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SOME PROBLEMS IN THE CALCULUS OF VARIATIONS

Arrigo Cellina

Annual Lecture dedicated to the memory of Professor Andrzej Lasota

Abstract. We present some results and open problems in the Calculus of
Variations.

1. Introduction

The text that follows is a very expanded version of the Andrzej Lasota
Commemorative Lecture, given in Katowice in January 2016. The Lecture
was presented to an audience of mathematicians, not necessarily specialists in
the Calculus of Variations. This text, although it is a survey of several recent
results and open problems in the Calculus of Variations that have been of
great interest to the author, has retained the character of being addressed to
non-specialists. The topics that are presented are: the necessary conditions;
the existence of solutions to problems of slow growth and some problems con-
cerning the regularity of solutions. Very little or none preliminary knowledge
of these topics is required.
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2. Necessary conditions and the validity of the Euler–Lagrange
equation

The purpose of this section is to investigate the necessary conditions sat-
isfied by a solution. Hence, we assume that a solution to a given variational
problem exists and wish to find some properties of it, that hopefully will sin-
gle out this solution from the other competing functions satisfying the same
boundary conditions. We will not seek to prove results in the most general con-
ditions; rather, we shall consider essentially problems depending only on the
variable ∇v and we will discuss the various difficulties arising, under different
assumptions, when we try to establish the validity of necessary conditions.

The classical approach and a discussion of the problem

Let L be a convex and differentiable function and consider the problem of
minimizing

(2.1)
∫

Ω

L(∇v(x))dx

under suitable boundary conditions. We assume that we have a solution u and
would like to find a condition satisfied by the solution. In a sense, this condition
will make the solution special among all the other functions satisfying the same
boundary conditions.

Take a variation η, a very regular function that vanishes outside some
compact subset of Ω, say η ∈ C∞0 (Ω). This choice implies that, for every ε,
the function u + εη satisfies the same boundary conditions as u does, and,
being η smooth, there is hope that

∫
Ω
L(∇(u+ εη)(x))dx be finite. Since u is

a solution, we must have
∫

Ω
L(∇(u+εη))dx ≥

∫
Ω
L(∇u)dx and, taking ε > 0,

(2.2)
∫

Ω

1

ε
[L(∇(u+ εη))− L(∇u)]dx ≥ 0.

From the convexity and differentiability of L we infer that 1
ε [L(∇(u +

εη))−L(∇u)] is monotonically increasing with ε so that, as ε decreases to 0,
the integrand decreases (pointwise) to 〈∇L(∇u(x)),∇η(x)〉. Hence, whenever
we can pass to the limit under the integral sign, we obtain from (2.2) that∫

Ω

〈∇L(∇u(x)),∇η(x)〉dx ≥ 0.
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If the above inequality has been proved for every η ∈ C∞0 (Ω), then, by taking
−η instead of η, we finally have: for every η ∈ C∞0 (Ω), we must have∫

Ω

〈∇L(∇u(x)),∇η(x)〉dx = 0.

This is the Euler–Lagrange equation (for problem (2.1)). It is a very remark-
able equation, that has strong implications for the properties of the solution
itself, in particular for its regularity.

The purpose of the present section is to present some conditions for its
validity.

The first tool that comes to mind, when we have pointwise convergence of
the integrands, is the Dominated Convergence Theorem; we will discuss here
when this approach is possible.

Let L be a convex and differentiable function; fix v and w. We begin by
noticing that the convergence L(v+εw)−L(v)

ε → 〈∇L(v), w〉 implies that, for
ε > 0, both (

L(v + εw)− L(v)

ε

)+

→ 〈∇L(v), w〉+

and (
L(v + εw)− L(v)

ε

)−
→ 〈∇L(v), w〉−.

Moreover, as it is well known, from the convexity of L we infer that the map

ε→ L(v + εw)− L(v)

ε

is monotonic non-decreasing.
Hence, given a decreasing sequence (εn), with εn ≥ 0 and εn → 0, consider

the quotient L(∇u(x)+εn∇η(x))−L(∇u(x))
εn

: for x such that 〈∇L(∇u(x),∇η(x)〉 ≥
0, we have L(∇u(x) + εn∇η(x))−L(∇u(x)) ≥ 〈∇L(∇u(x)), ε∇η(x)〉 ≥ 0 and
hence∣∣∣∣L(∇u(x) + εn∇η(x))− L(∇u(x))

εn

∣∣∣∣ =
L(∇u(x) + εn∇η(x))− L(∇u(x))

εn

≤ L(∇u(x) + ε1∇η(x))− L(∇u(x))

ε1
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and, in order to have an integrable function that dominates the sequence of
quotients on the set {x : 〈∇L(∇u(x)),∇η(x)〉 ≥ 0}, we have only to make
sure that the map x→ L(∇u(x) + ε1∇η(x)) is integrable on that set.

Next, consider x such that 〈∇L(∇u(x)),∇η(x)〉 < 0: when n is sufficiently
large,

(2.3)
∣∣∣∣L(∇u(x) + εn∇η(x))− L(∇u(x))

εn

∣∣∣∣
= −L(∇u(x) + εn∇η(x))− L(∇u(x))

εn

≤ −〈∇L(∇u(x)),∇η(x)〉 = |〈∇L(∇u(x)),∇η(x)〉|

and the sequence
∣∣∣L(∇u(x)+εn∇η(x))−L(∇u(x))

εn

∣∣∣ has |〈∇L(∇u(x)),∇η(x)〉| as
a dominant.

Hence, to apply the Dominated Convergence Theorem to the proof of the
validity of the Euler–Lagrange equation, we must know a priori that both
L(∇u(x) + ε1∇η(x)) and |〈∇L(∇u(x)),∇η(x)〉| are integrable.

However, notice that, in general, from the information that∫
Ω

L(∇v(x))dx <∞

(this is the information that we do have) we cannot infer that∫
Ω

|∇L(∇v(x))|dx <∞.

Consider the following simple example.
Let Ω be the one-dimensional interval I = [0, b], let L(ξ) = e|ξ|

2

and set

v′(x) =

√
− ln(x| ln(x)| 43 ).

We have
∫
I
e|v
′(x)|2dx =

∫
I

1

x| ln(x)|
4
3
dx <∞ while

∫
I

|L′(v′(x))|dx =

∫
I

2

√
− ln(x| ln(x)| 43 )

1

x| ln(x)| 43
dx.

We claim: for sufficiently small b, 0 < x ≤ b implies that

− ln(x| ln(x)| 43 ) ≥ 1

2
| ln(x)| 43
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or, equivalently, that 1

x(ln( 1
x ))

4
3
≥ 1

x
1
2
. But this last statement is true since we

have limx→0+ x
1
2 (ln( 1

x))
4
3 = 0, so that, for x small, x

1
2 (ln( 1

x))
4
3 < 1. Then, by

this claim,∫
I

|L′(v′(x))|dx ≥
∫
I

√
2| ln(x)| 23 1

x| ln(x)| 43
dx =

∫
I

√
2

1

x| ln(x)| 23
dx = +∞.

Hence, L′(v′) /∈ L1 even though L(v′) ∈ L1.

The validity of the Euler–Lagrange equation via dominated
convergence

For a function L(x, u, ξ) we shall denote ∂Lξ and ∇ξL the subdifferen-
tial and the gradient of L with respect to its last variable. Let us begin by
the following lemma on the growth of the gradient (more generally, of the
subgradient) of a convex function.

Lemma 2.1. Let L(x, u, ξ) be such that, for every x, u, the map ξ →
L(x, u, ξ) is convex and assume that there exist constants p ≥ 1 and C such
that L(x, u, ξ) ≤ C(1 + |ξ|p). Then, there exists a constant K such that, for
every x, u, ξ and every d ∈ ∂Lξ(x, u, ξ),

|d| ≤ K(1 + |ξ|p−1).

In particular, when L is differentiable, we have |∇ξL(x, u, ξ)| ≤ K(1+ |ξ|p−1).

Proof. We first notice that, by convexity, (a + b)p ≤ 1
2(2a)p + 1

2(2b)p =

2p−1(ap + bp).
Given x, u, ξ and ζ, we have L(x, u, ξ + ζ) ≥ L(x, u, ξ) + 〈d, ζ〉, with d any

element of the subdifferential ∂ξL(x, u, ξ), and hence,

〈d, ζ〉 ≤ |L(x, u, ξ + ζ)|+ |L(x, u, ξ)|

≤ C (1 + |ξ + ζ|p) + C (1 + |ξ|p)

≤ C (1 + (|ξ|+ |ζ|)p) + C (1 + |ξ|p) ≤ C̃ (1 + |ξ|p + |ζ|p) .

Choose ζ = v(1 + |ξ|p)
1
p with |v| = 1, so that |ζ|p = 1 + |ξ|p, to obtain

〈d, ζ〉 ≤ 2C̃(1 + |ξ|p) and 〈d, v〉 ≤ 2C̃(1 + |ξ|p)1− 1
p . For each t ≥ 0, we have
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(1 + tp)1− 1
p ≤ (1 + tp−1); in fact, both take the value 1 at 0 and

d

dt
(1 + tp)1− 1

p = (p− 1)
tp−1

(1 + tp)
1
p

≤ (p− 1)
tp−1

t
=

d

dt
(1 + tp−1).

Hence,

〈d, v〉 ≤ K(1 + |ξ|p−1).

Finally, take v = d
|d| when |d| > 0 to obtain |d| ≤ K(1 + |ξ|p−1). When d = 0,

the inequality is obviously true. �

For the case where L depends only on the variables x and ξ, we have the
following simple result on the validity of the Euler–Lagrange equation.

Theorem 2.2. Let L(x, ξ) satisfy Carathéodory conditions and be such
that, for every x, the map ξ → L(x, ξ) is convex and differentiable. Moreover,
assume that there exist constants p ≥ 1 and C such that L(x, ξ) ≤ C(1+ |ξ|p).
Let u0 ∈W 1,p(Ω) and let u be a solution to the problem of minimizing∫

Ω

L(x,∇u(x))dx

on u0 +W 1,p
0 (Ω). Then, for every w ∈W 1,p

0 (Ω), we have∫
Ω

〈∇ξL(x,∇u(x)),∇w(x)〉dx = 0.

Proof. By definition of solution, for ε > 0,

(2.4) 0 ≤ 1

ε

∫
Ω

[L(x,∇u(x) + ε∇w(x))− L(x,∇u(x))]dx

=
1

ε

∫
{x∈Ω:〈∇ξL(x,∇u(x)),∇w(x)〉≥0}

[L(x,∇u(x) + ε∇w(x))− L(x,∇u(x))]dx

+
1

ε

∫
{x∈Ω:〈∇ξL(x,∇u(x)),∇w(x)〉<0}

[L(x,∇u(x) + ε∇w(x))− L(x,∇u(x))]dx.

Since L(x,∇u(x) +∇w(x)) ≤ 1
2L(x, 2∇u(x)) + 1

2L(x, 2∇w(x)) ≤ 1
22pC[(1 +

|∇u(x)|p) + (1 + |∇w(x)|p), the assumption that w ∈ W 1,p(Ω) assures that
L(·,∇u+∇w) ∈ L1(Ω). Hence, on the set

{x ∈ Ω : 〈∇ξL(x,∇u(x)),∇w(x)〉 ≥ 0},
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each integrand 1
ε [L(·,∇u(·) + ε∇w(·)) − L(·,∇u(·))] is dominated by the in-

tegrable function

L(·,∇u(·) +∇w(·))− L(·,∇u(·)).

On the set {x ∈ Ω : 〈∇ξL(x,∇u(x)),∇w(x)〉 < 0}, by (2.3), 1
ε |L(·,∇u(·) +

ε∇w(·)) − L(·,∇u(·))| is dominated by |〈∇ξL(·,∇u(·)),∇w(·)〉| and this last
function is integrable by Lemma 2.1 and the assumption that w ∈ W 1,p(Ω).
In fact∫

Ω

|〈∇ξL(·,∇u(·)),∇w(·)〉| ≤
∫

Ω

K(1 + |∇u|p−1)|∇w|

≤ K‖∇w‖L1 +K‖|∇u|p−1‖Lq‖∇w‖Lp

= K‖∇w‖L1 +K(‖∇u‖Lp)
p
q ‖∇w‖Lp .

Since, pointwise,

1

ε
[L(x,∇u(x) + ε∇w(x))− L(x,∇u(x))]→ 〈∇ξL(x,∇u(x)),∇w(x)〉,

by dominated convergence we obtain from (2.4) that

0 ≤
∫

Ω

〈∇ξL(x,∇u(x)),∇w(x)〉dx.

