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AN INFINITE NATURAL PRODUCT

Paolo Lipparini

Abstract. We study a countably infinite iteration of the natural product be-
tween ordinals. We present an “effective” way to compute this countable natural
product; in the non trivial cases the result depends only on the natural sum of
the degrees of the factors, where the degree of a nonzero ordinal is the largest
exponent in its Cantor normal form representation. Thus we are able to lift
former results about infinitary sums to infinitary products. Finally, we pro-
vide an order-theoretical characterization of the infinite natural product; this
characterization merges in a nontrivial way a theorem by Carruth describing
the natural product of two ordinals and a known description of the ordinal
product of a possibly infinite sequence of ordinals.

1. Introduction

The usual addition ` and multiplication ¨ between ordinals can be defined
by transfinite recursion and have a clear order-theoretical meaning; for exam-
ple, α`β is the order-type of a copy of α to which a copy of β is added at the
top. However, ` and ¨ have very poor algebraic properties; though both are
associative, they are neither commutative nor left cancellative, left distribu-
tivity fails, etc. See, e.g., Bachmann [2], Hausdorff [12] and Sierpiński [21] for
full details.
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In certain cases it is useful to consider the so-called natural operations #
and b. These operations are defined by expressing the operands in Cantor
normal form and, roughly, treating the expressions as if they were polyno-
mials in ω. The natural operations have the advantage of satisfying good
algebraic properties; moreover, in a few cases they have found mathematical
applications even outside logic. See, e.g., Brookfield [5], Carruth [6], Harris
[10] and Toulmin [23]. See Berline and Lascar [3] and Simpson [22] for in-
terdisciplinary applications. Further references, including some variants and
historical remarks, can be found in the quoted papers and in Altman [1], Blass
and Gurevich [4, in particular, Section 8] and Ehrlich [9, pp. 24–25]. It is also
interesting to observe that the natural operations are the restriction to the or-
dinals of the surreal operations on Conway Numbers [8]. Limited to the case of
the ordinal natural sum, the corresponding two-arguments recursive definition
appears implicitly as early as in de Jongh and Parikh [13, Lemma 3.3 b) d)].

A transfinite generalization of the natural sum in which the supremum is
taken at limit stages has been considered in Chatyrko [7] with applications
to topological dimension theory. The particular case of the sum of a sequence
of length ω has been used in Wang [25] and Väänänen and Wang [24] with
applications to infinitary logics. The transfinite natural sum has been stud-
ied in detail in [14, 15], where order-theoretical characterizations have been
provided. In the present note we introduce and study the analogously defined
infinitary product in the case of sequences of length ω. The computation of
this infinite natural product can be reduced to the computation of some—
possibly infinite—natural sum; in particular, we can directly transfer results
from sums to products, rather than repeating essentially the same arguments.
Curiously, the method applies to the more usual infinitary operations, too.
See Theorem 2.8 and Corollary 2.9 below; we are not aware of previous uses
of this technique.

Order-theoretical characterizations of the finitary natural operations have
been provided in Carruth [6]. Some characterizations seem to have been in-
dependently rediscovered or generalized many times, e.g., [4, 13, 23]. As we
showed in [14], Carruth characterization of the finite natural sum cannot be
generalized as it stands to the infinitary natural sum; see, in particular, the
comments at the beginning of [14, Section 4]. A similar situation occurs for the
infinitary natural product; see Subsection 3.4 below. In the case of the infinite
natural sum the difficulty can be circumvented by imposing a finiteness con-
dition to a Carruth-like description: see [14, Theorem 4.7]. As we shall show
in Section 3, a similar result holds for the infinite natural product, though the
situation gets technically more involved.

To explain our construction in some detail, it is well known that the usual
finite ordinal product is order-theoretically characterized by taking the reverse
lexicographical order on the product of the factors. Less known, the same holds
in the infinite case, too, provided that in the product one takes into account
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only elements with finite support. See Hausdorff [12, § 16] and Matsuzaka [17]
or Subsection 3.2 below. We show that the infinite natural product can be
characterized by merging the representation by Carruth and the just men-
tioned one; roughly, by using Carruth order for a sufficiently large but finite
product of factors and then working as in an ordinary product when we ap-
proach infinity. Quite surprisingly, a local version of the result holds. Namely,
if ď1 is a linear order on the finite-support-product of a sequence pαiqiăω of
ordinals and ď1 is such that, for every element c, the set of the ď1 predecessors
of c is built in a way similar to above, then ď1 is a well-order of order type
less than or equal to the infinite natural product of the αi’s. Moreover, the
infinite natural product is actually the maximum of the ordinals obtained this
way, that is, the order-type of the product can always be realized as above.
See Section 3 and in particular Theorem 3.1 for full details.

