MULTIPLIERS OF UNIFORM TOPOLOGICAL ALGEBRAS

Mohammed El Azhari

Abstract. Let E be a complete uniform topological algebra with Arens-Michael normed factors $(E_{\alpha})_{\alpha \in \Lambda}$. Then $M(E) \cong \varprojlim M(E_{\alpha})$ within an algebra isomorphism φ . If each factor E_{α} is complete, then every multiplier of E is continuous and φ is a topological algebra isomorphism where M(E) is endowed with its seminorm topology.

1. Preliminaries

A topological algebra is an algebra (over the complex field) which is also a Hausdorff topological vector space such that the multiplication is separately continuous. For a topological algebra E, by $\Delta(E)$ we denote the set of all nonzero continuous multiplicative linear functionals on E. An approximate identity in a topological algebra E is a net $(e_{\omega})_{\omega \in \Omega}$ such that for each $x \in E$ we have $xe_{\omega} \to_{\omega} x$ and $e_{\omega}x \to_{\omega} x$.

Let E be an algebra, a function $p \colon E \to [0, \infty[$ is called a *pseudo-seminorm*, if there exists $0 \le k \le 1$ such that $p(x+y) \le p(x) + p(y)$, $p(\lambda x) = |\lambda|^k p(x)$ and $p(xy) \le p(x) p(y)$ for all $x, y \in E$ and $\lambda \in \mathbb{C}$. The number k is called the *homogenity index of* p. If k = 1 then p is called a *seminorm*. A pseudo-seminorm p is a pseudo-norm, if p(x) = 0 implies x = 0.

A locally m-pseudoconvex algebra is a topological algebra E whose topology is determined by a directed family $\{p_{\alpha} : \alpha \in \Lambda\}$ of pseudo-seminorms. For each $\alpha \in \Lambda$, $\ker(p_{\alpha}) = \{x \in E : p_{\alpha}(x) = 0\}$, the quotient algebra $E_{\alpha} = 0$

Received: 26.09.2016. Accepted: 21.01.2017. Published online: 12.04.2017. (2010) Mathematics Subject Classification: 46H05, 46K05.

Key words and phrases: multiplier algebra, locally m-pseudoconvex algebra, uniform topological algebra.

Mohammed El Azhari

 $E/\ker(p_{\alpha})$ is a pseudo-normed algebra in the pseudo-norm $\overline{p}_{\alpha}(x_{\alpha}) = p_{\alpha}(x)$, $x_{\alpha} = x + \ker(p_{\alpha})$. Let $f_{\alpha} \colon E \to E_{\alpha}$, $f_{\alpha}(x) = x + \ker(p_{\alpha}) = x_{\alpha}$, be the quotient map, f_{α} is a continuous homomorphism from E onto E_{α} . We endow the set A with the partial order: $\alpha \leq \beta$ if and only if $p_{\alpha}(x) \leq p_{\beta}(x)$ for all $x \in E$. Take $\alpha \leq \beta$ in Λ , since ker $(p_{\beta}) \subset \ker(p_{\alpha})$, we define the surjective continuous homomorphism $f_{\alpha\beta} \colon E_{\beta} \to E_{\alpha}, x_{\beta} = x + \ker(p_{\beta}) \to x_{\alpha} = x + \ker(p_{\alpha})$. Thus $\{(E_{\alpha}, f_{\alpha\beta}), \alpha \leq \beta\}$ is a projective system of pseudo-normed algebras. We also define the algebra isomorphism (into) $\Phi \colon E \to \lim_{\alpha \to \infty} E_{\alpha}$, $\Phi(x) = (f_{\alpha}(x))_{\alpha \in \Lambda}$, the canonical projections $\pi_{\alpha} : \prod_{\alpha \in \Lambda} E_{\alpha} \to E_{\alpha}$ and the restrictions to the projective limit $g_{\alpha} = \pi_{\alpha}/\lim_{E_{\alpha}} E_{\alpha} : \lim_{\alpha} E_{\alpha} \to E_{\alpha}$. Since $g_{\alpha} \circ \Phi = f_{\alpha}$ and the quotient map f_{α} is surjective, it follows that the map g_{α} is surjective, this proves that the projective system $\{(E_{\alpha}, f_{\alpha\beta}), \alpha \leq \beta\}$ is perfect in the sense of [5, Definition 2.10] (see also [2, Definition 2.7]). Thus, if E is a locally mpseudoconvex algebra (not necessarly complete), then its generalized Arens-Michael projective system $\{(E_{\alpha}, f_{\alpha\beta}), \alpha \leq \beta\}$ is perfect. If E is complete, then $E \cong \lim_{\alpha} E_{\alpha}$ within a topological algebra isomorphism.