Taking −w instead of w, the result is proved. �

Notice that Theorem 2.2 requires the a priori knowledge that the solution
u be in W 1,p(Ω), and this fact, in general, can be assured only by requiring
some additional growth assumption on L: for instance, assuming that there
exist a function α ∈ L1(Ω) and a positive constant β such that

L(x, ξ) ≥ α(x) + β|ξ|p.

Stretching the dominated convergence approach

For convex Lagrangians L growing, in the variable ξ, like |ξ|p, the gradient
of L grows like |ξ|p−1, and this fact is exploited in Theorem 2.2 to allow the
variation w to be in W 1,p

0 (Ω). When we reach exponential growth, this is
not true anymore; however, the method based on dominated convergence can
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be used also in this limiting case, restricting the class of allowed variations
to η ∈ C1

c (Ω). In the case of exponential growth, the connection between the
growth of L and the growth of∇L, that is expressed by Lemma 2.1, is replaced
by the condition appearing in the following definition.

Exponential growth condition. For every open O ⊂⊂ Ω there exists
a constant c such that, for almost every x ∈ O, |ξ| ≥ 1 implies |∇ξL(x, ξ)| ≤
cL(x, ξ).

Maps like e
√

1+|ξ|2 or e|ξ|+e−|ξ|

2 satisfy this assumption.

Theorem 2.3. Let L(x, ξ) satisfy Carathéodory conditions and be such
that, for every x, the map ξ → L(x, ξ) is convex and differentiable. Moreover,
assume that the exponential growth condition is satisfied. Let u0 ∈ W 1,1(Ω)
be such that

∫
Ω
L(x,∇u0(x))dx <∞ and let u be a solution to the problem of

minimizing ∫
Ω

L(x,∇u(x))dx

on u0 +W 1,1
0 (Ω). Then, for every η ∈ C1

c (Ω), we have∫
Ω

〈∇ξL(x,∇u(x)),∇η(x)〉dx = 0.

Proof. Fix η, set O = supp(η) and set D = sup{|∇η|}. To apply the
Dominated Convergence Theorem as in Theorem 2.2, it is sufficient to show
that L(·,∇u(·) +∇η(·)) is integrable on the set

{x ∈ Ω : 〈∇ξL(x,∇u(x)),∇w(x)〉 ≥ 0}

and that |〈∇ξL(·,∇u(·)),∇η(·)〉| is integrable on Ω. This last condition fol-
lows directly from the definition. Since d

dtL(x, a+ tb) = 〈∇ξL(x, a+ tb), b〉 ≤
c|b|L(x, a+ tb) we have

L(x, a+ b) ≤ L(x, a)ec|b|

and hence

L(x,∇u(x) +∇η(x)) ≤ L(x,∇u(x))ecD.

Both integrability conditions are satisfied; passing to the limit we obtain that∫
Ω

〈∇ξL(x,∇u(x)),∇η(x)〉dx = 0. �
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Lagrangians of fast growth

In this section we shall consider minimization problems without restriction
on the growth of L with respect to |ξ|, aiming at deriving the Euler–Lagrange
equation. We cannot base the proof on dominated convergence, hence we
should expect that the proof will be longer and less direct.

Consider again the variational problem

(2.5) minimize
∫

Ω

L(x,∇v(x)) dx on u0 +W 1,1
0 (Ω).

Next lemma requires the convexity of L but no growth assumption what-
soever. Let u be the solution to the minimization problem, so that, in partic-
ular, L(·,∇u(·)) ∈ L1(Ω); let v be such that also L(·,∇v(·)) ∈ L1(Ω); then,
the result is stated in terms of v − u. Setting η = v − u, the integrability re-
quirement on L(·,∇v(·)) amounts to asking that L(·,∇(u+η)(·)) be in L1(Ω).
For Lagrangians L growing faster than exponential, even assuming that η is
very regular (C∞) will not guarantee this integrability. Consider L(ξ) = e|ξ|

2

;
then,

e|∇u+∇η|2 = e|∇u|
2+2〈∇u,∇η〉+|∇η|2 = e|∇η|

2

e2〈∇u,∇η〉e|∇u|
2

and, in principle, the map at the right hand side grows, in ∇u, faster than
e|∇u|

2

; hence, the integrability of L(·,∇(u+ η)(·)) is not guaranteed.

Lemma 2.4. Let Ω be an open subset of RN , let L ≥ 0 satisfy Carathéodory
conditions; in addition, let ξ → L(x, ξ) be convex and differentiable and let
∇ξL also satisfy Carathéodory conditions. Let u ∈ W 1,1

loc (Ω) be a solution to
problem (2.5) and let v ∈ u+W 1,1

0 (Ω) be such that L(·,∇v(·)) ∈ L1(Ω). Then:

(i) 〈∇ξL(·,∇u),∇(v − u)〉 ∈ L1(Ω),

(ii)
∫

Ω

〈∇ξL(·,∇u),∇(v − u)〉 dx ≥ 0.

Proof. Since L is convex with respect to the variable ξ, it follows that
for every t ∈ [0, 1]

(2.6) L(x,∇u+ t(∇v −∇u)) ≤ L(x,∇u) + t
[
L(x,∇v)− L(x,∇u)

]
so that L(·,∇u+ t(∇v −∇u)) ∈ L1(Ω). Rewrite inequality (2.6) as

(2.7)
1

t

[
L
(
x,∇u+ t(∇v −∇u)

)
− L(x,∇u)

]
≤ L(x,∇v)− L(x,∇u)
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that implies

(2.8)
1

t
(L(x,∇u+ t(∇v −∇u))− L(x,∇u))+ ≤ (L(x,∇v)− L(x,∇u))+.

The integrability of L(x,∇v)−L(x,∇u) implies the integrability of (L(x,∇v)−
L(x,∇u))+; we know that 1

t (L
(
x,∇u(x)+t(∇v(x)−∇u(x))

)
−L(x,∇u(x)))+

converges pointwise to (〈∇L(x,∇u(x)),∇(v − u)(x)〉)+ and is dominated by
the integrable function (L(·,∇v)− L(·,∇u))+, so that

(2.9)
∫

Ω

(〈∇L(x,∇u(x)),∇(v − u)(x)〉)+dx

= lim
tn→0+

∫
Ω

1

tn

(
L(x,∇u(x) + tn(∇v(x)−∇u(x)))− L(x,∇u(x))

)+
dx.

On the other hand, apply Fatou’s Lemma to the sequence of non-negative
functions 1

tn

(
L(x,∇u(x) + tn(∇v(x)−∇u(x)))− L(x,∇u(x))

)− to obtain

∫
Ω

(
〈∇L(x,∇u(x)),∇(v − u)(x)〉

)−
dx

=

∫
Ω

lim
tn→0+

1

tn

(
L(x,∇u(x) + tn(∇v(x)−∇u(x)))− L(x,∇u(x))

)−
dx

≤ lim
tn→0+

∫
Ω

1

tn

(
L(x,∇u(x) + tn(∇v(x)−∇u(x)))− L(x,∇u(x))

)−
dx

so that∫
Ω

−(〈∇L(x,∇u(x)),∇(v − u)(x)〉)−dx

≥ lim
tn→0+

∫
Ω

− 1

tn

(
L(x,∇u(x) + tn(∇v(x)−∇u(x)))− L(x,∇u(x))

)−
dx

and, combining (2.9) and the above inequality, we obtain∫
Ω

〈∇L(x,∇u(x)),∇(v − u)(x)〉dx

≥ lim
tn→0+

∫
Ω

1

tn

(
L(x,∇u(x) + tn(∇v(x)−∇u(x)))− L(x,∇u(x))

)+
dx
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+ lim
tn→0+

∫
Ω

− 1

tn

(
L(x,∇u(x) + tn(∇v(x)−∇u(x)))− L(x,∇u(x))

)−
dx

= lim
tn→0+

∫
Ω

1

tn

[
L(x,∇u(x) + tn(∇v(x)−∇u(x)))− L(x,∇u(x))

]
dx.

Since u is a solution,
∫

Ω
[L
(
x,∇u(x)+tn(∇v(x)−∇u(x))

)
−L(x,∇u(x))] dx ≥

0, thus proving assertion (ii) of the lemma.
We have shown that

(2.10)
∫

Ω

(〈∇ξL(x,∇u),∇(v − u)〉)− ≤
∫

Ω

(〈∇ξL(x,∇u),∇(v − u)〉)+.

From (2.7),

1

t

[
L(x,∇u+ t(∇v −∇u))− L(x,∇u)

]+ ≤ (L(x,∇v(x))− L(x,∇u(x))
)+

and we obtain

〈∇ξL(x,∇u(x)),∇(v − u)(x)〉+ ≤ [L(x,∇v(x))− L(x,∇u(x))]+

hence
(
〈∇ξL(x,∇u(x)),∇(v − u)(x)〉

)+ ∈ L1(Ω), which – combined with
(2.10) – gives assertion (i):

〈∇ξL(x,∇u(x)),∇(v − u)(x)〉 ∈ L1(Ω)

and the proof is complete. �

Next lemma requires the local boundedness of the solution u; alterna-
tively, we can consider the following assumption, that would imply this local
boundedness.

Assumption: For everyM there exists an integrable function αM such that,
for x in B(0,M) ∩ Ω,

L(x, ξ) ≥ αM (x) + C|ξ|p

for some p > N .

Lemma 2.5. Let L : Ω × RM be non-negative, satisfying Carathéodory
conditions and such that ξ → L(x, ξ) is convex. Moreover, assume that, for
every positive H, there exists a function αH ∈ L1(Ω) such that |ξ| ≤ H
implies L(x, ξ) ≤ αH(x). Let the solution u to the problem of minimizing (2.5)
be in L∞loc(Ω). Then, 〈∇ξL(·,∇u(·)),∇u(·)〉 ∈ L1

loc(Ω) and |∇ξL(·,∇u(·))| ∈
L1

loc(Ω).
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Proof. Fix arbitrarily x0 ∈ Ω, let δ be such that B(x0, 2δ) ⊂ Ω. Let
ϑ ∈ C∞c (B(x0, 2δ)) be such that ϑ = 1 on B(x0, δ2) and 0 ≤ ϑ ≤ 1 elsewhere.

a) Since u ∈ L∞loc(Ω), choose R so that |u| < R on B(x0, 2δ) and consider
the following variation:

v(x) =

{
max{R(2ϑ(x)− 1), u(x)} if x ∈ B(x0, 2δ),

u(x) if x ∈ Ω \B(x0, 2δ).

We have v ∈ u+W 1,1
0 (Ω). Moreover,

∇v(x) =


∇u(x) if x ∈ C(supp(ϑ)) or if x ∈ supp(ϑ)

but u(x) ≥ R(2ϑ(x)− 1),

∇ϑ(x) otherwise.

In particular, setting H = sup{|∇η|}, we have L(x,∇η(x)) ≤ αH(x) and
we obtain L(·,∇v(·)) ∈ L1(Ω). Now apply Lemma 2.4 to v to infer that
〈∇ξL(·,∇u(·)),∇(v − u)(·)〉 ∈ L1(Ω), so that, in particular,

〈∇ξL(·,∇u(·)),∇(v − u)(·)〉 ∈ L1
(
B
(
x0,

δ

2

))
.

Since ∇v = 0 on B(x0,
δ
2) (in fact, on B(x0,

δ
2), we have max{R(2ϑ(x) −

1), u(x)} ≡ R), it follows that 〈∇ξL(·,∇u(·)),−∇u(·)〉 ∈ L1(B(x0, δ2)); fix
arbitrarily a compact K ⊂ Ω; cover K with finitely many balls B(xi, δ

i

2 ) to
obtain

(2.11) 〈∇ξL(·,∇u(·)),∇u(·)〉 ∈ L1
loc(Ω).

b) In the special case where L(x, ξ) = l(|ξ|), with l a convex function
having minimum at the origin, we have 〈∇ξL(ξ), ξ〉 = l′(|ξ|)|ξ| ≥ l′(|ξ|) for
|ξ| ≥ 1 and the claim is proved.

In the general case, we can reason as follows. Let xj denote the j-th com-
ponent of x. With the same notation as in a), let R be so large that, for
1 ≤ j ≤ N , we have u(x) > −R + |xj | on B(x0, 2δ) and u(x) < R − |xj | on
B(x0, δ2).

Set

vj(x) =

{
max{R(2ϑ(x)− 1) + xj , u(x)} if x ∈ B(x0, 2δ),

u(x) if x ∈ Ω \B(x0, 2δ),

so that, on B(x0, δ2), we have vj(x) = R + xj and ∇vj = ej . An application
of Lemma 2.4 yields that 〈∇ξL(·,∇u), ej − ∇u〉 ∈ L1

loc. Since, from (2.11),
we have 〈∇ξL(·,∇u),−∇u〉 ∈ L1

loc, we infer that 〈∇ξL(·,∇u), ej〉 ∈ L1
loc.
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Hence, |∇ξL(·,∇u)j | ∈ L1
loc. Since this is true for every j, we obtain that

|∇ξL(·,∇u)| ∈ L1
loc. �

In particular, consider L(ξ) = e|ξ|
2

so that ∇L(ξ) = 2e|ξ|
2

ξ; let u be a
solution to the corresponding minimization problem. Then, by Lemma 2.5,
we obtain ∫

Ω

2e|∇u(x)|2 |∇u(x)|dx <∞.

