MULTIPLIERS OF UNIFORM TOPOLOGICAL ALGEBRAS

Mohammed El Azhari

Abstract

Let E be a complete uniform topological algebra with ArensMichael normed factors $\left(E_{\alpha}\right)_{\alpha \in \Lambda}$. Then $M(E) \cong \lim _{\leftrightarrows} M\left(E_{\alpha}\right)$ within an algebra isomorphism φ. If each factor E_{α} is complete, then every multiplier of E is continuous and φ is a topological algebra isomorphism where $M(E)$ is endowed with its seminorm topology.

1. Preliminaries

A topological algebra is an algebra (over the complex field) which is also a Hausdorff topological vector space such that the multiplication is separately continuous. For a topological algebra E, by $\Delta(E)$ we denote the set of all nonzero continuous multiplicative linear functionals on E. An approximate identity in a topological algebra E is a net $\left(e_{\omega}\right)_{\omega \in \Omega}$ such that for each $x \in E$ we have $x e_{\omega} \rightarrow_{\omega} x$ and $e_{\omega} x \rightarrow_{\omega} x$.

Let E be an algebra, a function $p: E \rightarrow[0, \infty[$ is called a pseudo-seminorm, if there exists $0 \leq k \leq 1$ such that $p(x+y) \leq p(x)+p(y), p(\lambda x)=|\lambda|^{k} p(x)$ and $p(x y) \leq p(x) p(y)$ for all $x, y \in E$ and $\lambda \in \mathbb{C}$. The number k is called the homogenity index of p. If $k=1$ then p is called a seminorm. A pseudoseminorm p is a pseudo-norm, if $p(x)=0$ implies $x=0$.

A locally m-pseudoconvex algebra is a topological algebra E whose topology is determined by a directed family $\left\{p_{\alpha}: \alpha \in \Lambda\right\}$ of pseudo-seminorms. For each $\alpha \in \Lambda, \operatorname{ker}\left(p_{\alpha}\right)=\left\{x \in E: p_{\alpha}(x)=0\right\}$, the quotient algebra $E_{\alpha}=$

[^0]$E / \operatorname{ker}\left(p_{\alpha}\right)$ is a pseudo-normed algebra in the pseudo-norm $\bar{p}_{\alpha}\left(x_{\alpha}\right)=p_{\alpha}(x)$, $x_{\alpha}=x+\operatorname{ker}\left(p_{\alpha}\right)$. Let $f_{\alpha}: E \rightarrow E_{\alpha}, f_{\alpha}(x)=x+\operatorname{ker}\left(p_{\alpha}\right)=x_{\alpha}$, be the quotient map, f_{α} is a continuous homomorphism from E onto E_{α}. We endow the set Λ with the partial order: $\alpha \leq \beta$ if and only if $p_{\alpha}(x) \leq p_{\beta}(x)$ for all $x \in E$. Take $\alpha \leq \beta$ in Λ, since $\operatorname{ker}\left(p_{\beta}\right) \subset \operatorname{ker}\left(p_{\alpha}\right)$, we define the surjective continuous homomorphism $f_{\alpha \beta}: E_{\beta} \rightarrow E_{\alpha}, x_{\beta}=x+\operatorname{ker}\left(p_{\beta}\right) \rightarrow x_{\alpha}=x+\operatorname{ker}\left(p_{\alpha}\right)$. Thus $\left\{\left(E_{\alpha}, f_{\alpha \beta}\right), \alpha \leq \beta\right\}$ is a projective system of pseudo-normed algebras. We also define the algebra isomorphism (into) $\Phi: E \rightarrow \lim E_{\alpha}, \Phi(x)=\left(f_{\alpha}(x)\right)_{\alpha \in \Lambda}$, the canonical projections $\pi_{\alpha}: \prod_{\alpha \in \Lambda} E_{\alpha} \rightarrow E_{\alpha}$ and the restrictions to the projective limit $g_{\alpha}=\pi_{\alpha} / \lim E_{\alpha}: \lim _{\leftarrow} E_{\alpha} \rightarrow E_{\alpha}$. Since $g_{\alpha} \circ \Phi=f_{\alpha}$ and the quotient map f_{α} is surjective, it follows that the map g_{α} is surjective, this proves that the projective system $\left\{\left(E_{\alpha}, f_{\alpha \beta}\right), \alpha \leq \beta\right\}$ is perfect in the sense of [5, Definition 2.10] (see also [2, Definition 2.7]). Thus, if E is a locally m pseudoconvex algebra (not necessarly complete), then its generalized ArensMichael projective system $\left\{\left(E_{\alpha}, f_{\alpha \beta}\right), \alpha \leq \beta\right\}$ is perfect. If E is complete, then $E \cong \lim _{\leftrightarrows} E_{\alpha}$ within a topological algebra isomorphism.

A locally m-convex algebra is a topological algebra E whose topology is defined by a directed family $\left\{p_{\alpha}: \alpha \in \Lambda\right\}$ of seminorms. For each $\alpha \in \Lambda$, put $\Delta_{\alpha}(E)=\left\{f \in \Delta(E):|f(x)| \leq p_{\alpha}(x), x \in E\right\}$. Let E be an algebra with involution $*$. A seminorm on E is called a C^{*}-seminorm if $p\left(x^{*} x\right)=p(x)^{2}$ for all $x \in E$. A complete locally m-convex *-algebra $\left(E,\left(p_{\alpha}\right)_{\alpha \in \Lambda}\right)$, for which each p_{α} is a C^{*}-seminorm, is called a locally C^{*}-algebra. A uniform seminorm on an algebra E is a seminorm p satisfying $p\left(x^{2}\right)=p(x)^{2}$ for all $x \in E$. A uniform topological algebra is a topological algebra whose topology is determined by a directed family of uniform seminorms. In that case, such a topological algebra is also named a uniform locally convex algebra. A uniform normed algebra is a normed algebra $(E,\|\cdot\|)$ such that $\left\|x^{2}\right\|=\|x\|^{2}$ for all $x \in E$.