1.1. Preliminaries

We assume familiarity with the basic theory of ordinal numbers. Unex-
plained notions and notations are standard and can be found, e.g., in the
mentioned books [2, 12, 21]. Notice that here sums, products and exponenti-
ations are always considered in the ordinal sense. The usual ordinal product
of two ordinals α and β is denoted by αβ or sometimes α ¨ β for clarity. The
classical infinitary ordinal product is denoted by

ś

iăω αi. Recall that every
nonzero ordinal α can be expressed in Cantor normal form in a unique way
as follows

α “ ωξkrk ` ω
ξk´1rk´1 ` ¨ ¨ ¨ ` ω

ξ1r1 ` ω
ξ0r0

for some integers k ě 0, rk, . . . , r0 ą 0 and ordinals ξk ą ξk´1 ą ¨ ¨ ¨ ą ξ1 ą ξ0.
If β is another ordinal expressed in Cantor normal form, the natural sum α#β
is obtained by summing the two expressions as if they were polynomials in ω.
The natural product αbβ is computed expanding again by “linearity” and then
using the rule ωξ b ωη “ ωξ#η. Both # and b are commutative, associative
and cancellative (except for multiplication by 0, of course). If pαiqiăω is a
sequence of ordinals, #iăω αi is defined as supnăωpα0#α1# . . .#αn´1q. See
[7, 14, 24, 25] for further details about #.
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2. An infinite natural product

Definition 2.1. Suppose that pαiqiăω is a sequence of ordinals. For i ă ω,
let Pi denote the partial natural product α0 b α1 b . . . b αi´1, with the
convention P0 “ 1. Define

â

iăω

αi “ lim
iăω

Pi.

This means that
Â

iăω αi “ 0 if at least one αi is 0 and
Â

iăω αi “ supiăω Pi
if each αi is different from 0 (cf. Clause (5) in Proposition 2.2 below).

From now on, when not otherwise specified, pαiqiăω is a fixed sequence of
ordinals and the partial natural products Pi are always computed as above
and with respect to the sequence pαiqiăω.

We now state some simple facts about the infinitary operation
Â

. Only
(2) and (5) will be used in what follows.

Proposition 2.2. Let αi, βi be two sequences of ordinals and n,m ă ω.
(1)

ś

iăω αi ď
Â

iăω αi.
(2) If βi ď αi, for every i ă ω, then

Â

iăω βi ď
Â

iăω αi.
(3) If π is a permutation of ω, then

Â

iăω αi “
Â

iăω απpiq.
(4) More generally, suppose that pFhqhăω is a partition of ω into finite subsets,

say, Fh “ tj1, . . . , jrphqu, for every h P ω. Then

â

iăω

αi “
â

hăω

â

jPFh

αj “
â

hăω

pαj1 b αj2 b . . .b αjrphqq.

Suppose in addition that αi ‰ 0, for every i ă ω.
(5) If i ă j, then Pi ď Pj; equality holds if and only if αi “ ¨ ¨ ¨ “ αj´1 “ 1.
(6) For every n ă ω, we have Pn ď

Â

iăω αi; equality holds if and only if
αi “ 1, for every i ě n.

Proof. Easy, using the properties of the finitary b. We just comment on
(3). This is trivial if at least one αi is 0. Otherwise, every partial product
on the left is bounded by some sufficiently long partial product on the right
(by monotonicity, associativity and commutativity of b, and since all factors
are nonzero by assumption); the converse holds as well, hence the infinitary
products are equal.

Let us mention that (3) and (4) can be also proved by using Theorem
2.6 below and the corresponding properties of # given in [14, Proposition
2.4(5)(6)]. �
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Lemma 2.3. If pβiqiăω is a sequence of ordinals and β “ #iăω βi, then
â

iăω

ωβi “ ωβ.

Proof. Since ωβi is always different from 0, we have
Â

iăω αi “ supiăω Pi.
Here, of course, Pi is computed with respect to the sequence given by αi “ ωβi ,
for i ă ω.

By a property of the natural product (or the definition, if you like), we
have Pi “ ωβ0 b ωβ1 b . . .b ωβi´1 “ ωβ0#β1#...#βi´1 , for every i ă ω. Letting
Bi “ β0 # β1 # . . . # βi´1, we have by definition β “ #iăω βi “ supiăω Bi.
But then

Â

iăω αi “ supiăω Pi “ supiăω ω
Bi “ ωβ by continuity of ordinal

exponentiation. �

Let α be a nonzero ordinal expressed as ωξkrk ` ¨ ¨ ¨ ` ωξ0r0 in Cantor
normal form. The ordinal dpαq “ ξk will be called the degree or the largest
exponent of α. The ordinal mpαq “ ωξkrk will be called the leading monomial
of α. By convention, we set dp0q “ mp0q “ 0. The following lemma is trivial,
but it will be useful in many situations.

Lemma 2.4. For every ordinal α,

mpαq ď α ď mpαq `mpαq “ mpαq ¨ 2 ď mpαq b 2.