In the first part of 2. we have presented an example with Ω = I = [0, b] and
v a locally bounded function such that

∫
I
e|v
′(x)|2dx < +∞ but satisfying∫

I
e|v
′(x)|2 |v′(x)|dx = +∞; from Lemma 2.5 we can conclude that such func-

tion v cannot possibly be a solution to a minimization problem with the given
Lagrangian.

A case of extended-valued Lagrangian and variational inequalities

Consider the problem of minimizing∫
Ω

[
1

2
|∇v(x)|2 + v(x)]dx

on the (convex) subset of those Lipschitzian functions with Lipschitz constant
at most 1 that are null at ∂Ω. Equivalently, we can introduce the extended-
valued, lower-semicontinuous and convex function L∞

L∞(ξ) =

{ 1
2 |ξ|

2 for |ξ| ≤ 1,

+∞ otherwise

and minimize

(2.12)
∫

Ω

[L∞(∇v(x) + v(x)]dx on W 1,1
0 (Ω).

The function L∞ is not differentiable when |ξ| = 1. Still, the ideas of the
previous lemmas can be applied. Let u be a solution, let v ∈ W 1,1

0 (Ω) be
a function giving the finite value to the integral, so that L∞(∇v(x)) is a.e.
finite. We know that

1

t
(L∞(∇u(x) + t(∇v(x)−∇u(x)))− L∞(∇u(x)))
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is a monotonic increasing function of t, so that a pointwise limit p(x) exists
as t ↓ 0; since, for 0 ≤ t ≤ 1 we have |(∇u(x) + t(∇v(x) − ∇u(x))| ≤ 1, it
follows that L∞(∇u(x) + t(∇v(x)−∇u(x))) = 1

2 |∇u(x) + t(∇v(x)−∇u(x))|2
and p(x) = 〈∇u(x),∇v(x)−∇u(x)〉. As in (2.8), we have

1

t

(
L∞(∇u(x) + t(∇v(x)−∇u(x)))− L∞(∇u(x))

)+
≤
(
L∞(∇v(x))− L∞(∇u(x))

)+
,

and the right hand side is integrable. Then, by dominated convergence we
obtain∫

Ω+

p(x)dx = lim
t→0+

∫
Ω+

1

t

(
L∞(∇u(x)+t(∇v(x)−∇u(x)))−L∞(∇u(x))

)+
dx.

On the other hand, by Fatou’s Lemma we infer∫
Ω−
−p(x)dx =

∫
Ω−

lim
t→0+

1

t

(
L∞(∇u(x)+t(∇v(x)−∇u(x)))−L∞(∇u(x))

)−
dx

≤ lim inf
t↓0

∫
Ω−

1

t

(
L∞(∇u(x) + t(∇v(x)−∇u(x)))− L∞(∇u(x))

)−
dx

and hence,∫
Ω−
p(x)dx ≥ lim sup

t↓0

∫
Ω−
−1

t

(
L∞(∇u(x)+t(∇v(x)−∇u(x)))−L∞(∇u(x))

)−
dx.

From the minimality condition we have∫
Ω+∪Ω−

1

t

(
L∞(∇u+ t(∇v −∇u))− L∞(∇u)

)
dx+

∫
Ω

(v − u)dx ≥ 0

so that∫
Ω

[
〈∇u(x),∇v(x)−∇u(x)〉+ (v − u)

]
dx

≥ lim sup
t↓0

∫
Ω

[1

t

(
L∞(∇u(x) + t(∇v(x)−∇u(x)))

− L∞(∇u(x))
)

+ (v(x)− u(x))
]
dx ≥ 0.
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We have obtained a necessary condition in the form of a variational in-
equality: the solution u satisfies: for every v satisfying the boundary condition
and giving a finite value to the integral, we have∫

Ω

[〈∇u(x),∇v(x)−∇u(x)〉+ (v(x)− u(x))]dx ≥ 0.

The Euler–Lagrange equation for problems with fast growth

The Euler–Lagrange equation is an equality satisfied by variations η, in-
dependently on whether u + η gives a finite value to the integral or not.
The following is a form of the Euler–Lagrange equation for problems with
fast growth. Notice that the conditions on L imply that for a.e. x, the map
ξ → L(x, ξ) takes finite values for every ξ ∈ RN , hence the next theorem does
not apply to the functional of the previous section.

Theorem 2.6. Let L be as in Lemma 2.5. Let a solution u to the problem
of minimizing (2.5) be locally bounded. Then, for arbitrary η ∈ C1

c (Ω), we
have ∫

Ω

〈∇L(x,∇u(x)),∇η(x)〉dx = 0.

Proof. Fix η arbitrarily in C1
c (Ω); choose R so large that −R < u(x) < R

for x ∈ supp(η). For t > 1 set

v̄t(x) =

{
max{tη(x)−R, u(x)} if x ∈ supp(η),

u(x) otherwise

and

vt(x) =

{
min{tη(x) +R, u(x)} if x ∈ supp(η),

u(x) otherwise.

We have

∇v̄t(x) =

{
∇u(x) if u ≥ tη −R or x ∈ Ω \ supp(η),

t∇η(x) otherwise,

∇vt(x) =

{
∇u(x) if u ≤ tη +R or x ∈ Ω \ supp(η),

t∇η(x) otherwise,
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so that L(∇v̄t) and L(∇vt) belong to L1(Ω). Applying Lemma 2.4 to these
variations we obtain

(2.13) 〈∇L(·,∇u),∇(v̄t − u)〉 ∈ L1(Ω);

∫
Ω

〈∇ξL(x,∇u),∇(v̄t − u)〉 dx ≥ 0

and

〈∇ξL(·,∇u),∇(vt − u)〉 ∈ L1(Ω);

∫
Ω

〈∇ξL(x,∇u),∇(vt − u)〉 dx ≥ 0.

For t > 1 consider the set At =
{
η > u+R

t

}
∩ supp(η+); since u > −R

on supp(η+), we have η(x) > 0 for x ∈ At, hence that ∇η = ∇(η+) there.
Moreover, tη − R > u in At, so that, for x in At, we have v̄t = tη − R while,
in Ω \At, v̄t − u = 0 and ∇(v̄t − u) = 0. Then, dividing by t, (2.13) yields∫

Ω

〈∇ξL(x,∇u),∇(v̄t − u)〉 dx =

∫
At

〈∇ξL(x,∇u),∇η − 1

t
∇u〉 dx

=

∫
Ω

χAt(x)〈∇ξL(x,∇u),∇η − 1

t
∇u〉 dx ≥ 0.

The function t→ χAt(x) is non-decreasing, hence pointwise converging to
χsupp(η+)(x); then, as t→ +∞, we infer that χAt(x)〈∇ξL(x,∇u(x)),∇η(x)−
1
t∇u(x)〉 converges pointwise to χsupp(η+)(x)〈∇ξL(x,∇u(x)),∇(η+)(x)〉.

Let H = sup{|∇η(x)|}. We have

|χAt〈∇ξL(x,∇u),∇η − 1

t
∇u〉| ≤ H|∇ξL(x,∇u)|+ |〈∇ξL(x,∇u),∇u〉|.

By Lemma 2.5, both 〈∇ξL(x,∇u),∇u〉 and |∇ξL(x,∇u)| are in L1
loc(Ω). By

dominated convergence we conclude that

(2.14) 0 ≤ lim
t→+∞

∫
At

〈∇L(x,∇u),∇η − 1

t
∇u〉 dx

=

∫
Ω

χsupp(η+)〈∇L(x,∇u),∇(η+)〉 dx =

∫
Ω

〈∇L(x,∇u),∇(η+)〉 dx.

Analogously, consider the set Bt =
{
η < u−R

t

}
∩K; we have vt = tη + R

in Bt. Through the same steps as before, we obtain

(2.15)
∫

Ω

〈∇L(x,∇u),∇(−η−)〉 dx ≥ 0.
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Add (2.14) to (2.15) to yield: for every η ∈ C∞c (Ω),

(2.16)
∫

Ω

〈∇L(x,∇u),∇η〉 dx ≥ 0.

Finally, consider η̃ = −η: (2.16) yields∫
Ω

〈∇L(x,∇u),∇η〉 dx ≤ 0

so that ∫
Ω

〈∇L(x,∇u),∇η〉 dx = 0. �

Remark. In a previous section we have pointed out that, given η, in order
to pass to the limit as εn → 0 in∫

Ω

L(∇u(x) + εn∇η(x))− L(∇u(x))

εn
dx,

in order to obtain

(2.17)
∫

Ω

〈∇L(x,∇u(x)),∇η(x)〉dx = 0

we need to know that both L(·,∇u(·)+∇η(·)) and |〈∇ξL(·,∇u(·)),∇η(·)〉| are
integrable on Ω. Lemma 2.5 assures (under the conditions of validity of the
lemma, but without upper growth conditions) the integrability of the second;
Theorem 2.6 above assures that, for arbitrary η, equation (2.17) holds. Can we
then, finally, obtain the validity of equation (2.17) by dominated convergence?

By no means. Theorem 2.6 does not assure that there exists even one
non-trivial η ∈ C1

c (Ω) such that L(·,∇u(·) +∇η(·)) ∈ L1(Ω).
If by the name of variation we mean a smooth function η, that is zero

at the boundary of Ω and gives a finite value to the integral
∫

Ω
L(x,∇u(x) +

∇η(x))dx, then, in general, variations need not exist. Still, remarkably, for the
functions L considered in this paragraph, the Euler–Lagrange equation holds.

Remark. For some purposes, in particular to obtain regularity estimates
for the solution, results on the validity of the Euler–Lagrange equation in a
form stronger than the one presented in Theorem 2.6, i.e., when the variations
are not necessarily continuously differentiable, is needed. A typical variation
used in these estimates contains some derivatives of the solution, and there is
no reason to expect that these derivatives are smooth. However, the proof of
Theorem 2.6 depends on being ∇η bounded.
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In [5] the following stronger form of Theorem 2.6 is proved.

Theorem 2.7. Let L and u be as in the statement of Theorem 2.6 and, in
addition, let L(0) = 0,∇L(0) = 0 and L(ξ) = L(−ξ); let w ∈W 1,1(Ω) be such
that supp(w) ⊂⊂ Ω and such that, for some α ∈ (0, 1] we have

∫
Ω
L(α∇w) <

∞. Then,
∫

Ω
〈∇L(∇u),∇w〉 = 0.

A variation w ∈ C1
c (Ω) satisfies the assumptions of the previous theorem,

as does the variation w = δi−h(η2δjhu), where η ∈ C1
c (Ω). This variation is

mostly used in regularity proofs.

An open problem. Consider the problem of minimizing∫
Ω

L(|∇u(x)|)dx,

where

L(t) =
1

1− t2

for |t| < 1, and L(t) = +∞ otherwise.
L is convex, differentiable; the solution u to the minimization problem

(with suitable boundary conditions) exists and is unique; moreover, u is Lip-
schitzian with Lipschitz constant 1 and hence u is locally bounded.

We have L′(t) = 2 t
(1−|t|2)2 so that the Euler–Lagrange equation would be:∫

Ω

1

(1− |∇u(x)|2)2
〈∇u(x),∇η(x)〉dx = 0

for every η ∈ C1
c (Ω).

The author has tried for long, but was unable to prove its validity.
In this case, the domain of L is an open convex interval different from RN .

Lagrangians that are convex but not necessarily differentiable

The convexity of L with respect to the variable ξ is a condition generally
considered minimal in the Calculus of Variations. Convexity in itself has a form
of differentiability, the subdifferential, without the need of extra regularity.
The purpose of this section is to explore to what an extent the condition of
convexity by itself yields a form of the Euler–Lagrange equation.
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Example. Let Ω be a bounded open subset of R2, containing the ball
B(0, 2

√
2), and consider the minimization problem

minimize
∫

Ω

[F (∇v (x)) + v (x)] dx,

where

F (ξ) = f(‖ξ‖) =

{ √
2‖ξ‖ for ‖ξ‖ ≤

√
2,

1 + 1
2‖ξ‖

2 for ‖ξ‖ ≥
√

2.