An algebra E is called proper if for any $x \in E, x E=E x=\{0\}$ implies $x=0$. If E has identity, then E is proper. Moreover, a topological algebra with approximate identity is proper. Also, a (Hausdorff) uniform topological algebra is proper. Let E be an algebra, a map $T: E \rightarrow E$ is called a multiplier if $T(x) y=x T(y)$ for all $x, y \in E$. We denote by $M(E)$ the set of all multipliers of E. It is known that if E is a proper algebra, then any multiplier T of E is linear with the property $T(x y)=T(x) y=x T(y)$ for all $x, y \in E$, and $M(E)$ is a commutative algebra with the identity map I of E as its identity. Let $(E,\|\cdot\|)$ be a uniform normed algebra, and let $M_{c}(E)$ be the algebra of all continuous multipliers of E with the operator norm $\|\cdot\|_{o p}$. It is known that $\|\cdot\|_{o p}$ has the square property and the map $l:(E,\|\cdot\|) \rightarrow\left(M_{c}(E),\|\cdot\|_{o p}\right), l(x)(y)=x y$, is an isometric isomorphism (into). For information on the multiplier algebra in non-normed topological algebras, see also [3] and [4].

In the sequel, we will need the following elementary result called the universal property of the quotient: Let X, Y, Z be vector spaces, $f: X \rightarrow Y$ and
$g: X \rightarrow Z$ be linear maps. If the map g is surjective and $\operatorname{ker}(g) \subset \operatorname{ker}(f)$, then there exists a unique linear map $h: Z \rightarrow Y$ such that $f=h \circ g$.

2. Results

Proposition 2.1. Let $\left(E,\left(p_{\alpha}\right)_{\alpha \in \Lambda}\right)$ be a locally m-pseudoconvex algebra with proper pseudo-normed factors $\left(E_{\alpha}\right)_{\alpha \in \Lambda}$. The following assertions are equivalent:
(i) $T\left(\operatorname{ker}\left(f_{\alpha}\right)\right) \subset \operatorname{ker}\left(f_{\alpha}\right)$ for all $T \in M(E)$ and $\alpha \in \Lambda$;
(ii) for each $T \in M(E)$, there exists a unique $\left(T_{\alpha}\right)_{\alpha \in \Lambda} \in \prod_{\alpha \in \Lambda} M\left(E_{\alpha}\right)$ such that $f_{\alpha} \circ T=T_{\alpha} \circ f_{\alpha}$ and $T_{\alpha} \circ f_{\alpha \beta}=f_{\alpha \beta} \circ T_{\beta}$ for all $\alpha \leq \beta$ in Λ; furthermore, T is continuous if and only if T_{α} is continuous for all $\alpha \in \Lambda$.

Proof. Since the pseudo-normed factors $\left(E_{\alpha}\right)_{\alpha \in \Lambda}$ are proper, it follows that the algebra E is proper and so every multiplier of E (or E_{α}) is linear.
(ii) \Rightarrow (i): If $T \in M(E)$ and $x \in \operatorname{ker}\left(f_{\alpha}\right)$, then $f_{\alpha}(T(x))=T_{\alpha}\left(f_{\alpha}(x)\right)=0$ and so $T(x) \in \operatorname{ker}\left(f_{\alpha}\right)$.
(i) \Rightarrow (ii): Take $T \in M(E)$ and $\alpha \in \Lambda$. Since $T\left(\operatorname{ker}\left(f_{\alpha}\right)\right) \subset \operatorname{ker}\left(f_{\alpha}\right)$ and by using the universal property of the quotient (see Preliminaries), there exists a unique linear map $T_{\alpha}: E_{\alpha} \rightarrow E_{\alpha}$ such that $f_{\alpha} \circ T=T_{\alpha} \circ f_{\alpha}$. Let $\alpha \in \Lambda$ and $x, y \in E$,

$$
\begin{aligned}
T_{\alpha}\left(f_{\alpha}(x) f_{\alpha}(y)\right) & =T_{\alpha}\left(f_{\alpha}(x y)\right)=f_{\alpha}(T(x y)) \\
& =f_{\alpha}(x T(y))=f_{\alpha}(x) f_{\alpha}(T(y))=f_{\alpha}(x) T_{\alpha}\left(f_{\alpha}(y)\right)
\end{aligned}
$$

and similarly on the other side, so T_{α} is a multiplier of E_{α}. Let $\alpha \leq \beta$ in Λ, we have $T_{\alpha} \circ f_{\alpha}=f_{\alpha} \circ T$, then $T_{\alpha} \circ f_{\alpha \beta} \circ f_{\beta}=f_{\alpha \beta} \circ f_{\beta} \circ T=f_{\alpha \beta} \circ T_{\beta} \circ f_{\beta}$, hence $T_{\alpha} \circ f_{\alpha \beta}=f_{\alpha \beta} \circ T_{\beta}$ since the quotient map f_{β} is surjective. Suppose that T is continuous. Let O_{α} be an open set in E_{α}, we have

$$
f_{\alpha}^{-1}\left(T_{\alpha}^{-1}\left(O_{\alpha}\right)\right)=\left(T_{\alpha} \circ f_{\alpha}\right)^{-1}\left(O_{\alpha}\right)=\left(f_{\alpha} \circ T\right)^{-1}\left(O_{\alpha}\right)
$$

which is open in E since $f_{\alpha} \circ T$ is continuous, then $T_{\alpha}^{-1}\left(O_{\alpha}\right)$ is open in E_{α}. Conversely, suppose that T_{α} is continuous for all $\alpha \in \Lambda$. Since E is topologically isomorphic to a subalgebra of $\underset{\leftarrow}{\lim } E_{\alpha}, T$ is continuous if and only if $f_{\alpha} \circ T$ is continuous for all $\alpha \in \Lambda$. Since $f_{\alpha} \circ T=T_{\alpha} \circ f_{\alpha}$ and T_{α} is continuous for all $\alpha \in \Lambda$, we deduce that T is continuous.

