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FIXED POINT THEOREMS FOR TWO PAIRS OF
MAPPINGS SATISFYING A NEW TYPE OF COMMON

LIMIT RANGE PROPERTY IN Gp METRIC SPACES

Valeriu Popa, Alina-Mihaela Patriciu

Abstract. The purpose of this paper is to prove a general fixed point theorem
for mappings involving almost altering distances and satisfying a new type of
common limit range property in Gp metric spaces. In the last part of the
paper, some fixed point results for mappings satisfying contractive conditions
of integral type and for ϕ-contractive mappings are obtained.

1. Introduction

Let (X, d) be a metric space and S, T be self mappings of X. In [19],
Jungck defined S and T to be compatible if

lim
n→∞

d(STxn, TSxn) = 0

whenever {xn} is a sequence in X such that

lim
n→∞

Sxn = lim
n→∞

Txn = t

for some t ∈ X.
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This concept has been frequently used to prove existence theorems in fixed
point theory.

Let f , g be self maps of a nonempty set X. A point x ∈ X is a coincidence
point of f and g if w = fx = gx; w is then said to be a point of coincidence
of f and g. The set of all coincidence points of f and g is denoted by C (f, g).

In 1994, Pant ([35]) introduced the notion of pointwise R-weakly commut-
ing mappings. It is proved in [36] that the pointwise R-weakly commutativity
is equivalent to commutativity in coincidence points.

In [20], Jungck introduced the concept of weakly compatible mappings.

Definition 1.1 ([20]). Let X be a nonempty set and f, g be self mappings
onX. Functions f and g are weakly compatible if fgu = gfu for all u ∈ C (f, g).

Hence, f and g are weakly compatible if and only if f and g are pointwise
R-weakly commuting.

The study of common fixed points for noncompatible mappings is also
interesting, the work in this regard was initiated by Pant [37]–[39].

Aamri and El Moutawakil introduced a generalization of noncompatible
mappings in [1].

Definition 1.2 ([1]). Let S and T be two self mappings of a metric space
(X, d). We say that S and T satisfy (E.A)-property if there exists a sequence
{xn} in X such that

lim
n→∞

Sxn = lim
n→∞

Txn = t

for some t ∈ X.

Remark 1.1. It is clear that two self mappings S and T of a metric space
(X, d) are noncompatible if there exists {xn} in X such that limn→∞ Sxn =
limn→∞ Txn = t for some t ∈ X but limn→∞ d(STxn, TSxn) is nonzero or
does not exist. Therefore, two noncompatible self mappings of a metric space
(X, d) satisfy (E.A)-property.

It is known from [41, 43] that the notions of weakly compatible mappings
and mappings satisfying (E.A)-property are independent.

In 2005, Liu et al. ([26]) defined the notion of common (E.A)-property.

Definition 1.3 ([26]). Two pairs (A,S) and (B, T ) of self mappings on a
metric space (X, d) are said to satisfy common (E.A)-property if there exist
two sequences {xn} and {yn} in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = t

for some t ∈ X.
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There exists a vast literature concerning the study of fixed points for map-
pings satisfying (E.A)-property.

In 2011, Sintunavarat and Kumam ([58]) introduced the notion of common
limit range property.

Definition 1.4 ([58]). A pair (A,S) of self mappings of a metric space
(X, d) is said to satisfy the common limit range property with respect to S
(shortly CLR(S)-property), if there exists a sequence {xn} in X such that
limn→∞Axn = limn→∞ Sxn = t for some t ∈ S(X).

Thus, we can infer that a pair (A,S) satisfying (E.A)-property along with
the closedness of the subspace S (X) always has CLR(S)-property with respect
to S.

Recently, Imdad et al. ([16]) introduced the notion of common limit range
property for two pairs of self mappings.

Definition 1.5 ([17]). Two pairs (A,S) and (B, T ) of self mappings in
a metric space (X, d) are said to satisfy common limit range property with
respect to S and T (shortly CLR(S,T )-property), if there exist two sequences
{xn} and {yn} in X such that limn→∞Axn = limn→∞ Sxn = limn→∞Byn =
limn→∞ Tyn = t for some t ∈ S(X) ∩ T (X).

Some fixed point results for pairs of mappings with CLR(S) and CLR(S,T )-
-property are obtained in [15, 17, 18, 23] and in other papers.

