b

a

g(s)ds

)α
k

[f(a) + f(b)]− α

k

∫ b

a

(∫ t

a

g(s)ds

)α
k−1

g(t)f(t)dt(2.4)

− α

k

∫ b

a

(∫ b

t

g(s)ds

)α
k−1

g(t)f(t)dt

∣∣∣∣∣
≤

2(b− a)
α
k+1‖g‖

α
k
∞

(αpk + 1)
1
p

[
|f ′(a)|q + |f ′(b)|q

2

] 1
q

.

Proof. Obviously f ′ has Darboux property (as a derivative). Moreover,
since |f ′|q is convex, |f ′|q and hence also |f ′| has a bounded variation on
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[a, b]. Consequently, by [16, Proposition 3.2], f ′ is continuous and therefore
f ′ ∈ L1[a, b]. Hence, from (2.1) of Lemma 2.1, we have∣∣∣∣∣

( ∫ b

a

g(s)ds

)α
k

[f(a) + f(b)]− α

k

∫ b

a

(∫ t

a

g(s)ds

)α
k−1

g(t)f(t)dt

− α

k

∫ b

a

(∫ b

t

g(s)ds

)α
k−1

g(t)f(t)dt

∣∣∣∣∣
≤
∫ b

a

∣∣∣∣ ∫ t

a

g(s)ds

∣∣∣∣αk |f ′(t)|dt+

∫ b

a

∣∣∣∣ ∫ b

t

g(s)ds

∣∣∣∣αk |f ′(t)|dt.
Using Hölder’s inequality on R.H.S of above inequality we have∣∣∣∣∣

( ∫ b

a

g(s)ds

)α
k

[f(a) + f(b)]− α

k

∫ b

a

(∫ t

a

g(s)ds

)α
k−1

g(t)f(t)dt

− α

k

∫ b

a

(∫ b

t

g(s)ds

)α
k−1

g(t)f(t)dt

∣∣∣∣∣
≤
(∫ b

a

∣∣∣∣ ∫ t

a

g(s)ds

∣∣∣∣
αp
k

dt

) 1
p
(∫ b

a

|f ′(t)|qdt
) 1
q

+

(∫ b

a

∣∣∣∣ ∫ b

t

g(s)ds

∣∣∣∣
αp
k

dt

) 1
p
(∫ b

a

|f ′(t)|qdt
) 1
q

.

As g(t) ≤ ‖g‖∞, so we get∣∣∣∣∣
( ∫ b

a

g(s)ds

)α
k

[f(a) + f(b)]− α

k

∫ b

a

(∫ t

a

g(s)ds

)α
k−1

g(t)f(t)dt

− α

k

∫ b

a

(∫ b

t

g(s)ds

)α
k−1

g(t)f(t)dt

∣∣∣∣∣
≤ ‖g‖

α
k∞

[(∫ b

a

|t− a|
αp
k dt

) 1
p

+

(∫ b

a

|b− t|
αp
k dt

) 1
p
](∫ b

a

|f ′(t)|qdt
) 1
q

.
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Using convexity of |f ′|q we obtain∣∣∣∣∣
( ∫ b

a

g(s)ds

)α
k

[f(a) + f(b)]− α

k

∫ b

a

(∫ t

a

g(s)ds

)α
k−1

g(t)f(t)dt

− α

k

∫ b

a

(∫ b

t

g(s)ds

)α
k−1

g(t)f(t)dt

∣∣∣∣∣
≤ ‖g‖

α
k∞

[(∫ b

a

|t− a|
αp
k dt

) 1
p

+

(∫ b

a

|b− t|
αp
k dt

) 1
p
]

(∫ b

a

(
b− t
b− a

|f ′(a)|q +
t− a
b− a

|f ′(b)|q
)
dt

) 1
q

,

from which one can get inequality (2.4). �

Corollary 2.6. For g(s) ≡ 1 we have the following Hadamard-type in-
equality for k-fractional integrals:∣∣∣∣∣f(a) + f(b)

2
− Γk(α+ k)

2(b− a)
α
k

[
Iα,ka+ f(b) + Iα,kb− f(a)

]∣∣∣∣∣
≤ (b− a)

(αpk + 1)
1
p

(
|f ′(a)|q + |f ′(b)|q

2

) 1
q

.

Remark 2.7. For k = 1 in Theorem 2.5 we get Theorem 1.3. If we take
α = 1 along with k = 1, then we get [18, Corollary 5]. If we take α = 1,
g(s) ≡ 1 and with k = 1, then we get [7, Theorem 2.3].