We have ∂F (0) =
√

2B[0, 1] while ∇F (ξ) = ξ for ξ 6= 0. Consider the function
u(x) = min{0, (‖x‖2 )2 − 2}, i.e.,

u(x) =

 0 for ‖x‖2 ≤
√

2,(
‖x‖
2

)2

− 2 for ‖x‖2 ≥
√

2,

so that

∇u(x) =

{
0 for ‖x‖2 <

√
2,

1
2x for ‖x‖2 >

√
2.

We claim that it is a solution to the minimization problem, among the func-
tions v satisfying the same values as u on ∂Ω, i.e., more precisely, for v ∈
u+W 1,1

0 (Ω).
We obtain

∂F (∇u(x)) =

{ √
2B[0, 1] for ‖x‖2 <

√
2,

∇F (∇u(x)) = ∇ũ(x) = 1
2x for ‖x‖2 >

√
2.

On ω consider also the smooth function

p(x) =
1

2
x

and notice that, for every x, we have p(x) ∈ ∂F (∇u(x)). Since div(p(x)) = 1,
we have, for every η ∈ C∞c ,∫

Ω

[〈p(x),∇η(x)〉+ η(x)]dx = 0.
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The map G : (v, ξ) → F (ξ) + v is convex and, when p ∈ ∂F (ξ), also (1, p) ∈
∂G((v, ξ)) so that

G(u(x) + η(x),∇u(x) +∇η(x)) = F (∇u(x) +∇η(x)) + u(x) + η(x)

≥ F (∇u(x)) + u(x) + 1 · η(x) + 〈p(x),∇η(x)〉.

Hence∫
Ω

(
F (∇u(x) +∇η(x)) + u(x) + η(x)

)
dx ≥

∫
Ω

(
F (∇u(x)) + u(x)

)
dx

+

∫
Ω

(
1 · η(x) + 〈p(x),∇η(x)〉

)
dx =

∫
Ω

(
F (∇u(x)) + u(x)

)
dx.

The usual approximation scheme shows that∫
Ω

(
F (∇u(x) +∇η(x)) + u(x) + η(x)

)
dx ≥

∫
Ω

(
F (∇u(x)) + u(x)

)
dx

for every η ∈W 1,2
0 , hence u is a solution.

Although the function ∇ũ(x) is discontinuous, the vector function

p(x) =
1

2
x

is an everywhere smooth selection from the map x → ∂F (∇u(x)) and has
the divergence equal to 1 everywhere, so that the Euler–Lagrange equation
is satisfied even when there is no differentiability assumption on the convex
function F .

Assume that we are minimizing a functional of the kind∫
Ω

[L(∇v(x)) + g(x, v(x))]dx,

where both L and v → g(x, v) are convex. We assume that g is differentiable,
but we do not make such assumption on L. Then, by convexity, for any u and
v, we have, for any p(x) in ∂L(∇u(x))

L(∇u(x)) + g(x, u(x)) ≥ L(∇v(x)) + g(x, v(x))

+ 〈p(x),∇u(x)−∇v(x)〉+ g′u(x, u(x))(u(x)− v(x));
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if, in addition, the map x → p(x) is regular enough to make the integral
meaningful, we obtain∫

Ω

[L(∇u(x)) + g(x, u(x))]dx ≥
∫

Ω

[L(∇v(x)) + g(x, v(x))]dx

+

∫
Ω

[〈p(x),∇u(x)−∇v(x)〉+ g′u(x, u(x))(u(x)− v(x))]dx.

If the second integral to the right, above, is zero, we have
∫

Ω
[L(∇u(x)) +

g(x, u(x))]dx ≥
∫

Ω
[L(∇v(x)) + g(x, v(x))]dx, i.e., that u is a solution. Since u

and v satisfy the same boundary conditions, setting η(x) = u(x)− v(x), η is
a variation and the condition on the integral is∫

Ω

[〈p(x),∇η(x)〉+ g′u(x, u(x))η(x)]dx = 0.

When L is differentiable, so that p(x) = ∇L(∇u(x)), the condition becomes∫
Ω

[〈∇L(∇u(x)),∇η(x)〉+ g′u(x, u(x))η(x)]dx = 0,

i.e., the Euler–Lagrange equation. This suggests that, in the case of non-
differentiabilty of L, it would be of interest to prove the following form of the
Euler–Lagrange equation: Let u be a solution to the minimum problem; then,
there exists a function p(·), a selection from the map x → ∂L(∇u(x)) such
that, for any η in a suitable class of variations, we have∫

Ω

[〈p(x),∇η(x)〉+ g′u(x, u(x))η(x)]dx = 0.

To prove a result in this direction we shall need some language and nota-
tions from Convex Analysis (see, e.g., [15]).

The indicator function of a set A, IA(ξ), equals zero for ξ ∈ A, equals +∞
elsewhere. Its polar is

(IA)∗(p) = sup
ξ∈RN

[〈p, ξ〉 − IA(ξ)] = sup
ξ∈A
〈p, ξ〉.

When A = B(0, h) (B the Euclidean ball) we have (IA)∗(p) = h|p|.
Notice that the polar is always a convex function. Moreover, λ non-negative

implies that supξ∈A〈λp, ξ〉 = λ supξ∈A〈p, ξ〉, i.e., the map p → (IA)∗(p) is
positively homogeneous.
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Riesz’s Representation Theorem for continuous functionals
acting on L1

Lemma 2.8. Let T be a bounded linear functional on (L1(Ω))N , i.e. such
that, for some k, we have

T (ξ) ≤ k‖ξ‖L1 = k

∫
Ω

|ξ(x)| dx =

∫
Ω

(IkB(0,1))
∗(ξ(x)) dx

for every ξ ∈ (L1(Ω))N . Then, there exists p̃ ∈ (L∞(Ω))N , p̃(x) a.e. in
kB(0, 1), that represents T , i.e., such that

(2.18) T (ξ) =

∫
Ω

〈p̃(x), ξ(x)〉 dx.

A generalization. Notation: given a closed convexK ⊂ RN , bymK we mean
the unique point ofK of minimal norm and by ‖K‖ we mean sup{|k| : k ∈ K}.

Lemma 2.9. Let D be a map from Ω to the closed convex non-empty subsets
of B(0, R), such that ‖D(·)‖ ∈ L∞ and such that v ∈ (L∞(Ω))N implies that
the map x → m[D(x)−v(x)] is measurable. Let T : (L1(Ω))N → R be a linear
functional satisfying

T (ξ) ≤
∫

Ω

(ID(x))
∗(ξ(x)) dx.

Then there exists p̃ ∈ (L∞(Ω))N , p̃(x) in D(x) a.e., that represents T , i.e.,
such that (2.18) holds.

Proof of the lemma. a) Since |(ID(x))
∗(ξ(x))| ≤ ‖D(x)‖|ξ(x)| we have

T is a bounded linear functional on (L1(Ω))N . Writing ξ as ξ1(x)e1 + . . . +
ξN (x)eN and applying the standard Riesz’s Representation Theorem, we infer
the existence of a function p̃ ∈ (L∞(Ω))N that satisfies (2.18). To show that
p̃(x) is in D(x) a.e., assume that there exists a set E ⊂ Ω of positive measure
such that, on E, p̃(x) /∈ D(x), i.e. 0 /∈ D(x)− p̃(x). Setting D∗ := D(x)− p̃(x),
we can equivalently say that |mD∗(x)| > 0 on E.

Let z(x) be the projection of minimal distance of p̃(x) on D(x), so that,
z(x)− p̃(x) = mD(x)−p̃(x) or, z(x)− p̃(x) = mD∗(x). From the characterization
of the projection of minimal distance, we obtain

〈p̃(x)− z(x), z(x)〉 ≥ 〈p̃(x)− z(x), k〉, ∀k ∈ D(x),
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that can be rewritten as

〈−mD∗(x), p̃(x)〉 ≥ |mD∗(x)|2 + 〈−mD∗(x), k〉, ∀k ∈ D(x).

Hence, we have, on E,

〈−mD∗(x), p̃(x)〉 > sup {〈−mD∗(x), k〉 : k ∈ D(x)} = (ID(x))
∗(−mD∗(x)).

b) Setting ξ̃ := −mD∗χE , we have ξ̃ ∈ L1(Ω) and

T (ξ̃) =

∫
Ω

〈p̃, ξ̃〉 =

∫
E

〈p̃,−mD∗〉 >
∫

Ω

(ID(x))
∗(ξ̃) ≥ T (ξ̃),

a contradiction. �

Idea of the proof of the validity of the Euler–Lagrange equation without
differentiability conditions w.r. to ξ.

Consider the simple problem of minimizing

(2.19)
∫

Ω

[L(∇u(x)) + g(u(x))] dx

where L is convex but not necessarily differentiable. L is defined everywhere,
so that ∂L(ξ) exists non-empty everywhere; g is differentiable.

Let u be a locally bounded solution to problem (2.19), let η ∈ C∞0 (Ω). Set
DL(x) = ∂ξL(∇u(x)); we have

1

ε
[L(∇u(x) + ε∇η(x))− L(∇u(x)) + g(u(x) + εη(x))− g(u(x))]

→

[
sup

k∈DL(x)

〈k,∇η(x)〉

]
+ g′(u(x))η(x)

pointwise w.r.t. x. With the notation we have introduced, we write

sup
k∈DL(x)

〈k,∇η(x)〉 = (IDL(x))
∗(∇η(x)).

Assume that we have (growth) conditions that allow us to pass to the limit
under integral sign. Hence, passing to the limit, we obtain

(2.20) 0 ≤
∫

Ω

(IDL(x))
∗(∇η(x)) dx+

∫
Ω

g′(u(x))η(x) dx.
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Our purpose is to find an integrable function p with two properties:
i) a.e. p(x) ∈ DL(x) = ∂ξL(∇u(x));
ii) for every η ∈ C∞0 (Ω), we must have

(2.21)
∫

Ω

〈p(x),∇η(x)〉 dx+

∫
Ω

g′(u(x))η(x) dx = 0.

When L is differentiable, so that ∂ξL = ∇L, this is the usual Euler–Lagrange
equation.

The difficulty arises from the fact that we are not able to define p pointwise:
p(x) is not the pointwise limit of 1

ε [L(∇u(x) + ε∇η(x))− L(∇u(x))].

The idea of the proof comes from looking at equation (2.21) in this other
form: we have to find p such that∫

Ω

〈p(x),∇η(x)〉 dx = −
∫

Ω

g′(u(x))η(x) dx.

What we have at the r.h.s. is certainly a linear functional on η; hence, we have
to find p such that the l.h.s. represents this linear functional.

a) Rewrite (2.20) as

(2.22) −
∫

Ω

g′(u(x))η(x) dx ≤
∫

Ω

(IDL(x))
∗(∇η(x)) dx

so that the r.h.s. is an upper bound for the linear functional at the left (similar
to what happens in Riesz’s Theorem).

One technical difficulty: Riesz’s Theorem represents a functional acting on
L1 and gives a representative in the dual L∞. Here we have a functional on η
(that is in L∞) and we seek a p to represent it, with p ∈ L1, since p ∈ DL(x) =
∂ξL(∇u(x)) that can be very large. To avoid this difficulty, it is convenient to
look at the problem in a different way: set ‖D‖ = sup{|v| : v ∈ D}; then we
have

(IDL(x))
∗(∇η) = sup

k∈DL(x)

〈k,∇η〉 = sup
k∈DL(x)

〈 k

‖DL(x)‖
, ‖DL(x)‖∇η〉

= sup
k∈ DL(x)

‖DL(x)‖

〈k, ‖DL(x)‖∇η〉 = (I DL(x)

‖DL(x)‖
)∗(‖DL(x)‖∇η)

and inequality (2.22) becomes

−
∫

Ω

g′(u(x))η(x) dx ≤
∫

Ω

(I DL(x)

‖DL(x)‖
)∗(‖DL(x)‖∇η) dx.
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Notice that the map

%(ξ) :=

∫
Ω

(I DL(x)

‖DL(x)‖
)∗(ξ(x)) dx

is well defined for every ξ ∈ (L1(Ω))N , since (I DL(x)

‖DL(x)‖
)∗(ξ) ≤ |ξ|, and that it is

a convex and positively homogeneous map. Hence we have a linear functional∫
Ω
g′(u(x))η(x) dx, defined on some subspace, bounded from above by a con-

vex and positively homogeneous map %, defined over the whole of (L1(Ω))N .
b) From the growth conditions (for instance, a polynomial growth) we ob-

tain that ‖DL‖ ∈ L1(Ω); for every η ∈ C∞0 (Ω) we have ‖DL‖∇η ∈ (L1(Ω))N .
Consider L, the linear subspace of (L1(Ω))N , defined as

L = {ξ ∈ (L1(Ω))N : ∃η ∈ C∞0 (Ω) : ξ = ‖DL(x)‖∇η}

and, on L, the linear functional

T (ξ) = −
∫

Ω

g′(u(x))η(x) dx.