Now we introduce a new type of common limit range property.

Definition 1.6 ([45]). Let A,S and T be self mappings of a metric space
(X, d). The pair (A,S) is said to satisfy limit range property with respect to T
(shortly CLR(A,S)T -property), if there exists a sequence {xn} in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = t

for some t ∈ S(X) ∩ T (X).

Example 1.1. Let R+ be the metric space with the usual metric, Ax =
x2+1

2 , Sx = x+1
2 , Tx = x+ 1

4 . Then S (X) =
[
1
2 ,∞

)
, T (X) =

[
1
4 ,∞

)
, S (X)∩

T (X) =
[
1
2 ,∞

)
. Let {xn} be a sequence in X such that limn→∞ xn = 0.

Then limn→∞Axn = limn→∞ Sxn = 1
2 = z and z ∈ S (X) ∩ T (X).

Remark 1.2. Let A,B, S and T satisfy the common limit range property
with respect to S and T . Then (A,S) satisfy the common limit range property
with respect to T . The converse is not true. To see this, consider the metric
space and the functions A,S, T defined in Example 1.1 and put Bx = x2 + 1

4 .
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Suppose that (A,S) and (B, T ) have CLR(S,T )-property. Then there exist
sequences {xn} , {yn} and t ≥ 1

2 such that limn→∞Axn = limn→∞ Sxn =

limn→∞Byn = limn→∞ Tyn = t. Since limn→∞Byn = limn→∞ Tyn = t ≥ 1
2 ,

then yn → 1 and thus, t = 5
4 . But limn→∞Axn = limn→∞ Sxn only if xn → 0

or xn → 1. In both cases limn→∞Axn 6= 5
4 , a contradiction. Hence, the pairs

(A,S) and (B, T ) do not satisfy CLR(S,T )-property.

Definition 1.7 ([24]). An altering distance is a mapping ψ : [0,∞) →
[0,∞) such that
(ψ1) ψ is increasing and continuous,
(ψ2) ψ(t) = 0 if and only if t = 0.

Fixed point problems involving altering distances have been studied in
[47, 55, 56] and in other papers.

Definition 1.8 ([51]). A function ψ : [0,∞)→ [0,∞) is an almost altering
distance if
(ψ1) ψ is continuous,
(ψ2) ψ(t) = 0 if and only if t = 0.

Example 1.2. Every altering distance is an almost altering distance, but
the converse is not true as we can see in the following example of function:

ψ(t) =


t, t ∈ [0, 1] ,

1

t
, t ∈ (1,∞) .

2. Preliminaries

In [11, 12], Dhage introduced a new class of generalized metric spaces,
named D-metric spaces.

Mustafa and Sims ([32, 33]) proved that most of the claims concerning
the fundamental topological structures on D-metric spaces are incorrect and
introduced an appropriate notion of generalized metric space, named G-metric
space. In fact, Mustafa, Sims and other authors studied many fixed point
results for self mappings under certain conditions (see [29, 30, 31, 32, 34, 57]
and other papers).

Definition 2.1 ([33]). Let X be a nonempty set and let G : X3 → R+ be
a function satisfying the following properties:
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(G1) G(x, y, z) = 0 if x = y = z,
(G2) 0 < G(x, x, y) for all x, y ∈ X with x 6= y,
(G3) G(x, y, y) ≤ G(x, y, z) for all x, y, z ∈ X with z 6= y,
(G4) G(x, y, z) = G(y, z, x) = . . . (symmetry in all three variables),
(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X (triangle inequal-

ity).
The function G is called a G-metric on X and (X,G) is called a G-metric

space.

Note that if G(x, y, z) = 0 then x = y = z.

Remark 2.1. Let (X,G) be a G-metric space. If y = z, then by [45,
Lemma 5.1],G (x, y, y), is a quasi-metric onX. Hence, (X,Q), whereQ (x, y)=
G (x, y, y), is a quasi-metric space and since every metric space is a particular
case of a quasi-metric space, it follows that the notion of G-metric space is a
generalization of metric space.

In 1994, Matthews ([28]) introduced the concept of partial metric spaces
as a part of the study of denotional semantics of dataflow networks and proved
the Banach contraction principle in such spaces.