Proposition 2.2. Let $\left(E,\left(p_{\alpha}\right)_{\alpha \in \Lambda}\right)$ be a locally m-pseudoconvex algebra with proper pseudo-normed factors $\left(E_{\alpha}\right)_{\alpha \in \Lambda}$. The following assertions are equivalent:
(j) $U\left(\operatorname{ker}\left(f_{\alpha \beta}\right)\right) \subset \operatorname{ker}\left(f_{\alpha \beta}\right)$ for all $U \in M\left(E_{\beta}\right)$ and $\alpha \leq \beta$ in Λ;
(jj) there exists a unique projective system $\left\{\left(M\left(E_{\alpha}\right), h_{\alpha \beta}\right), \alpha \leq \beta\right\}$ such that $h_{\alpha \beta}(U) \circ f_{\alpha \beta}=f_{\alpha \beta} \circ U$ for all $U \in M\left(E_{\beta}\right)$ and $\alpha \leq \beta$ in Λ; furthermore, if E_{α} is complete for all $\alpha \in \Lambda$, then $h_{\alpha \beta}$ is continuous for all $\alpha \leq \beta$ in Λ.

Proof. $(\mathrm{jj}) \Rightarrow(\mathrm{j})$: Let $U \in M\left(E_{\beta}\right)$ and $x_{\beta} \in \operatorname{ker}\left(f_{\alpha \beta}\right)$, then we have $f_{\alpha \beta}\left(U\left(x_{\beta}\right)\right)=h_{\alpha \beta}(U)\left(f_{\alpha \beta}\left(x_{\beta}\right)\right)=0$ and so $U\left(x_{\beta}\right) \in \operatorname{ker}\left(f_{\alpha \beta}\right)$.
$(\mathrm{j}) \Rightarrow(\mathrm{jj})$: Let $\alpha \leq \beta$ in Λ and $U \in M\left(E_{\beta}\right)$. Since $U\left(\operatorname{ker}\left(f_{\alpha \beta}\right)\right) \subset \operatorname{ker}\left(f_{\alpha \beta}\right)$ and by using the universal property of the quotient (see Preliminaries), there exists a unique linear map $V: E_{\alpha} \rightarrow E_{\alpha}$ such that $V \circ f_{\alpha \beta}=f_{\alpha \beta} \circ U$. Let $x_{\alpha}=x+\operatorname{ker}\left(p_{\alpha}\right), y_{\alpha}=y+\operatorname{ker}\left(p_{\alpha}\right) \in E_{\alpha}$ where $x, y \in E$. Put $x_{\beta}=x+\operatorname{ker}\left(p_{\beta}\right)$ and $y_{\beta}=y+\operatorname{ker}\left(p_{\beta}\right)$, clearly $x_{\beta}, y_{\beta} \in E_{\beta}$. By definition of the map $f_{\alpha \beta}$, we get $f_{\alpha \beta}\left(x_{\beta}\right)=x_{\alpha}$ and $f_{\alpha \beta}\left(y_{\beta}\right)=y_{\alpha}$. We have

$$
\begin{aligned}
V\left(x_{\alpha} y_{\alpha}\right) & =V\left(f_{\alpha \beta}\left(x_{\beta}\right) f_{\alpha \beta}\left(y_{\beta}\right)\right) \\
& =V\left(f_{\alpha \beta}\left(x_{\beta} y_{\beta}\right)\right)=f_{\alpha \beta}\left(U\left(x_{\beta} y_{\beta}\right)\right) \\
& =f_{\alpha \beta}\left(x_{\beta} U\left(y_{\beta}\right)\right)=f_{\alpha \beta}\left(x_{\beta}\right) f_{\alpha \beta}\left(U\left(y_{\beta}\right)\right) \\
& =f_{\alpha \beta}\left(x_{\beta}\right) V\left(f_{\alpha \beta}\left(y_{\beta}\right)\right)=x_{\alpha} V\left(y_{\alpha}\right)
\end{aligned}
$$

and similarly on the other side, so V is a multiplier of E_{α}. This shows the existence of the map $h_{\alpha \beta}: M\left(E_{\beta}\right) \rightarrow M\left(E_{\alpha}\right)$ such that $h_{\alpha \beta}(U) \circ f_{\alpha \beta}=f_{\alpha \beta} \circ U$ for all $U \in M\left(E_{\beta}\right)$ and $\alpha \leq \beta$ in Λ. Let $\alpha \leq \beta$ in $\Lambda, U_{1}, U_{2} \in M\left(E_{\beta}\right)$ and $\lambda \in \mathbb{C}$,

$$
\begin{aligned}
h_{\alpha \beta}\left(U_{1}+\lambda U_{2}\right) \circ f_{\alpha \beta} & =f_{\alpha \beta} \circ\left(U_{1}+\lambda U_{2}\right) \\
& =\left(f_{\alpha \beta} \circ U_{1}\right)+\lambda\left(f_{\alpha \beta} \circ U_{2}\right) \\
& =h_{\alpha \beta}\left(U_{1}\right) \circ f_{\alpha \beta}+\lambda h_{\alpha \beta}\left(U_{2}\right) \circ f_{\alpha \beta} \\
& =\left(h_{\alpha \beta}\left(U_{1}\right)+\lambda h_{\alpha \beta}\left(U_{2}\right)\right) \circ f_{\alpha \beta},
\end{aligned}
$$

hence $h_{\alpha \beta}\left(U_{1}+\lambda U_{2}\right)=h_{\alpha \beta}\left(U_{1}\right)+\lambda h_{\alpha \beta}\left(U_{2}\right)$ since $f_{\alpha \beta}$ is surjective. Also,