We notice that T is well defined: assume that there exist η1 and η2 in C∞0 (Ω)

such that ξ
‖DL‖ = ∇η1 = ∇η2; then, by Poincaré’s inequality, η1 = η2.

By the Hahn-Banach Theorem, the linear map T can be extended, as T̃ ,
from L to the whole of (L1(Ω))N , still satisfying T̃ (ξ) ≤ ρ(ξ).

c) At this point, we prove that the map x→ ∂ξL(∇u(x)) satisfies the mea-
surability conditions required by Lemma 2, and so does the map x→ 1

‖DL‖DL.
Hence, we infer the existence of a p̃ ∈ (L∞(Ω))N , with p̃(x) ∈ 1

‖DL(x)‖DL(x)

a.e. on Ω, i.e., p̃(x) = 1
‖DL(x)‖p(x) with p(x) ∈ DL(x), representing the exten-

sion of T to (L1(Ω))N , in particular, representing T on L. Hence, for every
η ∈ C∞0 (Ω), we have

−
∫

Ω

g′(u(x))η(x) dx =

∫
Ω

〈p̃(x), ‖DL(x)‖∇η(x)〉 dx =

∫
Ω

〈p(x),∇η(x)〉 dx.

In other words, for every η ∈ C∞0 (Ω),∫
Ω

〈p(x),∇η(x)〉 dx+

∫
Ω

g′(u(x))η(x) dx = 0.
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The map p(·) is a selection from ∂ξL(∇u(·)) defined on Ω, thus proving the
validity of the Euler–Lagrange equation.

Remark. As a case of a Lagrangian that is convex but not differentiable
we have the map L∞ defined before. The results of this section do not apply
to this Lagrangian, since there are no upper growth conditions to be exploited
to give an upper L1 bound for p. Still, a form of the Euler–Lagrange equation
for the problem (2.12) has been proved by Brézis [1]. However, the proof
depends on regularity assumptions made on ∂Ω; a general proof, based on
local regularity, is still to be found.

3. Existence and non-existence of solutions for Variational
Problems of slow (linear) growth

As it is well known, the existence of solutions to a minimum problem of the
Calculus of Variations is based on the two concepts of convexity and coercivity.
This last property is obtained imposing superlinear growth conditions on the
integrand, hence it requires integrands L that grow more than linearly in the
variable ∇v. A famous example that does not satisfy this condition is provided
by the non-parametric minimal area problem, where we wish to minimize the
functional ∫

Ω

√
1 + |∇u(x)|2dx

under assigned boundary conditions.

A classical example of non-existence of solutions

Consider in dimension two the annulus A = {x : 1
2 ≤ |x| ≤ 1}. We plan to

show that for α sufficiently large, the problem of minimizing

(3.1)
∫
A

√
1 + |∇u(x)|2dx

with the boundary condition

u(x) = 0 for |x| = 1; u(x) = −α for |x| = 1

2

admits no solution.
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Proof of this claim. a) We begin by looking for radial solutions. The
Euler–Lagrange equation gives

d

dr
r

u′(r)√
1 + (u′(r))2

= 0

and hence that r u′(r)√
1+(u′(r))2

= c. Since, for some point in (1
2 , 1), we must have

u′(r) > 0, then c > 0 and we infer that u′(r) > 0 on (1
2 , 1). We have ru′(r) =

c
√

1 + (u′(r))2; since
√

1 + (u′(r))2 > u′(r), we must have r > c, for every r
in (1

2 , 1). Squaring, we obtain (u′(r))2(r2− c2) = c2, i.e., u′(r) = c√
r2−c2 , that

gives u(r) =
∫ r

1
1√
r2

c2
−1
dr =

∫ r
c
1
c

c√
y2−1

dy. We obtain

u(r) = c ln(y +
√
y2 − 1)

∣∣∣ rc
1
c

= c ln
r +
√
r2 − c2

1 +
√

1− c2
.

Since c ≥ 1
2 , the denominator inside the logarithm is larger than 1 +

√
3

2 and
the numerator is smaller than 2 so that

|u(r)| ≤ 1

2

∣∣∣∣∣ln
(

2

1 +
√

3
2

)∣∣∣∣∣ .
In particular, so is |u(1

2)| and there is no way it can equal |α| if |α| is large.
b) Let us show that the problem does not admit (possibly non-radial)

solutions.
We need the following proposition, taken from [8]:

Proposition 3.1. Let u ∈ W 1,1(A). For x ∈ A write x = ω|x| with
|ω| = 1 and set

ũ(x) =
1

2π

∫
|ω|=1

u(ω|x|)dω.

Then

∇ũ(x) =


1

2π

x

|x|

∫
|ω|=1

〈∇u(ω|x|), ω〉dω if x 6= 0,

0 if x = 0.
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Assuming this proposition, let u ∈ W 1,1(A) be a (non-radial) solution to
the problem of minimizing (3.1) with the given boundary conditions, and |α|
larger than 1

2 | ln( 2

1+
√

3
2

)|; set ũ be defined as in the statement of Proposition

3.1. Then, ũ satisfies the same (radial) boundary conditions as u. We wish to
show that ∫

A

l(|∇ũ(x)|)dx ≤
∫
A

l(|∇u(x)|)dx.

From Proposition 3.1, we infer that

|∇ũ(x)| ≤ 1

2π

∫
|ω|=1

|∇u(ω|x|)|dω

and, since the map t→ l(t) =
√

1 + t2 is increasing for t ≥ 0, we obtain that

l(|∇ũ(x)|) ≤ l( 1

2π

∫
|ω|=1

|∇u(ω|x|)|dω).

Jensen’s inequality gives

l(|∇ũ(x)|) ≤ 1

2π

∫
|ω|=1

l(|∇u(ω|x|)|)dω

and hence ∫
A

l(|∇ũ(x)|)dx ≤
∫
A

1

2π

∫
|ω|=1

l(|∇u(ω|x|)|)dωdx.

Being the function v(|x|) = 1
2π

∫
|ω|=1

l(|∇u(ω|x|)|) radial, passing to spherical
coordinates we obtain∫

A

l(|∇ũ(x)|)dx ≤ 2π

∫ 1

1
2

v(r)rdr

=

∫ 1

1
2

∫
|ω|=1

l(|∇u(ωr)|)dω rdr =

∫
Ω

l(|∇u(x)|)dx

so that ũ is a radial solution to problem (3.1). This contradicts point a).
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Sufficient conditions for the existence of solutions

It is convenient to set L(ξ) = l(|ξ|) =
√

1 + |ξ|2.
The sufficiency is first of all based on the requirement that ∂Ω be smooth

(further conditions on ∂Ω will be discussed later) and that the boundary
condition φ be smooth; it is convenient to assume that φ is defined and twice
differentiable in an open set containing Ω.

The reasoning that leads to the proof of existence of solutions is long. One
looks for solutions for the minimization problem restricted to the (convex) set
of functions that satisfy the given boundary and are Lipschitzian with a given
Lipschitz constant. If this set is not empty, a solution to the restricted problem
exists, as a function with the given Lipschitz condition. Increasing the allowed
Lipschitz constant, in general the solution found changes. There is, however, a
further result, based on strict convexity (the minimal area functional is strictly
convex): assume that, for a certain Λ, the minimization problem restricted
to the functions of Lipschitz constant Λ admits a solution uΛ, and that it
happens that the Lipschitz constant of uΛ is strictly less than Λ. Then, the
same uΛ is a solution to the problem considered over the linear space of all
Lipschitz functions (satisfying the given boundary conditions). This reasoning
boils down to the following principle, applied to uΛ: if we can ”a priori” bound
the Lipschitz constant of a solution, then a solution will exist.

How to a priori bound the Lipschitz constant of u? Again, the reasoning is
complex. There are some ”a priori” bounds for u; the simplest is the following:
if a constant k is such that φ(x) ≤ k for x ∈ ∂Ω, then u(x) ≤ k for x in Ω. A
more difficult estimate is the following: if u is a solution, then, for every ε,

sup
{ |u(x)− u(y)|

|x− y|
: x and y in Ω

}
= sup

{ |u(x)− u(y)|
|x− y|

: x and y in Ω; |x− y| ≤ ε
}

= sup
{ |u(x)− u(y)|

|x− y|
: x ∈ ∂Ω, y ∈ Ω

}
.

This means that it is enough to bound the Lipschitz constant of u only on
the boundary: if a bound is found, this will be the bound at any point x ∈ Ω.
Hence, the whole proof of the existence of a solution, among all functions that
are Lipschitzian and satisfy the boundary conditions, amounts to showing that
the solution u is (uniformly) Lipschitzian when x ∈ ∂Ω.

Based on the previous line of thought, the proof of the existence of a
solution to the minimal area problem, then, aims at finding two things: a) a
”neighborhood of the boundary of Ω”, i.e., a subset Ωδ of Ω, Ωδ = {x ∈ Ω :
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d(x) < δ}, where by d(x) we mean the distance of x ∈ Ω to the complement
of Ω, and b) a ”supersolution” v, i.e., a twice differentiable function such that
we have at once

div∇L(∇v(x)) ≤ 0 a.e. in Ωδ

and v(x) ≥ u(x) for x ∈ ∂Ωδ. Since u is unknown, this last requirement will be
met simply by constructing v such that v(x) = φ(x) for x ∈ ∂Ω while u(x) ≥ k
where k is such that k ≥ φ(x), for any x ∈ ∂Ω. The supersolution forces the
solution to stay below, and having differential quotients v(x)−v(y)

|x−y| bounded
(since we shall build a Lipschitzian v) in particular bounds from above the
differential quotients u(x)−u(y)

|x−y| when y ∈ ∂Ω, so that v(y) = u(y) = φ(y). To
bound it from below, we need an analogous construction for a subsolution.

We wish to point out explicitly that this part of the proof is based only
on the fact that L depends only on ξ and that L as a function of ξ is strictly
convex.

The construction of a supersolution v for L(ξ) =
√

1 + |ξ|2. The con-
struction depends on the function d, distance from a point x ∈ Ω to ∂Ω; some
properties of this function are very relevant for what follows. In general, the
distance from a closed set is a Lipschitzian function with Lipschitz constant
one. When the gradient exists, it is a unit vector pointing from the nearest
point at the boundary to x ∈ Ω. For our purposes, the boundary of Ω is C2,
hence its curvatures are uniformly bounded; this implies the existence of h
such that when d(x) ≤ h, the projection of x to the boundary consists of a
single point and the gradient of d at x exists and is C1. So, in the remain-
der of the construction, we shall assume that d ≤ h. Hence ∇d(x) exists and
|∇d(x)| = 1.

We set, for x ∈ Ω,

v(x) = ψ(d(x)) + φ(x)

where ψ, to be defined, is such that ψ(0) = 0; then, the function v is such
that v|∂Ω = u|∂Ω = φ|∂Ω. Then ∇v(x) = ψ′(d(x))∇d(x) +∇φ(x).

We denote by Hf the Hessian matrix of the function f ; in particular, from
|∇d(x)|2 ≡ 1 we obtain Hd∇d = 0; this property will be of use later.

For the function v we have

Hv = Hφ + ψ′(d)Hd + ψ′′(d)∇d⊗∇d

(by ξ ⊗ ξ we mean the matrix (ξiξj)i,j) and

|∇v|2 = |∇φ|2 + ψ′(d)2 + 2〈∇φ,∇d〉.
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From

∇L(ξ) =
ξ√

1 + |ξ|2

we obtain

div∇L(∇v) =
1

(1 + |∇v|2)
3
2

[
(1 + |∇v|2)∆v − (∇v)THv∇v

]
.

Hence, in order to obtain div∇L(∇v) ≤ 0, it is enough to have (1+|∇v|2)∆v−
(∇v)THv∇v ≤ 0. This is a first simplification, coming from the special form
of L.

After a few simplifications, we obtain

(∇v)THv∇v = (∇φ)THφ∇φ+ 2ψ′(∇φ)THφ∇d+ (ψ′)2(∇d)THφ∇d

+ ψ′(∇φ)THd∇φ+ ψ′′〈∇φ,∇d〉2 + ψ′ψ′′〈∇φ,∇d〉+ (ψ′)2ψ′′

and

(1 + |∇v|2)∆v = (∆φ+ ψ′′ + ψ′∆d)(1 + |∇φ|2 + 2ψ′〈∇d,∇φ〉+ (ψ′)2).

Hence, in order for v to be a supersolution, the following inequality has to
hold:

(∆φ+ ψ′′ + ψ′∆d)
(
1 + |∇φ|2 + 2ψ′〈∇d,∇φ〉+ (ψ′)2

)
+ (∇φ)THφ∇φ+ 2ψ′(∇φ)THφ∇d+ (ψ′)2(∇d)THφ∇d

+ ψ′(∇φ)THd∇φ+ ψ′′〈∇φ,∇d〉2 + ψ′ψ′′〈∇φ,∇d〉+ (ψ′)2ψ′′ ≤ 0.