Many authors studied some fixed points for mappings satisfying contrac-
tive conditions in partial metric spaces.

Quite recently, in [4, 9, 10, 21, 22], some fixed point theorems under various
contractive conditions in partial metric spaces have been proved.

Definition 2.2 ([28]). Let X be a nonempty set. A function p : X×X →
R+ is said to be a partial metric on X if, for all x, y, z ∈ X:
(P1) p(x, x) = p(y, y) = p(x, y) if and only if x = y,
(P2) p(x, x) ≤ p(x, y),
(P3) p(x, y) = p(y, x),
(P4) p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).

The pair (X, p) is called a partial metric space.

Remark 2.2. Obviously, every metric space is a partial metric space.

Quite recently, Ahmadi Zand and Dehghan Nezhad ([3]) introduced a gen-
eralization of a G-metric space and a partial metric space, named Gp-metric
space. Some results on fixed points in Gp-metric space have been obtained,
e.g., in [5]–[7], [40, 52, 53].

Definition 2.3 ([3, 40]). Let X be a nonempty set. A function Gp : X3 →
R+ is called a Gp-metric on X if the following conditions are satisfied:
(GP1) x = y = z if Gp(x, y, z) = Gp(x, x, x) = Gp(y, y, y) = Gp(z, z, z),
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(GP2) 0 ≤ Gp(x, x, x) ≤ Gp(x, x, y) ≤ Gp(x, y, z) for all x, y, z ∈ X with
y 6= z,

(GP3) Gp(x, y, z) = Gp(y, z, x) = . . . (symmetry in all three variables),
(GP4) Gp(x, y, z) ≤ Gp(x, a, a) +Gp(a, y, z)−Gp(a, a, a) for all x, y, z, a ∈ X.

The pair (X,Gp) is called a Gp-metric space.

Lemma 2.1 ([3]). Let Gp be a Gp-metric on a nonempty set X. Then
Gp(x, y, y) ≤ 2Gp (x, x, y)−Gp(x, x, x).

Lemma 2.2 ([5]). Let (X,Gp) be a Gp-metric space. Then:
1) if Gp(x, y, z) = 0 then x = y = z,
2) if x 6= y then Gp(x, y, y) > 0.

Definition 2.4 ([3]). Let (X,Gp) be a Gp-metric space and let {xn} be a
sequence of points in X. A point x ∈ X is said to be the limit of the sequence
{xn}, denoted by xn → x, if limn,m→∞Gp(x, xn, xm) = Gp(x, x, x). Then the
sequence {xn} is called Gp-convergent to x.

Lemma 2.3 ([3]). Let (X,Gp) be a Gp-metric space. Then, for any {xn} ⊂
X and x ∈ X, the following properties are equivalent:
a) {xn} is Gp-convergent to x,
b) Gp(xn, xn, x)→ Gp(x, x, x) as n→∞,
c) Gp(xn, x, x)→ Gp(x, x, x) as n→∞.

Lemma 2.4 ([40]). If xn→x in a Gp-metric space (X,Gp) and Gp(x, x, x)=
0, then for every y ∈ Y
1) limn→∞Gp(xn, y, y) = Gp(x, y, y),
2) limn→∞Gp(xn, xn, y) = Gp(x, x, y).

Definition 2.5 ([45]). Let A,S and T be self mappings of a Gp-metric
space (X,Gp). Then the pair (A,S) is said to satisfy the common limit range
property with respect to T (shortly CLR(A,S)T -property), if there exists a
sequence {xn} in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = z

for some z ∈ X with Gp (z, z, z) = 0 and z ∈ S (X) ∩ T (X).
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3. Implicit relations

Several classical fixed point theorems and common fixed point theorems
have been unified considering a general condition by an implicit function in
[43, 44].

A new type of implicit relation has been introduced in [4].
Some fixed point theorems for mappings satisfying an implicit relation in

G-metric spaces have been proved in [48]–[51].
Recently, fixed point results for mappings satisfying an implicit relation in

partial metric spaces have been obtained in [13, 14, 59].
Quite recently, some fixed point results for mappings satisfying implicit

relations in Gp-metric spaces have been obtained in [52, 53].