$$
\begin{aligned}
h_{\alpha \beta}\left(U_{1} \circ U_{2}\right) \circ f_{\alpha \beta} & =f_{\alpha \beta} \circ U_{1} \circ U_{2} \\
& =h_{\alpha \beta}\left(U_{1}\right) \circ f_{\alpha \beta} \circ U_{2} \\
& =h_{\alpha \beta}\left(U_{1}\right) \circ h_{\alpha \beta}\left(U_{2}\right) \circ f_{\alpha \beta}
\end{aligned}
$$

then $h_{\alpha \beta}\left(U_{1} \circ U_{2}\right)=h_{\alpha \beta}\left(U_{1}\right) \circ h_{\alpha \beta}\left(U_{2}\right)$ since $f_{\alpha \beta}$ is surjective. Let $\alpha \leq \beta \leq \gamma$ in Λ and $W \in M\left(E_{\gamma}\right)$,

$$
\begin{aligned}
\left(h_{\alpha \beta} \circ h_{\beta \gamma}\right)(W) \circ f_{\alpha \gamma} & =h_{\alpha \beta}\left(h_{\beta \gamma}(W)\right) \circ f_{\alpha \beta} \circ f_{\beta \gamma} \\
& =f_{\alpha \beta} \circ h_{\beta \gamma}(W) \circ f_{\beta \gamma}=f_{\alpha \beta} \circ f_{\beta \gamma} \circ W \\
& =f_{\alpha \gamma} \circ W=h_{\alpha \gamma}(W) \circ f_{\alpha \gamma}
\end{aligned}
$$

consequently $\left(h_{\alpha \beta} \circ h_{\beta \gamma}\right)(W)=h_{\alpha \gamma}(W)$ since $f_{\alpha \gamma}$ is surjective. Thus $h_{\alpha \beta} \circ$ $h_{\beta \gamma}=h_{\alpha \gamma}$. Let $\alpha \in \Lambda$, if E_{α} is complete, then every multiplier of E_{α} is continuous. Now by assuming that E_{α} is complete for all $\alpha \in \Lambda$, we will show that $h_{\alpha \beta}$ is continuous for all $\alpha \leq \beta$ in Λ (see also, the proof of Theorem 2.12 in [5]). For $\alpha \in \Lambda$ and $r \geq 0$, let $B_{\alpha}(0, r)=\left\{x_{\alpha} \in E_{\alpha}: \bar{p}_{\alpha}\left(x_{\alpha}\right) \leq r\right\}$. We denote by $\|\cdot\|_{\alpha}$ the operator pseudo-norm on $M\left(E_{\alpha}\right)$. Let $\alpha \leq \beta$ in $\Lambda, f_{\alpha \beta}$ is open by the open mapping theorem, so there is $\lambda \ngtr 0$ such that $\lambda B_{\alpha}(0,1) \subset f_{\alpha \beta}\left(B_{\beta}(0,1)\right)$, i.e., $B_{\alpha}(0,1) \subset f_{\alpha \beta}\left(B_{\beta}(0, r)\right)$ where $r=\lambda^{-k_{\beta}}$ and k_{β} is the homogenity index of \bar{p}_{β}. Let $U \in M\left(E_{\beta}\right)$,

$$
\begin{aligned}
\left\|h_{\alpha \beta}(U)\right\|_{\alpha} & =\sup \left\{\bar{p}_{\alpha}\left(h_{\alpha \beta}(U)\left(f_{\alpha}(x)\right)\right): f_{\alpha}(x) \in B_{\alpha}(0,1)\right\} \\
& \leq \sup \left\{\bar{p}_{\alpha}\left(h_{\alpha \beta}(U)\left(f_{\alpha \beta}\left(f_{\beta}(x)\right)\right)\right): f_{\beta}(x) \in B_{\beta}(0, r)\right\} \\
& =\sup \left\{\bar{p}_{\alpha}\left(f_{\alpha \beta}\left(U\left(f_{\beta}(x)\right)\right)\right): f_{\beta}(x) \in B_{\beta}(0, r)\right\} \\
& \leq \sup \left\{\bar{p}_{\beta}\left(U\left(f_{\beta}(x)\right)\right): f_{\beta}(x) \in B_{\beta}(0, r)\right\} \\
& \leq \sup \left\{\|U\|_{\beta} \bar{p}_{\beta}\left(f_{\beta}(x)\right): f_{\beta}(x) \in B_{\beta}(0, r)\right\} \\
& =r\|U\|_{\beta}
\end{aligned}
$$

Therefore $h_{\alpha \beta}$ is continuous.
ThEOREM 2.3. Let $\left(E,\left(p_{\alpha}\right)_{\alpha \in \Lambda}\right)$ be a complete locally m-pseudoconvex algebra with proper pseudo-normed factors $\left(E_{\alpha}\right)_{\alpha \in \Lambda}$. Assume that E satisfies conditions (i) and (j). Then $M(E) \cong \lim M\left(E_{\alpha}\right)$ within an algebra isomorphism φ. Furthermore, if each factor E_{α} is complete, then every multiplier of E is continuous and φ is a topological algebra isomorphism where $M(E)$ is endowed with its pseudo-seminorm topology.

Proof. Take $T \in M(E)$. By Propositions 2.1 and 2.2 ,

$$
\left(T_{\alpha}\right)_{\alpha \in \Lambda} \in \prod_{\alpha \in \Lambda} M\left(E_{\alpha}\right)
$$