The previous expression contains terms in ψ′, ψ′′ and mixed terms, and the
way to order it is part of the problem. Again after a few simplifications, we
can write the expression as

∆φ+ |∇φ|2∆φ+ (∇φ)THφ∇φ

+ψ′[2〈∇d,∇φ〉∆φ− 2(∇φ)THφ∇d− (∇φ)THd∇φ+ (1 + |(∇φ)THd∇φ|2)∆φ]

+(ψ′)2[∆φ+ 2〈∇d,∇φ〉∆d− (∇d)THφ∇d] + (ψ′)3∆d

+ψ′′(1 + |∇φ|2 − 〈∇d,∇φ〉2).
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The function ψ we are trying to build will have a positive and very large
first derivative ψ′; hence, the term (ψ′)3∆d will play a fundamental role: we
want this term to be non-positive. Hence, we have to discuss the sign of the
function ∆d.

We represent locally ∂Ω setting the origin of the coordinates at a point
x∗ = (x∗1, ..., x

∗
N ) where eN is the direction of the normal pointing inside the

set Ω. Then, as it is known, for x sufficiently close to ∂Ω, we can write

∆d(x) = −
N∑
1

ki
1− kid(x)

where the ki are the principal curvatures of ∂Ω at the point y(x) of the nearest
projection of x on ∂Ω. An easy computation shows that ∆d, seen as a function
of d keeping x fixed, is always decreasing; hence, if ∆d computed at d = 0
is non-positive, it will remain non-positive as we move to the interior: the
condition

−
N∑
1

ki ≤ 0

at every point of the boundary (i.e., that the mean curvature is non-negative
on ∂Ω) assures that the term (ψ′)3∆d ≤ 0 for ψ′ ≥ 0. This condition on the
mean curvature of the boundary is the basic requirement for the existence of
solutions: we notice that this condition is not verified by the annulus A in
the example of non-existence. In addition, we notice that this condition on the
boundary is introduced in this discussion as a sufficient condition; remark-
ably, it has been shown by Jenkins and Serrin [14] that it is necessary as well:
whenever a (bounded and smooth) set Ω violates this condition, it is possi-
ble to build a boundary datum φ such that the corresponding minimization
problem has no solutions.

Going back to the construction of ψ, we notice that the terms involving
φ and d are bounded, due to the smoothness of φ and of ∇Ω. Then we can
show that div∇L(∇v) ≤ 0 if the following problem can be solved: positive
constants A, M and U are given; find a δ > 0 and a twice differentiable
function ψ defined on [0, δ] such that:

ψ(0) = 0; ψ(δ) ≥ U, ψ′(d) ≥M and ψ′′(d) ≤ 0 for d ∈ [0, δ]

and such that, on [0, δ],

ψ′′(d) +A(ψ′(d))2 = 0.
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A solution ψ to the differential equation and satisfying ψ(0) = 0 is given by

ψ(d) =
1

A
ln
(d+ k

k

)
with k an arbitrary constant; we set 1

A ln( δ+kk ) = U to satisfy the condition
at δ, and we obtain k = δ

eAU−1
, so that now the solution is completely deter-

mined; we still have to satisfy ψ′(d) ≥ M for d ∈ [0, δ]. Since ψ′′(d) ≤ 0 on
[0, δ], we can as well satisfy the condition ψ′(δ) ≥M . Since

ψ′(d) =
1

A(d+ δ
eAU−1

)

we obtain

ψ′(δ) =
1

Aδ(1 + 1
eAU−1

)
;

then it is enough to take δ sufficiently small to satisfy ψ′(δ) ≥M .
Hence, we have built a function v that satisfies v(x) = u(x) at ∂Ω and

that bounds a solution u from above in Ωδ, so that

sup
{u(x)− u(y)

|x− y|
: x ∈ ∂Ω, y ∈ Ωδ

}
≤ sup

{v(x)− v(y)

|x− y|
: x ∈ ∂Ω, y ∈ Ωδ

}
and the term at the right is bounded by ψ′(0) + sup{|∇φ| : x ∈ Ω}. Once the
analogous construction for a subsolution is performed, in order to bound the
differential quotient from below, the proof of existence is achieved.

A note on the solution. The construction above finds a solution among
those functions in L, the linear space of Lipschitzian functions, that satisfy
the boundary conditions. Are we sure that the solution found solves the prob-
lem in the larger space of those functions in W 1,1(A) that satisfy the same
boundary conditions? It is known that for variational problems, the Lavren-
tiev phenomenon can occur [11]. Calling I(v) the integral functional com-
puted at a function v satisfying the boundary conditions, it can happen that
inf{I(v) : v ∈ L} < inf{I(v) : v ∈ W 1,1(A)}: if this were to happen, the
solution found with the construction shown above would not be a true solu-
tion of the problem. Fortunately this phenomenon cannot happen in this case,
simply because the integrand ξ → L(|ξ|) for the minimal surface problem is
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Lipschitzian of constant 1. Then, let (vn) be a sequence of smooth mappings
converging to u in W 1,1(A). We have:∣∣∣ ∫

A

L(|∇vn|)dx−
∫
A

L(|∇u|)dx
∣∣∣ ≤ ∫

A

|∇vn −∇u|dx→ 0

from the convergence in W 1,1(A). Hence, the phenomenon cannot occur and
the solution we built is a solution among functions in W 1,1(A).

The example of a problem without existence of solutions revisited

The phenomenon of having boundary conditions and domains of integra-
tion such that the corresponding minimization problem admits no solutions
certainly is not limited to the minimal area functional. For instance, what
happens if, instead of considering l(t) =

√
1 + t2, we consider l(t) = (1+ t4)

1
4 ?

From now on, L(ξ) = l(|ξ|) does not denote the minimal surface integrand
anymore, but a generic strictly convex smooth function of slow growth; more
precisely we shall assume that l has a minimum equal to zero at t = 0 (hence, in
the case of the minimal area functional, we should consider l(t) =

√
1 + t2 −

1). We shall need the polar or Legendre transform of l [15], defined by
l∗(p) = supt(pt) − l(t). Under our conditions on l, l∗(p) ≥ 0 and l∗ is a
(possibly extended-valued) convex function, whose effective domain is denoted
by Dom(l∗). Further properties will be discussed later.

Consider the problem of minimizing

(3.2)
∫
A

l(|∇u(x)|)dx

with the same boundary condition as for (3.1), i.e.,

u(x) = 0 for |x| = 1; u(x) = −α for |x| = 1

2

and, as for problem (3.1), let us look for radial solutions. In addition, we
assume −α ≥ 1.

Assume that we have a radial solution ũ; then, the Euler–Lagrange equa-
tion implies that

d

dr
(l′(ũ′(r))r) = 0
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i.e., that

(3.3) l′(ũ′(r)) = l′
(
ũ′
(1

2

))( 1

2r

)
.

Since ũ(1)− ũ(1
2) = −α, for some r̂ ∈ (1

2 , 1) we must have ũ′(r̂) ≥ 2(−α);
since the right hand side of (3.3) is non-increasing and l′ is non-decreasing,
we infer that l′(ũ′(1

2)) ≥ l′(ũ′(r̂)) ≥ l′(−2α) ≥ l′(1).
Solve (3.3) as ũ′(r) = (l∗)′(l′(ũ′(1

2))( 1
2r )). Since r → ( 1

2r ) is convex for
positive r, on the interval 1

2 ≤ r ≤ 1 we have ( 1
2r ) ≤ −(r − 1

2) + 1 = 3
2 − r

and, since (l∗)′ is non-decreasing, (l∗)′(l′(ũ′(1
2))( 1

2r )) ≤ (l∗)′(l′(ũ′(1
2))(3

2 − r)).
Hence∫ 1

1
2

ũ′(r)dr =

∫ 1

1
2

(l∗)′
(
l′
(
ũ′
(1

2

))( 1

2r

))
dr

≤
∫ 1

1
2

(l∗)′
(
l′
(
ũ′
(1

2

))(3

2
− r
))
dr

=
1

l′(ũ′(1
2))

∫ y( 1
2 )

y(1)

(l∗)′(y)dy =
1

l′(ũ′(1
2))

[
l∗
(
y
(1

2

))
− l∗(y(1))

]
.

Hence, ∣∣∣ ∫ 1

1
2

ũ′(r)dr
∣∣∣ ≤ 1

l′(1)
M

where M = sup{l∗(p) : p ∈ Dom(l∗)}.
Then, whenever M is finite and |α| is strictly larger than 1

l′(1)M , problem
(3.2) admits no radial solution.

For the minimal area functional, l(t) =
√

1 + t2 − 1, we obtain that, for
p ∈ [−1, 1],

l∗(p) = 1−
√

1− p2

while l∗(p) = +∞ for p /∈ [−1, 1]; hence, M = 1. A similar computation for
f(t) = (1 + t4)

1
4 − 1 gives l∗(p) = −(1 − p 4

3 )
3
4 + 1 for |p| ≤ 1, l∗(p) = +∞

otherwise; M is again = 1.
We have found a different way for showing the existence of a boundary

condition on A such that the corresponding minimization problem for the
minimal area functional admits no solutions. Moreover, this property of non-
existence of solutions is not restricted to the minimal area functional, but it
is common to all functionals such that the image of l∗ is bounded.
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A condition involving the polar. The polar (or Legendre transform) of a
function L, defined by setting

L∗(p) = sup
ξ∈RN

[〈p, ξ〉 − L(ξ)]

is a convex, extended-valued function. We are interested in Lagrangians de-
pending on the norm of ∇v, hence our l is defined on R or, possibly on a
convex subset of it. We wish to examine the implications of the following
condition.

Assumption 1. The polar l∗ is a continuous extended-valued function
on R.

When l∗ is defined over the whole R (with finite values), it is continuous
by convexity; otherwise, the effective domain of l∗ is an interval; the condition
of continuity implies that this interval must be open. When l is of superlinear
growth, we can prove that its polar is defined over R, hence Assumption 1
is always satisfied by mappings l of superlinear growth. The functional of
minimal area has a polar whose effective domain is the closed interval [−1, 1],
so that Assumption 1 is not verified.

Let us consider a different map of linear growth. The map

l(t) =

{
|t| −

√
|t|+ 1

8α+ 1
2β + γ for |t| ≥ 1

2 ,

1
4α|t|

4 + 1
2β|t|

2 for |t| ≤ 1
2 ,

where α = 3√
2
− 2, β = 3+

√
2

2 − 9
4
√

2
and γ =

√
2 − 1, is strictly convex, C2

and of linear growth; again, Assumption 1 is satisfied. In fact, for this l we
have (we compute l∗ only for |p| ≥ 1− 1√

2
),

l∗(p) =

{
1
4

1
1−|p| for 1 > |p| ≥ 1− 1√

2
,

+∞ for |p| ≥ 1,

so that l∗ is continuous as a map to R∪ {+∞}. Hence, this function provides
an example of a map of linear growth such that Assumption 1 holds.

Assumption 1, in a slightly different form, was introduced in [10] for a
problem of slow growth on the parametrizations of a given curve; in [3], it was
shown that Assumption 1 implies that solutions to an autonomous functional
defined over a one-dimensional set are Lipschitzian; in [7] it is shown that
under Assumption 1, an autonomous functional as before actually admits
solutions, through a variant of the Direct method; in fact, no coercivity is
assumed; it is proved that, when Assumption 1 is satisfied, from a minimizing
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sequence we can select a subsequence such that suitable reparametrizations of
the subsequence converge and still form a minimizing sequence. Finally, the
problem on a multi-dimensional space was met in [9]. To state the main result
of [9], we need some notations.

The class L of Lagrangians L we shall consider is

L =
{
L(ξ) = l(|ξ|) : l : R→ R+ is strictly convex, l(t) = l(−t),

l ∈ C2 and l′′ is non-increasing
}
.

The class considered contains functionals of slow growth; it contains l(t) = 1
2 t

2

and functionals of slower growth.
To describe the class of boundary conditions and of sets Ω that are allowed,

set

F = {φ ∈ C2(Ω)} and O = {Ω open and bounded: ∂Ω ∈ C2}.

Hence, the paper deals with smooth boundary conditions and smooth sets Ω.
In [9], the following theorem was proved.

Theorem 3.2. Let L ∈ L. Then, for every φ ∈ F, for every Ω ∈ O, problem
(3.1) admits a (unique) solution ũ ∈ W 1,1(Ω) if and only if Assumption 1
holds.

For the non-parametric minimal area problem Assumption 1 is not satisfied
and it is not true that for every φ ∈ F, for every Ω ∈ O, problem (3.1) admits
a solution.