Definition 3.1 ([4]). Let FGp be the set of all real continuous functions
F : R6

+ → R satisfying the conditions:
(F1) F (t, 0, t, 0, 0, t) > 0, ∀t > 0,
(F2) F (t, 0, 0, t, t, 0) > 0, ∀t > 0,
(F3) F (t, t, 0, 0, t, t) > 0, ∀t > 0.

Example 3.1. F (t1, . . . , t6) = t1 − at2 − bt3 − ct4 − dt5 − et6, where
a, b, c, d, e ∈ R and max{b+ e, c+ d, a+ d+ e} < 1.

Example 3.2. F (t1, . . . , t6) = t1 − kmax {t2, t3, . . . , t6}, where k ∈ [0, 1).

Example 3.3. F (t1, . . . , t6) = t1 − kmax
{
t2, t3, t4,

t5+t6
2

}
, where k ∈

[0, 1).

Example 3.4. F (t1, . . . , t6) = t1 − kmax
{
t2,

t3+t4
2 , t5+t6

2

}
, where k ∈

[0, 1).

Example 3.5. F (t1, . . . , t6) = t1 − at2 − bmax{t3, t4} − cmax{t2, t5, t6},
where a, b, c ∈ R and max{a+ c, b+ c} < 1.

Example 3.6. F (t1, . . . , t6) = t1 − max{ct2, ct3, ct4, at5 + bt6}, where
a, b, c ∈ R and max{a, b, c, a+ b} < 1.

Example 3.7. F (t1, . . . , t6) = t21 − at22 − bmax{t3t4, t5t6}, where a, b ∈ R
and a+ b < 1.

Example 3.8. F (t1, . . . , t6) = t1−at2− b
√
t3t4− c

√
t5t6, where a, b, c ∈ R

and a+ c < 1.
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The purpose of this paper is to prove a general fixed point theorem for
mappings involving almost altering distance and a new type of common limit
range property in Gp-metric spaces. In the last part of the paper, some fixed
point results for mappings satisfying contractive conditions of integral type
and for ϕ-contractive mappings are obtained.

4. Main results

Lemma 4.1 ([2]). Let f, g be two weakly compatible self mappings of a
nonempty set X. If f and g have a unique point of coincidence w = fx = gx
for some x ∈ X, then w is the unique common fixed point of f and g.

Theorem 4.1. Let A,B, S and T be self mappings of a Gp-metric space
(X,Gp) satisfying

(4.1) F

(
ψ(Gp(Ax,By,By)), ψ(Gp(Sx, Ty, Ty)), ψ(Gp(Sx, Sx,Ax)),

ψ(Gp(Ty,By,By)), ψ(Gp(Sx,By,By)), ψ(Gp(Ax, Ty, Ty))

)
≤ 0

for all x, y ∈ X, where F ∈ FGp and ψ is an almost altering distance.
If (A,S) and T satisfy CLR(A,S)T -property, then

1) C (A,S) 6= ∅,
2) C (B, T ) 6= ∅.

Moreover, if (A,S) and (B, T ) are weakly compatible, then A,B, S and T
have a unique common fixed point z and Gp (z, z, z) = 0.

Proof. Since (A,S) and T satisfy CLR(A,S)T -property, then there ex-
ists a sequence {xn} in X such that limn→∞Axn = limn→∞ Sxn = z with
Gp (z, z, z) = 0 and z ∈ S(X) ∩ T (X).

Since z ∈ T (X), there exists u ∈ X such that z = Tu. By (4.1) we obtain

(4.2)

F

(
ψ(Gp(Axn, Bu,Bu)), ψ(Gp(Sxn, Tu, Tu)), ψ(Gp(Sxn, Sxn, Axn)),

ψ(Gp(Tu,Bu,Bu)), ψ(Gp(Sxn, Bu,Bu)), ψ(Gp(Axn, Tu, Tu))

)
≤ 0.

Since Gp(Axn, Sxn, Sxn)≤Gp(Axn, z, z)+Gp(z, Sxn, Sxn), by Lemma 2.4

lim
n→∞

Gp(Axn, Sxn, Sxn) ≤ Gp(z, z, z) +Gp(z, z, z) = 0.
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Letting n tend to infinity in (4.2) we obtain

F

(
ψ(Gp (z,Bu,Bu)), 0, 0,

ψ(Gp (z,Bu,Bu)), ψ(Gp (z,Bu,Bu)), 0

)
≤ 0,

which contradicts (F2), if Gp (z,Bu,Bu) > 0. Hence, Gp (z,Bu,Bu) = 0 and
by Lemma 2.2 (1), z = Bu = Tu. Therefore, C (B, T ) 6= ∅ and Gp (z, z, z) = 0.