$T_{\alpha} \circ f_{\alpha \beta}=f_{\alpha \beta} \circ T_{\beta}$ and $h_{\alpha \beta}\left(T_{\beta}\right) \circ f_{\alpha \beta}=f_{\alpha \beta} \circ T_{\beta}$ for all $\alpha \leq \beta$ in Λ ． Hence $h_{\alpha \beta}\left(T_{\beta}\right) \circ f_{\alpha \beta}=T_{\alpha} \circ f_{\alpha \beta}$ and consequently $h_{\alpha \beta}\left(T_{\beta}\right)=T_{\alpha}$ since the map $f_{\alpha \beta}$ is surjective．This shows that $\left(T_{\alpha}\right)_{\alpha \in \Lambda} \in \varliminf_{\varliminf} M\left(E_{\alpha}\right)$ ．Thus the map $\varphi: M(E) \rightarrow \underset{\leftrightarrows}{\lim } M\left(E_{\alpha}\right), T \rightarrow\left(T_{\alpha}\right)_{\alpha \in \Lambda}$ ，is well defined．We will show that φ is an algebra isomorphism．Let $T, S \in M(E)$ and $\lambda \in \mathbb{C}, T_{\alpha} \circ f_{\alpha}=f_{\alpha} \circ T$ and $S_{\alpha} \circ f_{\alpha}=f_{\alpha} \circ S$ ，then $\left(T_{\alpha}+\lambda S_{\alpha}\right) \circ f_{\alpha}=f_{\alpha} \circ(T+\lambda S)$ ，so $(T+\lambda S)_{\alpha}=T_{\alpha}+\lambda S_{\alpha}$ by Proposition 2．1．Also，$T_{\alpha} \circ S_{\alpha} \circ f_{\alpha}=T_{\alpha} \circ f_{\alpha} \circ S=f_{\alpha} \circ T \circ S$ ，hence $(T \circ S)_{\alpha}=T_{\alpha} \circ S_{\alpha}$ by Proposition 2．1．Let $T \in M(E)$ ，if $T_{\alpha}=0$ for all $\alpha \in \Lambda$ ，then $f_{\alpha} \circ T=T_{\alpha} \circ f_{\alpha}=0$ for all $\alpha \in \Lambda$ and consequently $T=0$ ． Let $\left(U_{\alpha}\right)_{\alpha \in \Lambda} \in \varliminf_{幺} M\left(E_{\alpha}\right)$ and define the map $T=\Phi^{-1} \circ \varliminf_{幺} U_{\alpha} \circ \Phi: E \rightarrow E$ where $\lim _{\leftrightarrows} U_{\alpha}$ is the multiplier of $\lim _{\leftrightarrows} E_{\alpha}$ defined by

$$
\left(\lim _{亡} U_{\alpha}\right)\left(x_{\alpha}\right)_{\alpha}=\left(U_{\alpha}\left(x_{\alpha}\right)\right)_{\alpha}
$$

and $\Phi: E \rightarrow \underset{\varliminf}{\varliminf} E_{\alpha}$ is the topological algebra isomorphism given by $\Phi(x)=$ $\left(f_{\alpha}(x)\right)_{\alpha}$ ．Clearly T is a multiplier of E ，also $f_{\alpha} \circ T=f_{\alpha} \circ \Phi^{-1} \circ \lim _{\alpha} U_{\alpha} \circ \Phi=$ $U_{\alpha} \circ f_{\alpha}$ for all $\alpha \in \Lambda$ ，so $\varphi(T)=\left(U_{\alpha}\right)_{\alpha}$ ．If E_{α} is complete for all $\alpha \in \Lambda$ ，then every multiplier of E_{α} is continuous，hence every multiplier of E is continuous by Proposition 2．1．The pseudo－seminorm topology on $M(E)$ is the topology defined by the family of pseudo－seminorms $q_{\alpha}(T)=\left\|T_{\alpha}\right\|_{\alpha}, \alpha \in \Lambda$ ，so φ is a topological algebra isomorphism．

Proposition 2．4．Let $\left(E,\left(p_{\alpha}\right)_{\alpha \in \Lambda}\right)$ be a locally m－pseudoconvex algebra with approximate identity $\left(e_{\omega}\right)_{\omega \in \Omega}$ ．Then E satisfies conditions（i）and（ j ）．

Proof．Let $T \in M(E), x \in \operatorname{ker}\left(f_{\alpha}\right)$ and $\omega \in \Omega$ ，

$$
\begin{aligned}
f_{\alpha}(T(x)) & =f_{\alpha}\left(T\left(x-x e_{\omega}+x e_{\omega}\right)\right) \\
& =f_{\alpha}\left(T(x)-T\left(x e_{\omega}\right)\right)+f_{\alpha}\left(T\left(x e_{\omega}\right)\right) \\
& =f_{\alpha}\left(T(x)-T(x) e_{\omega}\right)+f_{\alpha}\left(x T\left(e_{\omega}\right)\right) \\
& =f_{\alpha}\left(T(x)-T(x) e_{\omega}\right)+f_{\alpha}(x) f_{\alpha}\left(T\left(e_{\omega}\right)\right) \\
& =f_{\alpha}\left(T(x)-T(x) e_{\omega}\right) .
\end{aligned}
$$

Since $T(x) e_{\omega} \rightarrow_{\omega} T(x)$ and f_{α} is continuous，we deduce that $f_{\alpha}(T(x))=0$ ． Now we will show that $U\left(\operatorname{ker}\left(f_{\alpha \beta}\right)\right) \subset \operatorname{ker}\left(f_{\alpha \beta}\right)$ for all $U \in M\left(E_{\beta}\right)$ and $\alpha \leq \beta$ in Λ ．Since $\left(e_{\omega}\right)_{\omega \in \Omega}$ is an approximate identity in E and $f_{\beta}: E \rightarrow E_{\beta}$ is a surjective continuous homomorphism，it follows that $\left(f_{\beta}\left(e_{\omega}\right)\right)_{\omega \in \Omega}$ is an
approximate identity in E_{β} (see [8, Theorem 4.1]). Let $U \in M\left(E_{\beta}\right), x_{\beta} \in$ $\operatorname{ker}\left(f_{\alpha \beta}\right)$ and $\omega \in \Omega$,