Lemma 2.5. If pαiqiăω is a sequence of ordinals which is not eventually 1,
then

â

iăω

αi “
â

iăω

mpαiq.

Proof. This is trivial if at least one αi is 0.
Hence suppose that αi ‰ 0, for all i ă ω, and that pαiqiăω is not even-

tually 1. The inequality
Â

iăω αi ě
Â

iăωmpαiq is trivial by monotonicity
(Proposition 2.2(2)), since α ě mpαq, for every ordinal α.

To prove the converse, we show that, for every h ă ω, there is k ă ω
such that

Â

iăh αi ď
Â

iăkmpαiq. This is enough since if all the αi’s are
nonzero, then the succession of the partial products is nondecreasing (Propo-
sition 2.2(5)). It is a trivial property of the finitary natural product that
mp

Â

iăh αiq “
Â

iăhmpαiq (use strict monotonicity of #). Since pαiqiăω is
not eventually 1, there is k ą h such that αk´1 ě 2. Then

Â

iăkmpαiq ě
`
Â

iăk´1mpαiq
˘

b 2 ě p
Â

iăhmpαiqq b 2 “ m p
Â

iăh αiq b 2 ě
Â

iăh αi, by
Lemma 2.4. �
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Theorem 2.6. Let pαiqiăω be a sequence of ordinals and let β “ #
iăω

dpαiq.

The infinite natural product
Â

iăω αi can be computed according to the follow-
ing rules.

â

iăω

αi “ 0 if (and only if) at least one αi is equal to 0;(2.1)
â

iăω

αi “ α0 b . . .b αn´1 if αi “ 1, for every i ě n;(2.2)

â

iăω

αi “ ωdpα0q#...#dpαn´1q`1 “ ωβ`1 if αi ‰ 0, for all i ă ω,

αi ă ω, for all i ě n, and the sequence is not eventually 1;
(2.3)

â

iăω

αi “
â

iăω

ωdpαiq “ ωβ if none of the above cases applies,(2.4)

that is, no element of the sequence is 0 and the members of
the sequence are not eventually ă ω.

Before proving Theorem 2.6, we notice that it gives an effective way to
compute

Â

iăω αi, for every sequence pαiqiăω of ordinals. Apply (2.1) if at
least one αi is equal to 0; if this is not the case, apply (2.2) if the αi are
eventually 1; if not, then exactly one of (2.3) or (2.4) occurs. Notice that
conditions (2.1) and (2.2) in Theorem 2.6 might overlap, and n in (2.2) and
(2.3) is not uniquely defined, but the conditions give the same outcome in any
overlapping case. Notice also that the expression dpα0q # . . .# dpαn´1q ` 1 in
(2.3) causes no ambiguity, since pdpα0q # . . . # dpαn´1qq ` 1 “ dpα0q # . . . #
pdpαn´1q ` 1q.

Proof. The result follows trivially from the definitions if some αi is equal
to 0 or when the sequence is eventually 1.

If we are in the case given by (2.3), then, for every ` ă ω, there is h ą n
such that there are at least `-many αi ě 2, where the index i varies between
n and h. Thus

Â

iăh`1 αi ě ωdpα0q b . . .b ωdpαn´1q b 2` since α ě ωdpαq, for
every nonzero ordinal α. Since ` is arbitrary, we get

â

iăω

αi “ sup
hăω

â

iăh`1

αi ě sup
`ăω
pωdpα0q b . . .b ωdpαn´1q b 2`q

“ sup
`ăω

ωdpα0q#...#dpαn´1q2` “ ωdpα0q#...#dpαn´1q`1,

since ωε b 2 “ ωε2 and suppăω ω
εp “ ωε`1, for every ordinal ε.

In the other direction, we have
Â

iăω αi “
Â

iăωmpαiq from Lemma 2.5,
hence it is enough to prove

Â

iăωmpαiq ď ωdpα0q#...#dpαn´1q`1. If h ă ω,
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and, for every i ă ω, letting si be the only natural number such that mpαiq“
ωdpαiqsi, then by associativity and commutativity ofb, we get

Â

iăh`1mpαiq“

ωdpα0qbs0b . . .bω
dpαhqbsh “ ωdpα0qb . . .bωdpαhqbs0b . . .bsh ď ωdpα0qb

. . .bωdpαn´1qbω “ ωdpα0q#...#dpαn´1q`1, since dpαiq “ 0, for iě n and, by con-
struction, si ă ω, for every i ă ω. Hence

Â

iăωmpαiq“ suphăω
Â

iăhmpαiq ď

ωdpα0q#...#dpαn´1q`1.
The last identity in (2.3) follows from the already mentioned fact that

dpαiq “ 0, for i ě n, hence β “ #iăω dpαiq “ #iăn dpαiq.
The case given by (2.4) is similar and somewhat easier. The inequality

Â

iăω αi ě
Â

iăω ω
dpαiq is trivial by monotonicity.