The necessity of Assumption 1 was essentially proved in the discussion of
the previous section. Here we wish to discuss the sufficiency part.

Sufficiency under Assumption 1

We shall denote the domain of l∗ by (−p∗, p∗), with p∗ possibly +∞. To
show that Assumption 1 is sufficient for the existence of a solution, no matter
what the boundary condition is in the set F, the argument is the same as in
the proof of existence for the minimal area problem. In fact, the preliminary
discussion for that proof was based only on the property that l is strictly
convex, a condition retained in the new setting. Hence, the proof is based on
the construction of a supersolution (and, clearly, of a subsolution as well). In
the case of the minimal area problem, the possibility of defining a supersolu-
tion was based on the discussion of the sign of the Laplacian of the distance
function, that was in itself based on a condition on the mean curvature of ∂Ω.
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No such a condition exists in the statement of the present theorem, hence
the construction of a supersolution will be based on substantially different
arguments.

We shall build the supersolution v as it was done in the case of the minimal
area problem: we set again, for x ∈ Ω,

v(x) = ψ(d(x)) + φ(x)

where ψ, to be defined, is such that ψ(0) = 0; then, the function v is such
that v|∂Ω = u|∂Ω = φ|∂Ω and ∇v(x) = ψ′(d(x))∇d(x) +∇φ(x). We obtain

div∇L(∇u(x)) =
l′

|∇u|
(ψ′∆d+ ψ′′ + ∆φ)

+
(l′′ − l′

|∇u|)

|∇u|2
(ψ′∇d+∇φ)T (ψ′′∇d⊗∇d+ ψ′Hd +Hφ)(ψ′∇d+∇φ).

We still have to find ψ that makes this expression negative. Notice that in the
corresponding expression for l(t) =

√
1 + t2, we were able to find an expression

for div∇L(∇u) that was explicit in ψ′ and its powers, so that we could arrange
its terms according to the different powers of ψ′; here, ψ′ appears also hidden
in the non-linear expressions l′ and l′′, besides being in ∇u. Expanding the
products we obtain

div∇L(∇u(x)) =
(ψ′)2

|∇u|2
ψ′′(l′′ − l′

|∇u|
) +

ψ′′

|∇u|2
(〈∇φ,∇d〉2

+ 2ψ′〈∇φ,∇d〉)(l′′ − l′

|∇u|
) + ψ′′

l′

|∇u|
(ψ′)2

|∇u|2
|∇u|2

(ψ′)2
+
l′[ψ′∆d+ ∆φ]

|∇u|

+
(l′′ − l′

|∇u|)

|∇u|2
(
ψ′∇φTHd∇φ+ (∇φ)THφ∇φ+ 2ψ′(∇φ)THφ∇d

+ (ψ′)2(∇d)THφ∇d
)
.

After a few estimates we obtain that, in order to have div∇L(∇u(x)) ≤ 0, it
is enough to have

0 ≥ ψ′′l′′
{

1 +
1

(ψ′)2
(〈∇φ,∇d〉2 + 2ψ′〈∇φ,∇d〉)

}
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+ l′
{
|∇u|∆d
ψ′

+
|∇u|∆φ

(ψ′)2
− 1

ψ′|∇u|
(∇φ)THd∇φ−

1

(ψ′)2|∇u|
(∇φ)THφ∇φ

− 2

ψ′|∇u|
(∇d)THφ∇φ−

1

|∇u|
(∇d)THφ∇d

}

+ l′′
(

1

ψ′
∇φTHd∇φ+

1

(ψ′)2
(∇φ)THφ∇φ+

2

ψ′
(∇d)THφ∇φ+ (∇d)THφ∇d

)

= ψ′′l′′
{

1 +
1

(ψ′)2
(〈∇φ,∇d〉2 + 2ψ′〈∇φ,∇d〉)

}
+ l′A+ l′′B,

where

A =
|∇u|∆d
ψ′

+
|∇u|∆φ

(ψ′)2
− 1

ψ′|∇u|
(∇φ)THd∇φ−

1

(ψ′)2|∇u|
(∇φ)THφ∇φ

− 2

ψ′|∇u|
(∇d)THφ∇φ−

1

|∇u|
(∇d)THφ∇d

and

B =
1

ψ′
∇φTHd∇φ+

1

(ψ′)2
(∇φ)THφ∇φ+

2

ψ′
(∇d)THφ∇φ+ (∇d)THφ∇d.

Then, taking ψ′ sufficiently large, it is enough to have

1

2
ψ′′l′′ + l′A+ l′′B ≤ 0.

Consider A; a constant h∆ exists such that, for ψ′ large, A ≤ 2h∆ (no as-
sumptions on the sign of ∆d!). Similarly, for ψ′ ≥ P we have B ≤ 2hφ; hence,
to have div∇L(∇u(x)) ≤ 0, it is enough to have

(3.4) ψ′ ≥ P and
1

2
ψ′′l′′(|∇u|) + l′(|∇u|)2h∆ + l′′(|∇u|)2hφ ≤ 0.

In order to simplify this expression, we notice that the assumption of slow
growth implies that there exist τ and λ̃ : t ≥ τ implies

l′′(t) ≤ λ̃l′(t).

Then to have (3.4) it is enough to solve

ψ′′(d(x))l′′(|∇u(x)|) + Cl′(|∇u(x)|) ≤ 0.
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The above can be seen as a differential inequality for v(d) = ψ′(d) : ψ′ enters,
through ∇u, in the argument of l′ and l′′. For large values of ψ′, we have
|∇u| ∼ ψ′; then, we consider a solution v to the simplified differential equation

l′′(2v(d))

l′(2v(d))
2v′(d) = −2C

that gives

l′(2v(d)) = l′(2v(0))e−2Cd

and further approximates it; we show that ṽ, a solution to

(3.5) l′(2ṽ(d)) = l′(2v(0))(1− 2Cd),

is such that

ṽ(d) ≤ v(d).

To show that δ > 0 can be found so that v(δ) ≥ P̃ and such that the
condition

u(x) = ψ(d(x)) + φ(x) ≥ U

is satisfied for x such that d(x) = δ, it is enough to require that∫ δ

0

ψ′(t)dt =

∫ δ

0

v(t)dt ≥ 2U,

hence ∫ δ

0

ṽ(t)dt ≥ 2φ and ṽ(δ) ≥ P̃ .

In (3.5), ṽ is given in an implicit form; solve it setting

ṽ(t) =
1

2
(l∗)′(l′(2v(0))(1− 2Ct)).

Set p0 = l′(2v(0)); the relation between ṽ(δ) and p0 is given by

ṽ(δ) =
1

2
(l∗)′((l∗)−1(

1

2
l∗(p0))) and that

∫ δ(p0)

0

ṽ(t)dt =
1

p08C
l∗(p0).
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Hence, to satisfy the condition that ψ ≥ U when d(x) = δ, it is enough to show
that (recalling that the domain of l∗ is (−p∗, p∗)) we can choose p0 sufficiently
close to p∗ so as to have at once 1

p08C l
∗(p0) ≥ 2U and ṽ(δ(p0)) ≥ P̃ .

This last fact comes from a small lemma on the properties of l∗ under
Assumption 1.

4. An introduction to regularity

The problem. We are interested in the regularity properties of solutions to
the problem of minimizing a functional of the kind

I(u) =

∫
Ω

[L(|∇u(x)|) + f(x)u(x)]dx

with prescribed boundary conditions. (We might have more general function-
als, e.g. replacing f(x)u by g(x, u).) The map L is both differentiable and of
polynomial growth, so that a solution satisfies the Euler–Lagrange equation,
i.e., for every smooth η with compact support in Ω, we have∫

Ω

[〈∇L(∇u(x)),∇η(x)〉+ f(x)η(x)]dx = 0.

We minimize an integral functional over a subset of the space of functions
having (weak) first order derivatives. The solution ũ simply gives a value to the
integral that is the smallest among the values computed along the competing
functions.

A strange phenomenon might appear: under certain conditions, the solu-
tion ũ, instead of having only first order derivatives, has, in addition, second
order derivatives.

The case of one dimensional integration set

Assume we are minimizing the integral∫ β

α

[
1

2
|y′(t)|2 + f(t)y(t)]dt, y(α) = a, y(β) = b,

where f ∈ L2((α, β)), among the functions that are in W 1,2((α, β)) with the
given boundary conditions.
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A unique solution to the problem exists, and it gives the least possible
value to the integral among all the functions that have a first order derivative
in L2 and that satisfy the boundary conditions. We wish to show the surprising
fact that the solution is more regular than the competing functions: it admits
a second order derivative that is in L2.

Let x be the solution. First, we notice that we can obtain an a-priori
estimate on

∫ β
α
|x′(t)|2dt. In fact, the function (a + b−a

β−α(t − α)) satisfies the
given boundary conditions and clearly gives a finite value V to the integral,
so that

∫ β
α

[1
2 |x
′(t)|2 + f(t)x(t)]dt ≤ V . Moreover, the function y(t) = x(t) −

(a+ b−a
β−α(t−α)) is zero at the boundary and is absolutely continuous, so that

we obtain ∫ β

α

|y(t)|2dt ≤ 1

2
(β − α)2

∫ β

α

|y′(t)|2dt;

then,

∫ β

α

|x(t)|2dt =

∫ β

α

|a+
b− a
β − α

(t− α) + x(t)− (a+
b− a
β − α

(t− α))|2dt

≤
∫ β

α

2|a+
b− a
β − α

(t− α)|2dt+ (β − α)2

∫ β

α

(x′(t)− b− a
β − α

)2dt

≤
∫ β

α

2|a+
b− a
β − α

(t− α)|2dt+ (β − α)2

∫ β

α

(2|x′(t)|2 + 2| b− a
β − α

|2)dt.

Hence, there are two constants C0 and C1, depending on the data of the
problem (but not on the function x), such that∫ β

α

|x(t)|2dt ≤ C0 + C1

∫ β

α

|x′(t)|2dt.

Hence, from |f(t)x(t)| ≤ λ|f(t)|2 + 1
λ |x(t)|2, choosing λ = 4C1, we obtain

V ≥
∫ β

α

[
1

2
|x′(t)|2 + f(t)x(t)]dt ≥

∫ β

α

[
1

2
|x′(t)|2 − |f(t)x(t)|]dt

≥ 1

4

∫ β

α

|x′(t)|2 − C0

4C1
(β − α)− 4C1

∫ β

α

|f(t)|2dt
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so that

(4.1)
∫ β

α

|x′(t)|2dt ≤ 4V + 4
( C0

4C1
(β − α) + 4C1

∫ β

α

|f(t)|2dt
)

= K.

We have obtained an a priori estimate for
∫ β
α
|x′(t)|2dt, depending on the data

of the problem through the constants V,C0, C1 and on ‖f‖2L2 .
The reasoning that leads to the proof of the additional regularity of the

solution is exceedingly simple. Begin by assuming that we already knew that
a second derivative exists, and try to learn something about its properties.
The Euler–Lagrange equation gives∫ β

α

[x′(t)η′(t) + f(t)η(t)]dt = 0

for every variation η that is zero at the boundary and that it is sufficiently reg-
ular. Assume that η is itself φ′, where both φ and φ′ are zero at the boundary;
then, we obtain ∫ β

α

[x′(t)φ′′(t) + f(t)φ′(t)]dt = 0;

an integration by parts gives then

(4.2)
∫ β

α

x′′(t)φ′(t)dt =

∫ β

α

f(t)φ′(t)dt.

Fix a point t0 ∈ (α, β) and let δ > 0 be such that [t0−2δ, t0 +2δ] ⊂ (α, β) and
let a variation η be twice differentiable, such that η(t) ≡ 1 on (t0 − δ, t0 + δ),
η(t) ≡ 0 on (α, β) \ [t0 − 2δ, t0 + 2δ] and 0 ≤ η(t) ≤ 1 everywhere. For φ
take φ(t) = η2(t)x′(t); we have φ′(t) = 2η(t)η′(t)x′(t) + η2(t)x′′(t) and the
assumptions on x and η imply that φ ∈ C2, so that equation (4.2) applies; we
have ∫ β

α

x′′(t)[2η(t)η′(t)x′(t) + η2(t)x′′(t)]dt =

∫ β

α

f(t)φ′(t)dt,

i.e., ∫ β

α

η2(t)(x′′(t))2dt = −
∫ β

α

x′′(t)2η(t)η′(t)x′(t)dt+

∫ β

α

f(t)φ′(t)dt.
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This equality is the basis of the proof of regularity. At the left we have a pos-
itive integrand; hence, we have the natural inequality∫ β

α

η2(t)(x′′(t))2dt ≤
∫ β

α

|x′′(t)2η(t)η′(t)x′(t)|dt+

∫ β

α

|f(t)φ′(t)|dt.