3. Refinements of Hadamard-type inequalities
via k-fractional integrals

In this section we will give refinements of results proved in [21]. Then we
will deduce some of the results proven in [5, 21].
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For α, k > 0 we define a function Hk
α : [0, 1]→ R as follows:

(3.1) Hk
α(t)

=
α

2k(b− a)
α
k

∫ b

a

f

(
tx+ (1− t)a+ b

2

)[
(b− x)

α
k−1 + (x− a)

α
k−1

]
dx.

In the next theorem we investigate properties of this function. This result is
also a generalization of [21, Theorem 2.2]. We use the following lemma [21].

Lemma 3.1. Let f : [a, b]→ R be a convex function and let h be defined by

h(t) =
1

2

[
f

(
a+ b

2
− t

2

)
+ f

(
a+ b

2
+
t

2

)]
.

Then h is increasing and convex on [0, b− a] and

f

(
a+ b

2

)
≤ h(t) ≤ f(a) + f(b)

2

for all t ∈ [0, b− a].

Theorem 3.2. Let f : [a, b] → R be a positive function with a < b. If
f is convex on [a, b], then the function Hk

α defined by (3.1) is convex and
monotonically increasing on [0, 1] and

(3.2) f

(
a+ b

2

)
= Hk

α(0) ≤ Hk
α(t)

≤ Hk
α(1) =

Γk(α+ k)

2(b− a)
α
k

[
Iα,ka+ f(b) + Iα,kb− f(a)

]
for all t ∈ [0, 1].

Proof. First we prove that Hk
α is convex on [0, 1]. Let t1, t2, β ∈ [0, 1].

Then

Hk
α((1− β)t1 + βt2)

=
α

2k(b− a)
α
k

∫ b

a

f

((
(1− β)t1 + βt2

)
x+

(
1−

(
(1− β)t1 + βt2

)a+ b

2

))
[
(b− x)

α
k−1 + (x− a)

α
k−1

]
dx
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=
α

2k(b− a)
α
k

∫ b

a

f

(
(1− β)

((
x− a+ b

2

)
t1 +

a+ b

2

)

+ β

((
x− a+ b

2

)
t2 +

a+ b

2

))[
(b− x)

α
k−1 + (x− a)

α
k−1

]
dx.

Using convexity of f we have

Hk
α((1− β)t1 + βt2)

≤ α(1− β)

2k(b− a)
α
k

∫ b

a

f

((
x− a+ b

2

)
t1 +

a+ b

2

)[
(b− x)

α
k−1 + (x− a)

α
k−1

]
dx

+
αβ

2k(b− a)
α
k

∫ b

a

f

((
x− a+ b

2

)
t2 +

a+ b

2

)[
(b− x)

α
k−1 + (x− a)

α
k−1

]
dx

= (1− β)Hk
α(t1) + βHk

α(t2).

Next we prove that Hk
α is increasing on [0, 1].

Hk
α(t) =

α

2k(b− a)
α
k

∫ b

a

f

(
tx+ (1− t)a+ b

2

)[
(b− x)

α
k−1 + (x− a)

α
k−1

]
dx

=
α

2k(b− a)
α
k

∫ a+b
2

a

f

(
tx+ (1− t)a+ b

2

)[
(b− x)

α
k−1 + (x− a)

α
k−1

]
dx

+
α

2k(b− a)
α
k

∫ b

a+b
2

f

(
tx+ (1− t)a+ b

2

)[
(b− x)

α
k−1 + (x− a)

α
k−1

]
dx.

After a change of variables we obtain

Hk
α(t) =

α

2k(b− a)
α
k

∫ b

a

f

(
tx+ (1− t)a+ b

2

)[
(b− x)

α
k−1 + (x− a)

α
k−1

]
dx

=
α

4k(b− a)
α
k

∫ b−a

0

f

(
a+ b

2
− tx

2

)[(b− a
2

+
x

2

)α
k−1

+
(b− a

2
− x

2

)α
k−1

]
dx

+
α

4k(b− a)
α
k

∫ b−a

0

f

(
a+ b

2
+
tx

2

)[(b− a
2

+
x

2

)α
k−1

+
(b− a

2
− x

2

)α
k−1

]
dx
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=
α

4k(b− a)
α
k

∫ b−a

0

(
f

(
a+ b

2
− tx

2

)
+ f

(
a+ b

2
+
tx

2

))
[(b− a

2
+
x

2

)α
k−1

+
(b− a

2
− x

2

)α
k−1

]
dx.

Using Lemma 3.1 and nonnegativity of
(
b−a
2 + x

2

)α
k−1,

(
b−a
2 −

x
2

)α
k−1 and

α

4k(b−a)
α
k

we get Hk
α is increasing on [0, 1].

Finally note that f
(
a+b
2

)
= Hk

α(0) and

Hk
α(1) =

Γk(α+ k)

2(b− a)
α
k

[
Iα,ka+ f(b) + Iα,kb− f(a)

]
.