For the converse, we use again the identity
Â

iăω αi “
Â

iăωmpαiq from
Lemma 2.5. Arguing as in case (2.3), we have that, for every h ă ω,

â

iďh

mpαiq ď ωdpα0q b . . .b ωdpαhq b ω,

but there is some k ą h such that αk ě ω, since the members of the sequence
are not eventually ă ω. Hence

Â

iďhmpαiq ď ωdpα0q b . . . b ωdpαhq b ω ď

ωdpα0q b . . .b ωdpαhq b . . .b ωdpαkq ď
Â

iăω ω
dpαiq. In conclusion,

Â

iăω αi “
Â

iăωmpαiq “ suphăω
Â

iďhmpαiq ď
Â

iăω ω
dpαiq.

The last identity is from Lemma 2.3. �

Corollary 5.1 in [14] can be used to provide a more precise evaluation of
Â

iăω αi in case (2.4) in Theorem 2.6.

Corollary 2.7. Suppose that pαiqiăω is a sequence of ordinals such that
no element of the sequence is 0 and the members of the sequence are not
eventually ă ω (thus the sequence pdpαiqqiăω is not eventually 0). Let ξ be
the smallest ordinal such that ti ă ω | dpαiq ě ωξu is finite and enumerate
those αi’s such that dpαiq ě ωξ as αi0 , . . . , αik (this sequence might be empty).
Then

Â

iăω αi “ ωβ, where β “ pdpαi0q# . . .#dpαikqq`ωξ. Thus
Â

iăω αi “

pωdpαi0q b . . .b ωdpαik qq ¨ ωω
ξ

.

We need the results analogous to Theorem 2.6 for the classical ordinal
product.

Theorem 2.8.
(1) If pβiqiăω is a sequence of ordinals and β “

ř

iăω βi, then

ź

iăω

ωβi “ ωβ.
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(2) If pαiqiăω is a sequence of ordinals which is not eventually 1, then
ź

iăω

αi “
ź

iăω

mpαiq.

(3) Suppose that pαiqiăω is a sequence of nonzero ordinals which is not even-
tually 1 and let β “

ř

iăω dpαiq. Then

ź

iăω

αi “ ωdpα0q`¨¨¨`dpαn´1q`1 “ ωβ`1 if αi ă ω, for all i ě n,

ź

iăω

αi “
ź

iăω

ωdpαiq “ ωβ if the sequence is not eventually ă ω.

Proof. (1) Like the proof of Lemma 2.3, using the identity ωβ0ωβ1 . . .
ωβi´1 “ ωβ0`β1`¨¨¨`βi´1 .

(2) Like the proof of Lemma 2.5. In fact, we do have mp
ś

iăh αiq “
ś

iăhmpαiq and this is enough for the proof.
(3) is proved as Theorem 2.6. �

Theorems 2.6 and 2.8 can be used to “lift” some results from infinitary
sums to infinitary products. To show how the method works, we first present
a simple example, though only feebly connected with the rest of this note.

Sierpiński [19] showed that a sum
ř

iăω αi of ordinals can assume only
finitely many values, by permuting the αi’s. A proof can be found also in [14].
Then Sierpiński in [20] showed the analogous result for an infinite product.
Using Theorem 2.8 we show that the result about products is immediate from
the result about sums.

Corollary 2.9. If pαiqiăω is a sequence of ordinals, one obtains only
a finite number of ordinals by considering all products of the form

ś

iPI γi,
where pγiqiăω is a permutation of pαiqiăω, that is, there exists a bijection
π : ω Ñ ω such that γi “ απpiq for every i ă ω.

Proof. This is trivial if some αi is 0, or if the αi’s are eventually 1, so
let us assume that none of the above cases occurs.

If the sequence is eventually ă ω, then the first equation in Theorem 2.8(3)
shows that we obtain only a finite number of products by taking rearrange-
ments of the factors, since the resulting products are given by ωδ`1, where δ
is a sum of dpα0q, . . . , dpαn´1q, taken in some order, but there is only a finite
number of rearrangements of this finite set, hence there is only a finite number
of possibilities for δ (notice that if αi ă ω, then dpαiq “ 0, hence the degrees
of finite ordinals do not contribute to the sum).
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In the remaining case, the products obtained by rearrangements have the
form ωδ, with δ “

ř

iăω dpγiq, by the second equation in Theorem 2.8(3). The
quoted result from [19] shows that we have only a finite number of possibilities
for δ, hence there is only a finite number of possibilities for the values of the
rearranged products. �

We now use Theorems 2.6 and 2.8 in a slightly more involved situation in
order to transfer some results from [14] about infinite natural sums to results
about infinite natural products.