Since z ∈ S (X), there exists v ∈ X such that z = Sv.
By (4.1) we obtain

F

(
ψ(Gp (Av,Bu,Bu)), ψ(Gp (Sv, Tu, Tu)), ψ(Gp (Sv, Sv,Av)),

ψ(Gp (Tu,Bu,Bu)), ψ(Gp (Sv,Bu,Bu)), ψ(Gp (Av, Tu, Tu))

)
≤ 0,

F

(
ψ(Gp (Av, z, z)), 0, ψ(Gp (Av, z, z)),

0, 0, ψ(Gp (Av, z, z))

)
≤ 0,

which contradicts (F1), if Gp (Av, z, z) > 0. Hence, Gp (Av, z, z) = 0 and by
Lemma 2.2 (1), z = Av = Sv. Therefore, z = Av = Sv = Tu = Bu and z is a
point of coincidence of A and S and of B and T with Gp (z, z, z) = 0.

We prove that z is the unique point of coincidence of A and S and of B
and T .

Suppose that there exists another point of coincidence of A and S, t =
Aw = Sw. Then, by (4.1) we obtain

F

(
ψ(Gp (Aw,Bu,Bu)), ψ(Gp (Sw, Tu, Tu)), ψ(Gp (Sw, Sw,Aw)),

ψ(Gp (Tu,Bu,Bu)), ψ(Gp (Sw,Bu,Bu)), ψ(Gp (Aw, Tu, Tu))

)
≤ 0,

F

(
ψ(Gp (Sw, Tu, Tu)), ψ(Gp (Sw, Tu, Tu)), ψ(Gp (Sw, Sw, Sw)),

0, ψ(Gp (Sw, Tu, Tu)), ψ(Gp (Sw, Tu, Tu))

)
≤ 0,

F

(
ψ(Gp (Sw, Tu, Tu)), ψ(Gp (Sw, Tu, Tu)), 0,

0, ψ(Gp (Sw, Tu, Tu)), ψ(Gp (Sw, Tu, Tu))

)
≤ 0,

which contradicts (F3), if Gp (Sw, Tu, Tu) > 0. Hence, Gp (Sw, Tu, Tu) = 0
which by Lemma 2.2 (1) implies that Sw = Tu = z. Hence, t = z and z is the
unique point of coincidence of A and S.

Similarly, by (4.1), (F1) and (F2), we obtain that z is the unique point of
coincidence of B and T .

Hence, z is the unique point of coincidence of (A,S) and (B, T ).
Moreover, if (A,S) and (B, T ) are weakly compatible, by Lemma 4.1, z is

the unique common fixed point of A,B, S and T and Gp (z, z, z) = 0. �

If ψ(t) = t, we obtain
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Theorem 4.2. Let A,B, S and T be self mappings of a Gp-metric space
(X,Gp) satisfying

F

(
Gp(Ax,By,By), Gp (Sx, Ty, Ty) , Gp (Sx, Sx,Ax) ,

Gp(Ty,By,By), Gp(Sx,By,By), Gp (Ax, Ty, Ty)

)
≤ 0

for all x, y ∈ X, where F ∈ FGp .
If (A,S) and T satisfy CLR(A,S)T -property, then

1) C (A,S) 6= ∅,
2) C (B, T ) 6= ∅.

Moreover, if (A,S) and (B, T ) are weakly compatible, then A,B, S and T
have a unique common fixed point z and Gp (z, z, z) = 0.

Example 4.1. LetX = [0, 1] andGp(x, y, z) = max{x, y, z}. Then (X,Gp)
is a Gp-metric space.

Consider the following mappings:

Ax = 0, Sx =
x

x+ 1
, Bx =

x

3
, Tx = x.

Then S (X) =
[
0, 12
]
, T (X) = [0, 1] and S (X) ∩ T (X) =

[
0, 12
]
.