$$
\begin{aligned}
f_{\alpha \beta}\left(U\left(x_{\beta}\right)\right) & =f_{\alpha \beta}\left(U\left(x_{\beta}-x_{\beta} f_{\beta}\left(e_{\omega}\right)+x_{\beta} f_{\beta}\left(e_{\omega}\right)\right)\right) \\
& =f_{\alpha \beta}\left(U\left(x_{\beta}\right)-U\left(x_{\beta} f_{\beta}\left(e_{\omega}\right)\right)\right)+f_{\alpha \beta}\left(U\left(x_{\beta} f_{\beta}\left(e_{\omega}\right)\right)\right) \\
& =f_{\alpha \beta}\left(U\left(x_{\beta}\right)-U\left(x_{\beta}\right) f_{\beta}\left(e_{\omega}\right)\right)+f_{\alpha \beta}\left(x_{\beta} U\left(f_{\beta}\left(e_{\omega}\right)\right)\right) \\
& =f_{\alpha \beta}\left(U\left(x_{\beta}\right)-U\left(x_{\beta}\right) f_{\beta}\left(e_{\omega}\right)\right)+f_{\alpha \beta}\left(x_{\beta}\right) f_{\alpha \beta}\left(U\left(f_{\beta}\left(e_{\omega}\right)\right)\right) \\
& =f_{\alpha \beta}\left(U\left(x_{\beta}\right)-U\left(x_{\beta}\right) f_{\beta}\left(e_{\omega}\right)\right) .
\end{aligned}
$$

Since $U\left(x_{\beta}\right) f_{\beta}\left(e_{\omega}\right) \rightarrow_{\omega} U\left(x_{\beta}\right)$ and $f_{\alpha \beta}$ is continuous, we deduce that

$$
f_{\alpha \beta}\left(U\left(x_{\beta}\right)\right)=0
$$

Corollary 2.5 ([5, Theorems 2.6 and 2.12]). Let $\left(E,\left(p_{\alpha}\right)_{\alpha \in \Lambda}\right)$ be a complete locally m-pseudoconvex algebra with approximate identity. Suppose that each factor $E_{\alpha}=E / \operatorname{ker}\left(p_{\alpha}\right)$ in the generalized Arens-Michael decomposition of E is complete. Then every multiplier of E is continuous and $M(E) \cong \lim M\left(E_{\alpha}\right)$ within a topological algebra isomorphism where $M(E)$ is endowed with its pseudo-seminorm topology.

Proof. It follows from Theorem 2.3 and Proposition 2.4 .
Corollary 2.6. Let $\left(E,\left(p_{\alpha}\right)_{\alpha \in \Lambda}\right)$ be a locally C^{*}-algebra. Then every multiplier of E is continuous and $M(E) \cong \lim M\left(E_{\alpha}\right)$ within a topological algebra isomorphism where $M(E)$ is endowed with its seminorm topology.

Proof. By [7, Theorem 2.6] and [10, Corollary 1.12], E has an approximate identity and each factor E_{α} is complete.

Now we will describe multiplier algebras of complete uniform topological algebras.

Proposition 2.7. Let $\left(E,\left(p_{\alpha}\right)_{\alpha \in \Lambda}\right)$ be a uniform topological algebra. Then

$$
\operatorname{ker}\left(f_{\alpha}\right)=\cap\left\{\operatorname{ker}(\chi): \chi \in \Delta_{\alpha}(E)\right\}
$$

for all $\alpha \in \Lambda$ and

$$
\operatorname{ker}\left(f_{\alpha \beta}\right)=\cap\left\{\operatorname{ker}\left(\mu \circ f_{\alpha \beta}\right): \mu \in \Delta\left(E_{\alpha}\right)\right\}
$$

for all $\alpha \leq \beta$ in Λ.

Proof. First, we will show that $\Delta_{\alpha}(E)$ and $\Delta\left(E_{\alpha}\right)$ are non empty sets. Let F_{α} be the completion of $\left(E_{\alpha}, \bar{p}_{\alpha}\right), F_{\alpha}$ is a uniform Banach algebra. By [8, Lemma 5.1], F_{α} is commutative and semisimple. Then $\Delta\left(F_{\alpha}\right)$ is a non empty set since F_{α} is not a radical algebra, hence $\Delta_{\alpha}(E)$ and $\Delta\left(E_{\alpha}\right)$ are non empty sets (see [9, Proposition 7.5]).

By [1. Theorem 6], $p_{\alpha}(x)=\sup \left\{|\chi(x)|: \chi \in \Delta_{\alpha}(E)\right\}$ for all $x \in E$ and $\alpha \in \Lambda$, then $\operatorname{ker}\left(f_{\alpha}\right)=\operatorname{ker}\left(p_{\alpha}\right)=\cap\left\{\operatorname{ker}(\chi): \chi \in \Delta_{\alpha}(E)\right\}$ for all $\alpha \in \Lambda$. Let $\alpha \leq \beta$ in Λ and $x_{\beta} \in E_{\beta}$,

$$
\begin{aligned}
x_{\beta} \in \operatorname{ker}\left(f_{\alpha \beta}\right) & \Leftrightarrow f_{\alpha \beta}\left(x_{\beta}\right)=0 \Leftrightarrow \mu\left(f_{\alpha \beta}\left(x_{\beta}\right)\right)=0 \text { for all } \mu \in \Delta\left(E_{\alpha}\right) \\
& \Leftrightarrow x_{\beta} \in \cap\left\{\operatorname{ker}\left(\mu \circ f_{\alpha \beta}\right): \mu \in \Delta\left(E_{\alpha}\right)\right\}
\end{aligned}
$$

Proposition 2.8. Let $\left(E,\left(p_{\alpha}\right)_{\alpha \in \Lambda}\right)$ be a uniform topological algebra. Then E satisfies conditions (i) and (j).