Corollary 2.10. For every sequence pαiqiăω of ordinals there is m ă ω
such that, for every n ě m,

â

nďiăω

αi “
ź

nďiăω

αi and(2.5)

â

iăω

αi “ pα0 b . . .b αn´1q ¨
â

nďiăω

αi

“ pα0 b . . .b αn´1q ¨
ź

nďiăω

αi,
(2.6)

and if, moreover, every αi is nonzero and the sequence is not eventually 1,
then

â

iăω

αi “ ωβ0#...#βn´1 ¨
â

nďiăω

αi

“ ωβ0#...#βn´1 ¨
ź

nďiăω

αi
(2.7)

where βi “ dpαiq, for every i ă ω.

Proof. The result is trivial if the sequence is eventually 1; moreover, (2.6)
is trivial if some αi is 0. Furthermore, (2.5) is trivial if, for every i ă ω, there
is j ą i such that αj “ 0. Otherwise, by taking m large enough, we have
αi ą 0, for i ą m. Henceforth it is enough to prove the result in the case when
the sequence is not eventually 1 and all the αi’s are nonzero.

We shall first prove (2.5) and (2.7) and then derive (2.6). If the sequence
is eventually ă ω, then (2.5) is trivial, since in this case, for large enough
n, both sides are equal to ω. Then (2.7) is immediate from equation (2.3) in
Theorem 2.6, since ωβ0#...#βn´1ω “ ωβ0#...#βn´1`1.

Suppose now that the sequence pαiqiăω is not eventually ă ω, hence the
sequence pβiqiăω is not eventually 0. By [14, Theorem 3.1], there is m ă ω
such that, for every n ě m, we have #nďiăω βi “

ř

nďiăω βi. Fixing any
n ě m and letting β1 “ #nďiăω βi, we get

Â

nďiăω αi “ ωβ
1

“
ś

nďiăω αi
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from, respectively, equation (2.4) in Theorem 2.6 and the last equation in
Theorem 2.8(3). This proves (2.5).

Letting β “ #iăω βi, we notice that in [14, Theorem 3.1] it has also
been proved that β “ pβ0 # . . . # βn´1q ` β1. Using the above identity
and applying equation (2.4) in Theorem 2.6 twice, we get

Â

iăω αi “ ωβ “

ωβ0#...#βn´1ωβ
1

“ ωβ0#...#βn´1
Â

nďiăω αi, that is, (2.7) (the second identity
in (2.7) could be proved in the same way, but now it follows immediately from
(2.5)).

Equation (2.6) remains to be proved. We shall prove that in the nontrivial
cases the expressions given by (2.6) and (2.7) are equal. One direction is trivial,
since ωβ0#...#βn´1 “ ωβ0b. . .bωβn´1 ď α0b. . .bαn´1. For the other direction,
let us observe that, in the nontrivial cases, again by Theorem 2.6,

Â

nďiăω αi
has the form ωβ, for some β ě 1. Then pα0 b . . . b αn´1q ¨

Â

nďiăω αi “

pα0b. . .bαn´1q¨ω
β ď mpα0b. . .bαn´1q¨2¨ω

β “ pmpα0qb. . .bmpαn´1qq¨ω
β “

pωdpα0qs0 b . . .b ω
dpαn´1qsn´1q ¨ ω

β “ pωβ0 b . . .b ωβn´1 b s0 . . . sn´1q ¨ ω
β “

ωβ0#...#βn´1 ¨ s0 . . . sn´1 ¨ ω
β “ ωβ0#...#βn´1 ¨ ωβ “ ωβ0#...#βn´1 ¨

Â

nďiăω αi,
where we used Lemma 2.4 and the facts that kωβ “ ωβ, whenever k ă ω and
β ě 1, and that ωξ b k “ ωξ ¨ k, for all ordinals k ă ω and ξ. �

3. An order-theoretical characterization

3.1. We refer to, e.g., Harzheim [11] for a general reference about ordered
sets. As usual, when no risk of ambiguity is present, we shall denote a (par-
tially) ordered set pP,ďq simply as P . However in many situations we shall
have several different orderings on the same set; in that case we shall explic-
itly indicate the order. It is sometimes convenient to define ď in terms of
the associated ă relation and conversely. As a standard convention, a ď b is
equivalent to “either a “ b or a ă b” (strict disjunction). We shall be quite
informal about the distinction and we shall use either ď or ă case by case ac-
cording to convenience, even when we are dealing with (essentially) the same
order.

In order to avoid notational ambiguity, let us denote the Cartesian product
of a family pAiqiPI of sets by

Ś

iPI Ai. If each Ai is an ordered set with the
order denoted by ďi, then a partial order ďˆ can be defined on

Ś

iPI Ai
componentwise. Namely, we put a ďˆ b if and only if ai ďi bi, for every
i P I. Apparently, for our purposes, the above definition has little use when
dealing with ordinals (more precisely, order-types of well-ordered sets), since
ordinals are linearly ordered, but generally the above construction furnishes
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only a partially ordered set. However, see below for uses of the ordered set
p
Ś

iPI Ai,ďˆq.