Let {xn} be a sequence in X such that limn→∞ xn = 0. Then,

lim
n→∞

Axn = lim
n→∞

Sxn = 0 = z ∈ S (X) ∩ T (X) .

Hence, (A,S) and T satisfy CLR(A,S)T -property with Gp (0, 0, 0) = 0.
Ax = Sx implies C (A,S) = {0} and Bx = Tx implies C (B, T ) = {0}.

Moreover, AS0 = SA0 = 0 and BT0 = TB0 = 0. Hence, (A,S) and (B, T )
are weakly compatible. On the other hand,

Gp (Ax,By,By) =
y

3
and Gp (Ty,By,By) = y.

Hence, Gp (Ax,By,By) ≤ ky, where k ∈
[
1
3 , 1
)
, which implies

Gp (Ax,By,By) ≤ kmax{Gp (Sx, Ty, Ty) , Gp (Sx, Sx,Ax) ,

Gp (Ty,By,By) , Gp (Sx,By,By) , Gp (Ax, Ty, Ty)},

where k ∈
[
1
3 , 1
)
. By Theorem 4.1 and Example 3.2, A,B, S and T have a

unique common fixed point z = 0 and Gp (z, z, z) = 0.
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5. Applications

5.1. Fixed points for mappings satisfying contractive conditions
of integral type in Gp-metric spaces

In [8], Branciari established the following theorem, which opened the way
to the study of fixed points for mappings satisfying a contractive condition of
integral type.

Theorem 5.1 ([8]). Let (X, d) be a complete metric space, c ∈ (0, 1) and
f : X → X be a mapping such that for all x, y ∈ X∫ d(fx,fy)

0

h(t) dt ≤ c
∫ d(x,y)

0

h(t) dt,

where h : [0,∞) → [0,∞) is a Lebesgue measurable mapping, integrable on
each compact subset of [0,∞), such that

∫ ε

0
h(t)dt > 0 for ε > 0. Then f has

a unique fixed point z ∈ X and z = limn→∞ fnx for all x ∈ X.

Theorem 5.1 has been extended to a pair of compatible mappings in [25].
Some fixed point results for mappings satisfying contractive conditions of

integral type have been obtained in [42, 46, 47, 54] and in other papers.

Lemma 5.1 ([47]). Let h : [0,∞) → [0,∞) be as in Theorem 5.1. Then
ψ (x) =

∫ x

0
h(t)dt is an almost altering distance.

Proof. It follows by [47, Lemma 2.5]. �

Theorem 5.2. Let A,B, S and T be self mappings of a Gp-metric space
(X,Gp) such that

(5.1)

F

(∫ Gp(Ax,By,By)

0
h (t) dt,

∫ Gp(Sx,Ty,Ty)

0
h (t) dt,

∫ Gp(Sx,Sx,Ax)

0
h (t) dt,∫ Gp(Ty,By,By)

0
h (t) dt,

∫ Gp(Sx,By,By)

0
h (t) dt,

∫ Gp(Ax,Ty,Ty)

0
h (t) dt

)
≤ 0

for all x, y ∈ X, where F ∈ FGp and h (t) is as in Theorem 5.1.
If (A,S) and T satisfy CLR(A,S)T -property, then

1) C (A,S) 6= ∅,
2) C (B, T ) 6= ∅.

Moreover, if (A,S) and (B, T ) are weakly compatible, then A,B, S and T
have a unique common fixed point z and Gp (z, z, z) = 0.
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Proof. Taking ψ (x) =
∫ x

0
h(t)dt we obtain

ψ(Gp (Ax,By,By)) =

∫ Gp(Ax,By,By)

0

h (t) dt,

ψ(Gp (Sx, Ty, Ty)) =

∫ Gp(Sx,Ty,Ty)

0

h (t) dt,

ψ(Gp (Sx, Sx,Ax)) =

∫ Gp(Sx,Sx,Ax)

0

h (t) dt,

ψ(Gp (Ty,By,By)) =

∫ Gp(Ty,By,By)

0

h (t) dt,

ψ(Gp (Sx,By,By)) =

∫ Gp(Sx,By,By)

0

h (t) dt,

ψ(Gp (Ax, Ty, Ty)) =

∫ Gp(Ax,Ty,Ty)

0

h (t) dt.