Proof. By Proposition 2.7, $\operatorname{ker}\left(f_{\alpha}\right)=\cap\left\{\operatorname{ker}(\chi): \chi \in \Delta_{\alpha}(E)\right\}$ for all $\alpha \in \Lambda$. If T is a multiplier of E, then $T(\operatorname{ker}(\chi)) \subset \operatorname{ker}(\chi)$ for all $\chi \in \Delta_{\alpha}(E)$ by [6, Theorem 2.9] and [8, Lemma 5.1], so

$$
\begin{aligned}
T\left(\operatorname{ker}\left(f_{\alpha}\right)\right) & =T\left(\cap\left\{\operatorname{ker}(\chi): \chi \in \Delta_{\alpha}(E)\right\}\right) \\
& \subset \cap\left\{T(\operatorname{ker}(\chi)): \chi \in \Delta_{\alpha}(E)\right\} \\
& \subset \cap\left\{\operatorname{ker}(\chi): \chi \in \Delta_{\alpha}(E)\right\}=\operatorname{ker}\left(f_{\alpha}\right)
\end{aligned}
$$

By Proposition 2.7, $\operatorname{ker}\left(f_{\alpha \beta}\right)=\cap\left\{\operatorname{ker}\left(\mu \circ f_{\alpha \beta}\right): \mu \in \Delta\left(E_{\alpha}\right)\right\}$ for all $\alpha \leq \beta$ in Λ. If U is a multiplier of E_{β}, then $U(\operatorname{ker}(\delta)) \subset \operatorname{ker}(\delta)$ for all $\delta \in \Delta\left(E_{\beta}\right)$ by [6, Theorem 2.9] and [8, Lemma 5.1], so $U\left(\operatorname{ker}\left(\mu \circ f_{\alpha \beta}\right)\right) \subset \operatorname{ker}\left(\mu \circ f_{\alpha \beta}\right)$ for all $\mu \in \Delta\left(E_{\alpha}\right)$, and consequently

$$
\begin{aligned}
U\left(\operatorname{ker}\left(f_{\alpha \beta}\right)\right) & =U\left(\cap\left\{\operatorname{ker}\left(\mu \circ f_{\alpha \beta}\right): \mu \in \Delta\left(E_{\alpha}\right)\right\}\right) \\
& \subset \cap\left\{U\left(\operatorname{ker}\left(\mu \circ f_{\alpha \beta}\right)\right): \mu \in \Delta\left(E_{\alpha}\right)\right\} \\
& \subset \cap\left\{\operatorname{ker}\left(\mu \circ f_{\alpha \beta}\right): \mu \in \Delta\left(E_{\alpha}\right)\right\}=\operatorname{ker}\left(f_{\alpha \beta}\right)
\end{aligned}
$$

THEOREM 2.9. Let $\left(E,\left(p_{\alpha}\right)_{\alpha \in \Lambda}\right)$ be a complete uniform topological algebra. Then $M(E) \cong \lim M\left(E_{\alpha}\right)$ within an algebra isomorphism φ. Furthermore, if
 a topological algebra isomorphism where $M(E)$ is endowed with its seminorm topology.

Proof. It follows from Theorem 2.3 and Proposition 2.8

REMARK. Let $\left(E,\left(p_{\alpha}\right)_{\alpha \in \Lambda}\right)$ be a complete uniform topological algebra which is also a symmetric *-algebra. Then $\chi\left(x^{*}\right)=\overline{\chi(x)}$ for all $x \in E$ and $\chi \in \Delta(E)$ (see [9, Lemma 6.4]). Take $x \in E$ and $\alpha \in \Lambda$. By [1, Theorem 6],

$$
\begin{aligned}
p_{\alpha}\left(x^{*} x\right) & =\sup \left\{\left|\chi\left(x^{*} x\right)\right|: \chi \in \Delta_{\alpha}(E)\right\}=\sup \left\{|\chi(x)|^{2}: \chi \in \Delta_{\alpha}(E)\right\} \\
& =\left(\sup \left\{|\chi(x)|: \chi \in \Delta_{\alpha}(E)\right\}\right)^{2}=p_{\alpha}(x)^{2}
\end{aligned}
$$

Therefore $\left(E,\left(p_{\alpha}\right)_{\alpha \in \Lambda}\right)$ is a locally C^{*}-algebra, and so each factor E_{α} is complete.

As an application of previous results, we deduce the Arhippainen unitization theorem [1, Theorem 4] on uniform topological algebras.

Proposition 2.10. Let $\left(E,\left(p_{\alpha}\right)_{\alpha \in \Lambda}\right)$ be a uniform topological algebra, and let $M_{c}(E)$ be the algebra of all continuous multipliers of E. Then there is a family of seminorms $\left(q_{\alpha}\right)_{\alpha \in \Lambda}$ on $M_{c}(E)$ such that

1. $\left(M_{c}(E),\left(q_{\alpha}\right)_{\alpha \in \Lambda}\right)$ is a uniform topological algebra;
2. the map $L: E \rightarrow M_{c}(E), L(x)(y)=x y$, is an algebra isomorphism (into) and $q_{\alpha}(L(x))=p_{\alpha}(x)$ for all $x \in E$ and $\alpha \in \Lambda$.

Proof. 1. By Propositions 2.1, 2.2 and 2.8, we define the map $\psi: M_{c}(E) \rightarrow$ $\lim _{\leftrightarrows} M_{c}\left(E_{\alpha}\right), T \rightarrow\left(T_{\alpha}\right)_{\alpha \in \Lambda}$. As in the proof of Theorem 2.3, ψ is an injective homomorphism. We endow $M_{c}(E)$ with the topology defined by the family of seminorms $q_{\alpha}(T)=\left\|T_{\alpha}\right\|_{\alpha}, \alpha \in \Lambda$, where $\|\cdot\|_{\alpha}$ is the operator norm on $M_{c}\left(E_{\alpha}\right)$. Let $T \in M_{c}(E)$,

$$
q_{\alpha}\left(T^{2}\right)=\left\|\left(T^{2}\right)_{\alpha}\right\|_{\alpha}=\left\|\left(T_{\alpha}\right)^{2}\right\|_{\alpha}=\left\|T_{\alpha}\right\|_{\alpha}^{2}=q_{\alpha}(T)^{2}
$$