3.2. An order theoretical characterization of the ordinal product can be
given using lexicographic products. Limited to the present paragraph, suppose
that pI,ďIq is a reverse-well-order. If each Ai is an ordered set, then the anti-
lexicographic order L˚iPIAi “ pL

˚
iPIAi,ď˚q on the set

Ś

iPI Ai is obtained by
putting

a ď˚ b if and only if either a “ b, or ai ăi bi, where i is the largest
element of I such that ai ‰ bi.

In other words, ď˚ orders L˚iPIAi by the last difference. The definition makes
sense, since I is reverse-well-ordered. It turns out that if each Ai is linearly
ordered, then L˚iPIAi is linearly ordered and if in addition I is finite, then
L˚iPIAi is well-ordered. Moreover, for two ordinals α0 and α1, it happens that
α0α1 is exactly the order-type of L˚iă2 αi. This can be obviously generalized
to finite products.

A similar characterization can be given for infinite products, but some
details should be made precise. Suppose that I is any set and each Ai is an
ordered set with order ďi and with a specified element 0i P Ai. If a P

Ś

iPI Ai,
the support supppaq of a is the set ti P I | ai ‰ 0iu. Let

Ś0
iPI Ai be the

subset of
Ś

iPI Ai consisting of those elements with finite support. Of course,
Ś0

iPI Ai inherits a partial order ď0
ˆ as a suborder of p

Ś

iPI Ai,ďˆq. If I is
linearly ordered, we can consider another order L0

iPIAi “ pL
0
iPIAi,ďLq on the

set
Ś0

iPI Ai defined as follows.
(*) a ďL b if and only if either a “ b, or ai ăi bi, where i is the largest

element of supppaq Y supppbq such that ai ‰ bi.
The definition makes sense, since supppaqYsupppbq is finite and I is linearly

ordered. Of course, when I is finite,
Ś0

iPI Ai and
Ś

iPI Ai are the same set
and L0

iPI and L˚iPI are the same order. It is known that, for every sequence
pαiqiăδ of ordinals, L0

iăδ αi is well-ordered and has order-type
ś

iăδ αi. Here
the specified element 0i is always chosen to be the ordinal 0. See Bachmann
[2, III, § 10 1.2 and § 11 Satz 7], Hausdorff [12, § 16] and Matsuzaka [17] for
details. Of course, we could have seen just by cardinality considerations that
Ś

iăδ Ai does not work in order to obtain an order theoretical characterization
of

ś

iăδ αi in the case when δ is infinite.

3.3. Dealing now with natural products, a characterization for the product
of two ordinals has been found by Carruth [6]. He proved that α0 b α1 is
the largest ordinal which is the order-type of some linear extension of the
componentwise order on α0ˆα1. Here α0ˆα1 is ordered as p

Ś

iă2 αi,ďˆq in
the above notation. Carruth’s result includes the proof that such an ordinal
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exists, that is, that each such linear extension is a well-order and that the set
of order-types of such linear extensions has a maximum, not just a supremum.
From the modern point of view, this can be seen as a special case of theorems
by Wolk [26] and de Jongh, Parikh [13], since the product of two well quasi-
orders (in particular, two well-orders) is still a well quasi-order. See, e.g., [18].

Carruth’s result extends to the case of any finite number of factors. This
is best seen in the framework of the mentioned theory of well quasi-orders.
Indeed, if P is a well partial-order, then, by Theorem 2.13 in [13], there is an
ordinal opP q which is the maximum of the order-types of the linear extensions
of P . Moreover, Theorem 3.5 in [13] extends Carruth’s result to the effect
that if P and Q are well partial-orders, then opP ˆQq “ opP q b opQq. Then
an induction shows that α0 b α1 b ¨ ¨ ¨ b αn is the largest ordinal which is
the order-type of some linear extension of α0 ˆ α1 ˆ ¨ ¨ ¨ ˆ αn, the finitary
generalization of Carruth theorem.

3.4. Some difficulties are encountered when trying to unify the results
recalled in 3.2 and 3.3. Let us limit ourselves to the simplest infinite case of
an ω-indexed sequence, which is the main theme of the present note. It would
be natural to consider the supremum of the order-types of well-ordered linear
extensions of the restriction ď0

ˆ of ďˆ to
Ś0

iăω αi. However, just considering
Ś0

iăω 2, we see that p
Ś0

iăω 2,ď0
ˆq has linear extensions which are not well-

ordered. Indeed, for every j ă ω, let bj P
Ś0

iăω 2 be defined by bjj “ 1 and
bji “ 0 if i ‰ j. Then the bj ’s form a countable set of pairwise ď0

ˆ-incomparable
elements of

Ś0
iăω 2, hence every countable linear order is isomorphic to a

subset of some linear extension of
Ś0

iăω 2 (e.g., by [11, Theorem 3.3 on p. 54]).
Even if we restrict ourselves to well-ordered extensions of

Ś0
iăω 2, we get from

the above considerations that the supremum of their order-types is ω1, hence
this supremum is not a maximum and anyway it is too large to have the
intended meaning, that is, ω “

Â

iăω 2.
The situation is parallel to [14] and, as in [14], an order-theoretical char-

acterization can be found provided we restrict ourselves to linear extensions
satisfying some finiteness condition.