Therefore for 0 ≤ t ≤ 1 we have Hk
α(0) ≤ Hk

α(t) ≤ Hk
α(1), that is (3.2)

holds. �

Remark 3.3. For k = 1 in above theorem we get [21, Theorem 2.2]. For
α = 1 along with k = 1 in above theorem we get [5, Theorem 1].

To give refinement of [21, Theorem 2.3] we define another function Jkα :
[0, 1]→ R for α, k > 0 as follows:

(3.3) Jkα(t) =
α

4k(b− a)
α
k

∫ b

a

[
f

((1 + t

2

)
a+

(1− t
2

)
x

)
((2b− a− x

2

)α
k−1

+
(x− a

2

)α
k−1

)

+ f

((1 + t

2

)
b+

(1− t
2

)
x

)((b− x
2

)α
k−1

+
(x+ b− 2a

2

)α
k−1

)]
dx.

We investigate properties of this function in the following theorem. This result
is also a generalization of [21, Theoren 2.3].

Theorem 3.4. Let f : [a, b] → R be a positive function with a < b. If
f is convex on [a, b], then the function Jkα defined by (3.3) is convex and
monotonically increasing on [0, 1] and

(3.4) Jkα(0) =
Γk(α+ k)

2(b− a)
α
k

[
Iα,ka+ f(b) + Iα,kb− f(a)

]
≤ Jkα(t) ≤ f(a) + f(b)

2
= Jkα(1)

for all t ∈ [0, 1].
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Proof. From some basic properties of convex functions it follows that the
function Jkα is convex.

We prove that Jkα is increasing on [0, 1].

Jkα(t) =
α

4k(b− a)
α
k

∫ b

a

[
f

((1 + t

2

)
a+

(1− t
2

)
x

)
((2b− a− x

2

)α
k−1

+
(x− a

2

)α
k−1

)

+ f

((1 + t

2

)
b+

(1− t
2

)
x

)((b− x
2

)α
k−1

+
(x+ b− 2a

2

)α
k−1

)]
dx

=
α

4k(b− a)
α
k

∫ a+b
2

a

[
f

((1 + t

2

)
a+

(1− t
2

)
x

)
((2b− a− x

2

)α
k−1

+
(x− a

2

)α
k−1

)

+ f

((1 + t

2

)
b+

(1− t
2

)
x

)((b− x
2

)α
k−1

+
(x+ b− 2a

2

)α
k−1

)]
dx

+
α

4k(b− a)
α
k

∫ b

a+b
2

[
f

((1 + t

2

)
a+

(1− t
2

)
x

)
((2b− a− x

2

)α
k−1

+
(x− a

2

)α
k−1

)

+ f

((1 + t

2

)
b+

(1− t
2

)
x

)((b− x
2

)α
k−1

+
(x+ b− 2a

2

)α
k−1

)]
dx.

After a change of variables we obtain

Jkα(t) =
α

4k(b− a)
α
k

∫ b

a

[
f

((1 + t

2

)
a+

(1− t
2

)
x

)
((2b− a− x

2

)α
k−1

+
(x− a

2

)α
k−1

)

+ f

((1 + t

2

)
b+

(1− t
2

)
x

)((b− x
2

)α
k−1

+
(x+ b− 2a

2

)α
k−1

)]
dx
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=
α

8k(b− a)
α
k

∫ b−a

0

f

(
a+

(1− t
2

)
x

)((2b− 2a− x
2

)α
k−1

+
(x

2

)α
k−1

)
dx

+
α

8k(b− a)
α
k

∫ b−a

0

f

(
b−

(1− t
2

)
x

)((x
2

)α
k−1

+
(2b− 2a− x

2

)α
k−1

)
dx

=
α

8k(b− a)
α
k

∫ b−a

0

[
f

(
a+

(1− t
2

)
x

)
+ f

(
b−

(1− t
2

)
x

)]
((2b− 2a− x

2

)α
k−1

+
(x

2

)α
k−1

)
dx.

As q(t) = b − a − (1 − t)x is increasing in [0, 1], so using Lemma 3.1 we get
h(q(t)) is increasing on [0, 1] and nonnegativity of

(
2b−2a−x

2

)α
k−1 +

(
x
2

)α
k−1

and α

8k(b−a)
α
k

gives that Jkα is increasing on [0, 1].
Finally note that

Jkα(0) =
Γk(α+ k)

2(b− a)
α
k

[
Iα,ka+ f(b) + Iα,kb− f(a)

]
and Jkα(1) = f(a)+f(b)

2 . Therefore for 0 ≤ t ≤ 1 we have Jkα(0) ≤ Jkα(t) ≤ Jkα(1),
that is (3.4) holds. �

Remark 3.5. For k = 1 in above theorem we get [21, Theorem 2.3]. For
α = 1 along with k = 1 we get [21, Theorem 1.2].
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