For any pair y, z we have 2zy = 2zλ 1
λy ≤ (zλ)2 + ( 1

λy)2; let z = |x′′(t)η(t)|,
y = |η′(t)x′(t)| and λ = 1

2 , to obtain∫ β

α

|x′′(t)2η(t)η′(t)x′(t)|dt ≤ 1

4

∫ β

α

|x′′(t)η(t)|2dt+ 4

∫ β

α

|η′(t)x′(t)|2dt,

so that (4.1) gives

3

4

∫ β

α

|x′′(t)η(t)|2dt ≤ 4

∫ β

α

|η′(t)x′(t)|2dt+

∫ β

α

|f(t)φ′(t)|dt.

Moreover, also

∫ β

α

|f(t)φ′(t)|dt ≤
∫ β

α

[|η′(t)|2|f(t)|2 + η(t)2|x′(t)|2]dt

+

∫ β

α

[4|f(t)|2η(t)2 +
1

4
η(t)2x′′(t)2]dt

and we have∫ β

α

|x′′(t)η(t)|2dt ≤
∫ β

α

[(8|η′(t)|+2η(t)2)|x′(t)|2 +(8η(t)2 +2η′(t)2)|f(t)|2]dt.

From (4.1) we have a constant H, depending on the data of the problem and
on η, such that ∫ β

α

|x′′(t)η(t)|2dt ≤ H.

In particular, on [t0 − δ, t0 + δ] we have η ≡ 1:

(4.3)
∫ t0+δ

t0−δ
|x′′(t)|2dt ≤ H.

We have obtained a local bound on
∫
|x′′(t)|2dt, depending on the data of the

problem and on t0.
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For the true problem, the existence of x′′ is what we want to prove. The
idea is to obtain bounds similar to (4.3) not on x′′ but on the difference
quotient of x′ and use this information to prove the existence of x′′.

Dimension N

The key to the proof of regularity lies on the following remarkable property
of Sobolev functions.

Lemma 4.1. a) Let u ∈ L2(Ω). Assume that there exists a constant C
such that, for every ω ⊂⊂ Ω and for every h sufficiently small∥∥∥u(x+ hes)− u(x)

h

∥∥∥
L2(ω)

≤ C.

Then, there exists the weak derivative uxs and uxs ∈ L2(Ω).
b) Conversely, let u be in W 1,2(Ω). Then, there exists a constant C such that,

for every ω ⊂⊂ Ω and for every h sufficiently small∥∥∥u(x+ hes)− u(x)

h

∥∥∥
L2(ω)

≤ C.

The Laplacian. The model case is the minimization of∫
Ω

[
1

2
|∇u(x)|2 + f(x)u(x)] dx

where the solution satisfies the Euler–Lagrange equation∫
Ω

[〈∇ũ(x),∇η(x)〉+ f(x)η(x)] dx = 0

for every η ∈W 1,2
0 (Ω).

In this case, f ∈ L2 implies that ũ ∈ W 2,2
loc (Ω). Assume that we are mini-

mizing ∫
Ω

[L(∇u(x)) + f(x)u(x)] dx.

The conditions to be considered are
1) L should be smooth,
2) L has to satisfy a suitable growth condition and
3) L has to be strictly convex, in a way to be discussed.
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About the requirement of smoothness, notice that L need not be twice
differentiable. Results allowing discontinuity of ∇L are presented in [13] and
[6]. In this case the strict convexity condition becomes: there exists m > 0
such that

〈∇L(x)−∇L(y), x− y〉 ≥ m|x− u|2.

A condition we have to fulfill is the condition of strict ellipticity on a
matrix HL, that requires the existence of constants λ > 0 and Λ such that for
every ξ, for every v,

λ|v|2 ≤ vTHL(ξ)v ≤ Λ|v|2.

For the case L(ξ) = l(|ξ|), the eigenvalues of HL(ξ) are l′(|ξ|)
|ξ| and l′′(|ξ|) and

we can write

min{ l(|ξ|)
|ξ|

, l′′(|ξ|)}|v|2 ≤ vTHL(ξ)v ≤ max{ l
′(|ξ|)
|ξ|

, l′′(|ξ|)}|v|2.

Consider l(t) = 1
p |t|

p; when p = 2, the strict ellipticity condition is verified
with λ = Λ = 1; when p 6= 2, this condition is never verified: when 1 < p < 2,
|t|p−2 diverges as |t| → 0, and we cannot find Λ; when p > 2, |t|p−2 → 0 as
|t| → 0, and we cannot find λ > 0. For the functional of the non-parametric
minimum area problem, i.e., for l(t) =

√
1 + t2, we obtain that Λ = 1, but we

cannot find λ.
It seems that M = ∞ does not prevent the higher differentiability of the

solution, actually it can increase it. For some 1 < p < 2, consider the function

l̃(t) =

{
1
2 |t|

2 + 1 for |t| ≥ 1,
1
p |t|

p + 3
2 −

1
p for |t| ≤ 1

and set L̃(ξ) = l̃(|ξ|). The function L̃ has quadratic growth.
We have, calling HL̃(ξ) the matrix of second derivatives of L̃ computed at

ξ,

HL̃(ξ) =

{
(p− 2)|ξ|p−4ξ ⊗ ξ + |ξ|p−2I for |ξ| < 1,

I for |ξ| > 1,

so that zTHL̃(ξ)z ≥ |z|2 for all ξ, while |HL̃(ξ)| → ∞ as |ξ| → 0.
Hence, m = 1 while M =∞.
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Let u be a solution to the problem of minimizing∫
Ω

L̃(∇u(x)) dx.

In [3] it was proved that both ∇u
|∇u|2−p and ∇u are in W 1,2(Ω); in particular,

for every i = 1, ...N , we have max{ |uxi ||∇u|2−p , |uxi |} ∈ W 1,2
loc (Ω). In this case,

having M =∞ has increased the regularity.

A non-regular problem. Could solutions be regular, even though L is not?
Consider the model problem of minimizing∫

Ω

[L(|∇u(x)|) + u(x)]dx

where L(ξ) = l(|ξ|), with

l(t) = t+
1

2
t2 for t ≥ 0.

The convex function t → l(|t|) is continuous at 0 but it is not differentiable
there; ∇L(ξ) = (2|ξ| + 1) ξ

|ξ| is discontinuous at 0. The corresponding Euler–
Lagrange equation is: there exists p(·), a selection from x→ ∂L(∇u(x)), such
that, for every η, ∫

Ω

[〈p(x),∇η(x)〉+ η(x)]dx = 0.

When Ω = B(0, 4), the ball about 0 of radius 4 in the 2-dimensional
Euclidean space, and u0 = 1, it admits the solution

u(x) =

{
0 for |x| ≤ 2,( |x|

2 − 1
)2 otherwise,

and the function p is p(x) = 1
2x. u is C1; the second derivatives of the solution,

defined for |x| 6= 2, have a jump discontinuity at |x| = 2, hence the solution
cannot possibly be smoother that being in W 2,2(B(0, 4)).

In a recent result [6] it is shown that, indeed, a solution is in W 2,2(Ω).
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Violating the strict convexity condition. We said that a basic require-
ment for the regularity is the strict convexity condition: there exixts m > 0
such that

〈∇L(x)−∇L(y), x− y〉 ≥ m|x− u|2.

Could possibly this condition be violated while we still retain the regularity
of solutions?

The case L = 1
p |z|

p. We want to see what the previous conditions and
result yield, when applied to the case

L =
1

p
|z|p.

Let us take p > 2. Then, the condition

ξTHLξ ≥ ν|ξ|2 with ν > 0

is NOT verified. In fact, we have 〈∇L(x) −∇L(0), x − 0〉 = |x|p with p > 2,
contradicting the strict convexity condition near the origin.

Still, we ca find in books chapters on the regularity of solutions of problems
with growth like |ξ|p. Let us take a closer look at the conditions.

We introduce the function

V (z) =
√

1 + |z|2

since the conditions will be phrased in terms of V .
The conditions on L are: a growth condition (L grows like |z|p) and a

“strict convexity” condition:

ξTHLξ ≥ νV (z)p−2|ξ|2

with ν > 0. In particular, at z = 0, the condition becomes ξTHLξ ≥ ν|ξ|2,
that is not satisfied by |z|p when p > 2.

Imposing this condition removes the singularity at the origin. The modified
problem has m > 0 and M = ∞, but M = ∞ poses no problems for the
regularity. In [4] the following problem was considered: for 2 < p < 3, minimize∫

Ω

[1

p
|∇u(x)|p + g(x, u(x))

]
dx

(under suitable conditions on g) and it was proved that a solution ũ belongs
to W 2,2

loc (Ω). Hence, the quadratic strict convexity condition is not satisfied,
but the regularity of solutions still holds true.
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An idea of the proof. Fix p = 5
2 so that from l(t) = 2

5 |t|
5
2 we obtain

l′′(t) = 3
2 |t|

1
2 so that as |t| → 0, we have l′′(t) → 0 and the strict convexity

condition is violated.
Consider the one-dimensional problem of minimizing∫ β

α

[2

5
|x′(t)| 52 + f(t)x(t)

]
dt, y(α) = a, y(β) = b.

If we insert in the Euler–Lagrange equation the standard variation φ defined
by φ(t) = η2(t)x′(t), we obtain∫ β

α

3

2
|x′| 12 (x′′(t))2η2 = −

∫ β

α

3

2
|x′| 12 (x′′(t)x′2ηη′ + ...

( ... represent the terms arising from g(x, u) that we do not wish to discuss
here).

Since |x′| 12 → 0 for |x′| small, we cannot obtain a positive lower bound for∫ β

α

(x′′(t))2.

Hence, the idea of the proof is to contrast the ∞ with a 0.
Assume that as a variation φ we take instead φ(t) = η2(t)γ(x′(t)) and we

choose

γ(t) = |t| 12 sign(t)

so that γ′(t) = 1
2

1

|t|
1
2
; then, the Euler–Lagrange equation gives

∫ β

α

3

2
|x′| 12 1

2

1

|x′| 12
(x′′(t))2η2 = −

∫ β

α

3

2
|x′| 12 (x′′(t)|x′| 12 sign(x′)2ηη′ + ...

and we can obtain a bound for
∫ β
α

(x′′(t))2.
The idea works for 2 < p < 3. It stops working at p = 3: in fact, p = 3

would give that l′′(x′) = x′; to contrast it we would need γ′(t) = 1
t whose

integral is ln(t), unbounded near the origin.
We have shown that there exists at least one case where the functional to

be minimized needs not satisfy the quadratic strict convexity condition. Could
this condition be weaken in general?
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A different regularity problem

When the integration set is one-dimensional, it follows that the dual vari-
able p(t) = ∇L(x′(t)) is absolutely continuous, even when L is not differen-
tiable and we consider a selection p(·) from ∂L(∇u(·)). Can we hope to prove
the regularity of a selection p(x) ∈ ∂L(∇u(x))?

An example. We consider the problem of minimizing

(4.4) I(v) =

∫
Ω

[L(∇v(x)) + v(x)]dx

on u0 +W 1,2
0 (Ω), where

L(ξ) = l(|ξ|) =
1

2
(|ξ|2 − 1)+

and Ω ⊂ R2. Since

l′(t) =

{
0 for |t| ≤ 1,

t for |t| > 1,

the gradient of L is discontinuous when |ξ| = 1; hence, the function L presents
at once a flat part (|ξ| ≤ 1, where L ≡ 0) and a discontinuity of the gradient.

A (radial) solution u to the problem of minimizing (4.4) is given by

u(x) =

{ |x| for |x| ≤ 2,
1
4 |x|

2 + 1 for |x| ≥ 2,

whose gradient is

∇u(x) =

{ x
|x| for |x| < 2,
1
2x for |x| > 2,

so that the gradient of u is discontinuous at x = 0.
From the known results on the validity of the Euler–Lagrange equation

[11], we infer the existence of a p ∈ L2(Ω) such that, at once, p is a selection
from x → ∂L(∇u(x)) and such that div(p) = 1; when |x| > 2 we have
|∇u(x)| > 1 and p(x) = ∇L(∇u(x)) = ∇u(x) = 1

2x; then, we notice that the
very same function 1

2x is, even for |x| ≤ 2, a selection from ∂L(∇u(x)), has
(weak) divergence ≡ 1 and is everywhere differentiable, even at the origin 0,
where ∇u is discontinuous. On this example, p is more regular than ∇u.

Hence, from the example, it seems that the regularity of ∂L(∇u) might
hold under broader conditions than the regularity of ∇u.
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Can this fact be shown for general (not rotational) boundary conditions?
The author has found the problem of proving the regularity of p to be partic-
ularly difficult.
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