Then, by (5.1) we obtain

F

(
ψ(Gp (Ax,By,By)), ψ(Gp (Sx, Ty, Ty)), ψ(Gp (Sx, Sx,Ax)),

ψ(Gp (Ty,By,By)), ψ(Gp (Sx,By,By)), ψ(Gp (Ax, Ty, Ty))

)
≤ 0,

that is inequality (4.1). Moreover, by Lemma 5.1, ψ is an almost altering
distance.

Hence, the conditions of Theorem 4.1 are satisfied and the conclusions of
Theorem 5.2 follows by Theorem 4.1. �

By Theorem 5.2 and Example 3.2 we obtain the following.

Theorem 5.3. Let A,B, S and T be self mappings of a Gp-metric space
(X,Gp) such that

∫ Gp(Ax,By,By)

0

h (t) dt ≤ kmax

{∫ Gp(Sx,Ty,Ty)

0

h (t) dt,

∫ Gp(Sx,Sx,Ax)

0

h (t) dt,

∫ Gp(Ty,By,By)

0

h (t) dt,

∫ Gp(Sx,By,By)

0

h (t) dt,

∫ Gp(Ax,Ty,Ty)

0

h (t) dt

}
for all x, y ∈ X, where k ∈ [0, 1) and h (t) is as in Theorem 5.1.

If (A,S) and T satisfy CLR(A,S)T -property, then
1) C (A,S) 6= ∅,
2) C (B, T ) 6= ∅.
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Moreover, if (A,S) and (B, T ) are weakly compatible, then A,B, S and T
have a unique common fixed point z and Gp (z, z, z) = 0.

Example 5.1. Let X = [0,∞) and Gp (x, y, z) = max{x, y, z}. Then
(X,Gp) is a Gp-metric space.

Consider the following mappings:

Ax =
x

2
, Sx = 2x, Bx = 0, Tx = x.

Then S (X) = [0,∞) , T (X) = [0,∞) and S (X) ∩ T (X) = [0,∞).
Let {xn} be a sequence in X such that limn→∞ xn = 0. Then

lim
n→∞

Sxn = lim
n→∞

Axn = 0 = z ∈ S(X) ∩ T (X)

and Gp(z, z, z) = G(0, 0, 0) = 0. Hence, (A,S) and T satisfy CLR(A,S)T -
-property.

Ax = Sx implies C (A,S) = {0} and Bx = Tx implies C (B, T ) = {0}.
Moreover, AS0 = SA0 = 0 and BT0 = TB0 = 0. Hence, (A,S) and (B, T )
are weakly compatible. On the other hand,

Gp (Ax,By,By) = Ax =
x

2
and Gp (Sx, Sx,Ax) = 2x.

Moreover, ∫ x/2

0

t dt ≤ k
∫ 2x

0

t dt

for k ≥ 1
16 . Thus, for h (t) = t we obtain∫ Gp(Ax,By,By)

0

h (t) dt ≤ k
∫ Gp(Sx,Sx,Ax)

0

h (t) dt,

where
1

16
≤ k < 1. Hence,

∫ Gp(Ax,By,By)

0

h (t) dt ≤ kmax

{∫ Gp(Sx,Ty,Ty)

0

h (t) dt,

∫ Gp(Sx,Sx,Ax)

0

h (t) dt,

∫ Gp(Ty,By,By)

0

h (t) dt,

∫ Gp(Sx,By,By)

0

h (t) dt,

∫ Gp(Ax,Ty,Ty)

0

h (t) dt

}
,

where k ∈
[

1
16 , 1

)
. By Theorem 5.3, A,B, S and T have a unique common

fixed point z = 0.
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Remark 5.1. By Theorem 5.2 and Examples 3.1, 3.3–3.8 we obtain new
particular results.

5.2. Fixed points for mappings satisfying ϕ-contractive conditions
in Gp-metric spaces

As in [27], let Φ be the set of real continuous nondecreasing functions
ϕ : [0,∞)→ [0,∞) with limn→∞ ϕn (t) = 0.

If ϕ ∈ Φ, then
(1) ϕ (t) < t for all t ∈ (0,∞),
(2) ϕ (0) = 0.

The following functions F : R6
+ → R+ satisfy conditions (F1) , (F2) , (F3).