3.5. We need a bit more notation in order to state the next theorem. Re-
call that if pαiqiăω is a sequence of ordinals, then

Ś0
iăω αi is the set of the

sequences with finite support and the (partial) order ď0
ˆ is defined compo-

nentwise. If a, b P
Ś0

iăω αi and a ‰ b, let diffpa, bq be the largest element i of
supppaq Y supppbq such that ai ‰ bi. Thus (*) above introduces a linear order
ăL on

Ś0
iăω αi defined by a ăL b if and only if ai ă bi, for i “ diffpa, bq

(here ă is the standard order on αi, hence there is no need to explicitly indi-
cate the index). By the results recalled in Subsection 3.2, the above order ăL
has type

ś

iăω αi. On the other hand, in the finite case, by Carruth theorem
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mentioned in 3.3,
Â

iăn αi is the order-type of the largest linear extension of
ďˆ on

Ś

iăn αi “
Ś0

iăn αi. We show that in the infinite case
Â

iăω αi can
be evaluated by combining the above constructions.

If a P
Ś

iăω αi is a sequence and n ă ω, let aæn be the restriction of a to n,
that is, aæn is the element of

Ś

iăn αi defined as follows. If a “ paiqiăω, then
aæn “ paiqiăn. Here, as usual in ordinal arithmetics, we adopt the convention
n “ t0, 1, . . . , n´ 1u.

Let us say that a linear order ă1 on
Ś0

iăω αi is finitely Carruth if ă1

extends ă0
ˆ and there are an n ă ω and an order ď2 extending ăˆ on

Ś

iăn αi
such that the following statement holds. If a ‰ b P

Ś0
iăω αi and i “ diffpa, bq,

then
(1) if i ě n, then a ă1 b if and only if ai ă bi, and
(2) if i ă n, then a ă1 b if and only if aæn ă2 bæn.

A linear order ă1 on
Ś0

iăω αi is locally finitely Carruth if ă1 extends
ă0
ˆ and, for every c P

Ś0
iăω αi, there is n “ nc ă ω such that the following

statement holds. For every a ‰ b P
Ś0

iăω αi, if a, b ă
1 c and i “ diffpa, bq ě n,

then a ă1 b if and only if ai ă bi. In other words, for every c, (1) above holds,
restricted to those pairs of elements a, b which are ă1 c, while no version of
(2) is assumed.

Theorem 3.1. If pαiqiăω is a sequence of ordinals, then
Â

iăω αi is the
order-type of some finitely Carruth linear order on

Ś0
iăω αi.

Every (locally) finitely Carruth linear order on
Ś0

iăω αi is a well-order;
moreover,

Â

iăω αi is the largest order-type of all such orderings.

Proof. By Corollary 2.10, in particular, equation (2.6), there is some
m ă ω such that

Â

iăω αi “ pα0 b . . . b αm´1q ¨
ś

mďiăω αi. By the finitary
generalization of Carruth theorem mentioned in Subsection 3.3, there is some
linear extension ďC of ďˆ on

Ś

iăm αi such that P0 “ p
Ś

iăm αi,ďCq has
order-type

Â

iăm αi. By the results recalled in Subsection 3.2,
ś

mďiăω αi is
the order-type of P1 “ p

Ś0
mďiăω αi,ďLq. Then P “ L˚hă2 Ph has order-type

pα0 b . . . b αm´1q ¨
ś

mďiăω αi “
Â

iăω αi, since, as we mentioned, for two
ordinals γ0 and γ1 the order-type of L˚iă2 γi is γ0γ1. Through the canonical
bijection between

Ś0
iăω αi and

Ś

iăm αiˆ
Ś0

mďiăω αi, the order ă1 we have
constructed on L˚iă2Pi is clearly finitely Carruth. Indeed, in the definition of
finitely Carruth, take n “ m and take ď2 as ďC . If i “ diffpa, bq ă m, then
the ordering between a and b is determined by their æm part, since sequences
with the same P1-component are ordered according to their P0 component.
Hence (2) holds. On the other hand, if i “ diffpa, bq ě m, then ai ă bi if and
only if a ă1 b, by the definition of ďL, thus (1) holds. Obviously, ă1 extends
ăˆ, since both ďC and ďL extend ďˆ on their respective components. Hence
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Â

iăω αi can be realized as the order-type of some finitely Carruth order on
Ś0

iăω αi and the first statement is proved.
Since every finitely Carruth order on

Ś0
iăω αi is obviously locally finitely

Carruth, it is enough to prove that every locally finitely Carruth order on
Ś0

iăω αi is a well-order of type ď
Â

iăω αi. So let us assume from now on
that ă1 is locally finitely Carruth.