since $\|\cdot\|_{\alpha}$ has the square property. Let $T \in M_{c}(E)$ with $q_{\alpha}(T)=0$ for all $\alpha \in \Lambda$, then $T_{\alpha}=0$ for all $\alpha \in \Lambda$, so $T=0$ since ψ is injective.
2. Since E is proper, L is an algebra isomorphism (into). Let $x \in E$ and $\alpha \in \Lambda,(L(x))_{\alpha} \circ f_{\alpha}=f_{\alpha} \circ L(x)$, then

$$
(L(x))_{\alpha}\left(f_{\alpha}(y)\right)=\left(f_{\alpha} \circ L(x)\right)(y)=f_{\alpha}(x y)=f_{\alpha}(x) f_{\alpha}(y)
$$

for all $y \in E$. Since the map $l:\left(E_{\alpha}, \bar{p}_{\alpha}\right) \rightarrow\left(M_{c}\left(E_{\alpha}\right),\|\cdot\|_{\alpha}\right), l\left(x_{\alpha}\right)\left(y_{\alpha}\right)=$ $x_{\alpha} y_{\alpha}$, is an isometric isomorphism (into), it follows that

$$
\left\|(L(x))_{\alpha}\right\|_{\alpha}=\bar{p}_{\alpha}\left(f_{\alpha}(x)\right)=p_{\alpha}(x)
$$

so $q_{\alpha}(L(x))=p_{\alpha}(x)$.

Proposition 2.11. Let E be a uniform topological algebra without unit, and let E_{e} be the algebra obtained from E by adjoining the unit. Then the map $g: E_{e} \rightarrow M_{c}(E), g((x, \lambda))=L(x)+\lambda I$ is an algebra isomorphism (into).

Proof. It is easy to show that g is an algebra homomorphism. Let $(x, \lambda) \in$ E_{e} with $g((x, \lambda))=0$, then $L(x)=-\lambda I$. Suppose $\lambda \neq 0, I=-\lambda^{-1} L(x)=$ $L\left(-\lambda^{-1} x\right)$, so $-\lambda^{-1} x$ is a left unit in E. Since E is commutative, $-\lambda^{-1} x$ is a unit in E, a contradiction. Thus $L(x)=0$ and consequently $x=0$ since E is proper.

Corollary 2.12 ([1, Theorem 4]). Let $\left(E,\left(p_{\alpha}\right)_{\alpha \in \Lambda}\right)$ be a uniform topological algebra without unit. Then there is a family of seminorms $\left(s_{\alpha}\right)_{\alpha \in \Lambda}$ on E_{e} such that $\left(E_{e},\left(s_{\alpha}\right)_{\alpha \in \Lambda}\right)$ is a uniform topological algebra and $s_{\alpha}((x, 0))=$ $p_{\alpha}(x)$ for all $x \in E$ and $\alpha \in \Lambda$.

Proof. For each $\alpha \in \Lambda$, we define a seminorm on E_{e} by

$$
s_{\alpha}((x, \lambda))=q_{\alpha}(L(x)+\lambda I) \quad \text { for all } x \in E \text { and } \lambda \in \mathbb{C} .
$$

By Propositions 2.10 and 2.11 . $\left(E_{e},\left(s_{\alpha}\right)_{\alpha \in \Lambda}\right)$ is a uniform topological algebra and $s_{\alpha}((x, 0))=q_{\alpha}(L(x))=p_{\alpha}(x)$ for all $x \in E$.

Remark. We have

$$
s_{\alpha}((x, \lambda))=q_{\alpha}(L(x)+\lambda I) \leq q_{\alpha}(L(x))+|\lambda| q_{\alpha}(I)=p_{\alpha}(x)+|\lambda|
$$

for all $x \in E$ and $\lambda \in \mathbb{C}$. This shows that the topology on E_{e} defined by the family of seminorms $\left(s_{\alpha}\right)_{\alpha \in \Lambda}$ is weaker than the usual topology on E_{e} defined by the family of seminorms $\left(\tilde{p}_{\alpha}\right)_{\alpha \in \Lambda}$ where $\tilde{p}_{\alpha}((x, \lambda))=p_{\alpha}(x)+|\lambda|$.

References

[1] Arhippainen J., On locally convex square algebras, Funct. Approx. 22 (1993), 57-63.
[2] Haralampidou M., The Krull nature of locally C^{*}-algebras, in: Function Spaces (Edwardsville, IL, 2002), 195-200, Contemp. Math., 328, Amer. Math. Soc., Providence, 2003.
[3] Haralampidou M., Palacios L., Signoret C., Multipliers in locally convex *-algebras, Rocky Mountain J. Math. 43 (2013), 1931-1940.
[4] Haralampidou M., Palacios L., Signoret C., Multipliers in perfect locally m-convex algebras, Banach J. Math. Anal. 9 (2015), 137-143.
[5] Haralampidou M., Palacios L., Signoret C., Multipliers in some perfect locally m-pseudoconvex algebras, Proceedings of the 8th International Conference on Topological Algebras and their Applications, 2014, Ed. by A. Katz, Series: De Gruyter Proceedings in Mathematics. To appear.
[6] Husain T., Multipliers of topological algebras, Dissertationes Math. 285 (1989), 36 pp.
[7] Inoue A., Locally C^{*}-algebras, Mem. Faculty Sci. Kyushu Univ. (Ser. A) 25 (1971), 197-235.
[8] Mallios A., Topological Algebras. Selected Topics, North-Holland, Amsterdam, 1986.
[9] Michael E.A., Locally multiplicatively convex topological algebras, Mem. Amer. Math. Soc. 11 (1952), 79 pp.
[10] Phillips N.C., Inverse limits of C^{*}-algebras, J. Operator Theory 19 (1988), 159-195.

Ecole Normale Supérieure
Avenue Oued Akreuch
Takaddoum, BP 5118, Rabat
Morocco
e-mail: mohammed.elazhari@yahoo.fr

[^0]: Received: 26.09.2016. Accepted: 21.01.2017. Published online: 12.04.2017.
 (2010) Mathematics Subject Classification: 46H05, 46K05.

 Key words and phrases: multiplier algebra, locally m-pseudoconvex algebra, uniform topological algebra.