Example 5.2. F (t1, . . . , t6) = t1 − ϕ (max{t2, t3, ..., t6}).

Example 5.3. F (t1, . . . , t6) = t1 − ϕ
(
max{t2, t3, t4, t5+t6

2 }
)
.

Example 5.4. F (t1, . . . , t6) = t1 − ϕ
(
max{t2, t3+t4

2 , t5+t6
2 }

)
.

Example 5.5. F (t1, . . . , t6) = t1 − ϕ
(
max{t2, t3, t4,

√
t5t6}

)
.

Example 5.6. F (t1, . . . , t6) = t1 − ϕ (at2 + bt3 + ct4 + dt5 + et6), where
a, b, c, d, e ≥ 0 and a+ b+ c+ d+ e < 1.

Example 5.7. F (t1, . . . , t6) = t1 − ϕ
(
at2 + bmax{t3, t4} + cmax

{
t3+t4

2 ,
t5+t6

2

})
, where a, b, c ≥ 0 and a+ b+ c < 1.

By Theorem 4.1 and Example 5.3 we obtain

Theorem 5.4. Let A,B, S and T be self mappings of a Gp-metric space
(X,Gp) such that

ψ(Gp (Ax,By,By)) ≤ ϕ
(

max
{
ψ(Gp (Sx, Ty, Ty)), ψ(Gp (Sx, Sx,Ax)),

ψ(Gp (Ty,By,By)),
ψ(Gp (Sx,By,By)) + ψ(Gp (Ax, Ty, Ty))

2

})
for all x, y ∈ X, where ϕ ∈ Φ and ψ is an almost altering distance.

If (A,S) and T satisfy CLR(A,S)T -property, then
1) C (A,S) 6= ∅,
2) C (B, T ) 6= ∅.
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Moreover, if (A,S) and (B, T ) are weakly compatible, then A,B, S and T
have a unique common fixed point z and Gp (z, z, z) = 0.

Example 5.8. Let (X,Gp), A,S,B and T be as in Example 5.1. Put
ϕ(t) = t

2 . Obviously, ϕ ∈ Φ.
It follows from Example 5.1 that (A,S) and T satisfy CLR(A,S)T - property,

(A,S) and (B, T ) are weakly compatible and

Gp (Ax,By,By) = Ax =
x

2
and Gp (Sx, Sx,Ax) = 2x,

which implies

Gp (Ax,By,By) ≤ 1

2
Gp (Sx, Sx,Ax)

≤ 1

2
max{Gp (Sx, Ty, Ty) , Gp (Sx, Sx,Ax) ,

Gp (Ty,By,By) ,
Gp (Sx,By,By) +Gp (Ax, Ty, Ty)

2
}

= ϕ
(

max{Gp (Sx, Ty, Ty) , Gp (Sx, Sx,Ax) ,

Gp (Ty,By,By) ,
Gp (Sx,By,By) +Gp (Ax, Ty, Ty)

2
}
)
.

By Theorem 5.4, A,B, S and T have a unique common fixed point z = 0.

By Theorem 5.2 and Example 5.3 we obtain the following.

Theorem 5.5. Let A,B, S and T be self mappings of a Gp-metric space
(X,Gp) such that

∫ Gp(Ax,By,By)

0

h(t) dt ≤ ϕ
(

max
{∫ Gp(Sx,Ty,Ty)

0

h(t) dt,

∫ Gp(Sx,Sx,Ax)

0

h(t) dt,

∫ Gp(Ty,By,By)

0

h(t) dt,

∫ Gp(Sx,By,By)

0
h(t) dt+

∫ Gp(Ax,Ty,Ty)

0
h(t) dt

2

})
for all x, y ∈ X, where h (t) is as in Theorem 5.1.

If (A,S) and T satisfy CLR(A,S)T -property, then
1) C (A,S) 6= ∅,
2) C (B, T ) 6= ∅.

Moreover, if (A,S) and (B, T ) are weakly compatible, then A,B, S and T
have a unique common fixed point z and Gp (z, z, z) = 0.



310 Valeriu Popa, Alina-Mihaela Patriciu

Remark 5.2. By Theorem 5.2 and Examples 5.2, 5.4–5.7 we obtain new
particular results.

Acknowledgement. The authors thank the anonymous referee for his/
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