Claim. If c P
Ś0

iăω αi and C “ ta P
Ś0

iăω αi | a ă
1 cu, then pC,ă1æCq is

a well-ordered set of type ď
Â

iăω αi.

Proof. Let n “ nc be given by local Carruth finiteness and, as above,
let P1 “ p

Ś0
nďiăω αi,ďLq. Notice that, by Subsection 3.2, P1 is well-ordered

and has type
ś

nďiăω αi. If a P
Ś0

iăω αi, say, a “ paiqiăω, recall that aæn
is the element paiqiăn of

Ś

iăn αi. Similarly, let aěn be the element paiqiěn
of

Ś0
iěn αi. Thus the position a ÞÑ paæn, aěnq gives the canonical bijection

(mentioned but not described above) from
Ś0

iăω αi to
Ś

iăn αiˆ
Ś0

nďiăω αi.
If P “ td P

Ś0
nďiăω αi | d “ aěn, for some a P

Ś0
iăω αi such that a ă1 cu,

then P Ď P1 hence P as a suborder of P1 inherits a well-order of type ď
ś

nďiăω αi. Moreover, by local Carruth finiteness, if a, b ă1 c and aěn ăL běn,
then a ă1 b. If d P P , let Qd “ taæn | a P

Ś0
iăω αi, a ă

1 c and aěn “ du. Then,
for every d P P , the order ă1 induces an order ăd on Qd by letting aæn ăd bæn
if and only if a ă1 b (notice that, since we are assuming a, b P Qd, then a and
b have the same ě n components). Since, by assumption, ă1 extends ăˆ on
Ś0

iăω αi, then ăd extends the restriction of ăˆ on
Ś

iăn αi to Qd. Hence, by
the finitary generalization of Carruth theorem, for every d P P we have that
pQd,ădq is well-ordered and has type ď

Â

iăn αi.
The above considerations show that pC,ă1æCq is isomorphic to the sum

ř

dPP Qd (recall that if a, b ă1 c and aěn ăL běn, then a ă1 b). Since, as
we showed, P is a well-ordered set of type ď

ś

nďiăω αi and each Qd is a
well-ordered set of type ď

Â

iăn αi, then pC,ă
1
æCq is a well-ordered set of

order-type ď
Â

iăn αi ¨
ś

nďiăω αi. If the m given by Corollary 2.10 is ď n,
then we immediately get from equation (2.6) that pC,ă1æCq has order-type
ď

Â

iăω αi. Otherwise, notice that if the condition for local Carruth finiteness
is satisfied for c and for some nc, then the condition is satisfied for any n1 ě nc
in place of nc, hence it is no loss of generality to suppose that the m given by
Corollary 2.10 is ď n and we are done as before. lClaim

To complete the proof of the theorem, we have from the Claim that, for
every c P

Ś0
iăω αi, the set of the ă1-predecessors of c is well-ordered; this

implies that ă1 is a well-order.
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It remains to show that ă1 has order-type ď
Â

iăω αi. This is vacuously
true if some αi is 0 and it follows from the finitary generalization of Carruth
theorem if the αi’s are eventually 1. Otherwise, local Carruth finiteness implies
that ă1 has no maximum. Indeed, if a P

Ś0
iăω αi, then there is k ă ω such

that ai “ 0, for i ą k. Since the sequence of the αi’s is not eventually 1, there
is ı̄ ą k such that αı̄ ą 1. If b is equal to a on each component, except that
bı̄ “ 1, then a ăˆ b, hence a ă1 b, since, by assumption, ă1 extends ăˆ. Since
a above has been chosen arbitrarily, we get that ă1 has no maximum. Then
the Claim implies that ă1 has order-type ď

Â

iăω αi. �

We are currently considering generalizations of the results presented here
to natural products of transfinite sequences of arbitrary length [16]. The case
of transfinite natural sums has been dealt with in [15].
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The literature on the subject of ordinal operations is so vast and sparse
that we cannot claim completeness of the following list of references. It is
not intended that each work in the list has given equally significant contribu-
tions to the discipline. Henceforth the author disagrees with the use of the list
(even in aggregate forms in combination with similar lists) in order to deter-
mine rankings or other indicators of, e.g., journals, individuals or institutions.
In particular, the author considers that it is highly inappropriate, and strongly
discourages, the use of indicators extracted from the list in decisions about in-
dividuals (especially, job opportunities, career progressions etc.), attributions
of funds, and selections or evaluations of research projects.
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