A locally m-convex algebra is a topological algebra E whose topology is defined by a directed family $\{p_{\alpha}: \alpha \in \Lambda\}$ of seminorms. For each $\alpha \in \Lambda$, put $\Delta_{\alpha}(E) = \{f \in \Delta(E): |f(x)| \leq p_{\alpha}(x), x \in E\}$. Let E be an algebra with involution *. A seminorm on E is called a C^* -seminorm if $p(x^*x) = p(x)^2$ for all $x \in E$. A complete locally m-convex *-algebra $(E, (p_{\alpha})_{\alpha \in \Lambda})$, for which each p_{α} is a C^* -seminorm, is called a locally C^* -algebra. A uniform seminorm on an algebra E is a seminorm p satisfying $p(x^2) = p(x)^2$ for all $x \in E$. A uniform topological algebra is a topological algebra whose topology is determined by a directed family of uniform seminorms. In that case, such a topological algebra is also named a uniform locally convex algebra. A uniform normed algebra is a normed algebra $(E, \|.\|)$ such that $\|x^2\| = \|x\|^2$ for all $x \in E$.

An algebra E is called *proper* if for any $x \in E$, $xE = Ex = \{0\}$ implies x = 0. If E has identity, then E is proper. Moreover, a topological algebra with approximate identity is proper. Also, a (Hausdorff) uniform topological algebra is proper. Let E be an algebra, a map $T: E \to E$ is called a *multiplier* if T(x) y = xT(y) for all $x, y \in E$. We denote by M(E) the set of all multipliers of E. It is known that if E is a proper algebra, then any multiplier E of E is linear with the property E of E is a commutative algebra with the identity map E of E as its identity. Let E is a commutative algebra, and let E be the algebra of all continuous multipliers of E with the operator norm E be the algebra of all continuous multipliers of E with the operator norm E is known that E of E has the square property and the map E is E of information on the multiplier algebra in non-normed topological algebras, see also [3] and [4].

In the sequel, we will need the following elementary result called the *universal property of the quotient*: Let X, Y, Z be vector spaces, $f: X \to Y$ and

 $g \colon X \to Z$ be linear maps. If the map g is surjective and $\ker(g) \subset \ker(f)$, then there exists a unique linear map $h \colon Z \to Y$ such that $f = h \circ g$.

2. Results

PROPOSITION 2.1. Let $(E,(p_{\alpha})_{\alpha\in\Lambda})$ be a locally m-pseudoconvex algebra with proper pseudo-normed factors $(E_{\alpha})_{\alpha\in\Lambda}$. The following assertions are equivalent:

- (i) $T(\ker(f_{\alpha})) \subset \ker(f_{\alpha})$ for all $T \in M(E)$ and $\alpha \in \Lambda$;
- (ii) for each $T \in M(E)$, there exists a unique $(T_{\alpha})_{\alpha \in \Lambda} \in \prod_{\alpha \in \Lambda} M(E_{\alpha})$ such that $f_{\alpha} \circ T = T_{\alpha} \circ f_{\alpha}$ and $T_{\alpha} \circ f_{\alpha\beta} = f_{\alpha\beta} \circ T_{\beta}$ for all $\alpha \leq \beta$ in Λ ; furthermore, T is continuous if and only if T_{α} is continuous for all $\alpha \in \Lambda$.

PROOF. Since the pseudo-normed factors $(E_{\alpha})_{\alpha \in \Lambda}$ are proper, it follows that the algebra E is proper and so every multiplier of E (or E_{α}) is linear.

- (ii) \Rightarrow (i): If $T \in M(E)$ and $x \in \ker(f_{\alpha})$, then $f_{\alpha}(T(x)) = T_{\alpha}(f_{\alpha}(x)) = 0$ and so $T(x) \in \ker(f_{\alpha})$.
- (i) \Rightarrow (ii): Take $T \in M(E)$ and $\alpha \in \Lambda$. Since $T(\ker(f_{\alpha})) \subset \ker(f_{\alpha})$ and by using the universal property of the quotient (see Preliminaries), there exists a unique linear map $T_{\alpha} \colon E_{\alpha} \to E_{\alpha}$ such that $f_{\alpha} \circ T = T_{\alpha} \circ f_{\alpha}$. Let $\alpha \in \Lambda$ and $x, y \in E$,

$$T_{\alpha} (f_{\alpha} (x) f_{\alpha} (y)) = T_{\alpha} (f_{\alpha} (xy)) = f_{\alpha} (T (xy))$$
$$= f_{\alpha} (xT (y)) = f_{\alpha} (x) f_{\alpha} (T (y)) = f_{\alpha} (x) T_{\alpha} (f_{\alpha} (y))$$

and similarly on the other side, so T_{α} is a multiplier of E_{α} . Let $\alpha \leq \beta$ in Λ , we have $T_{\alpha} \circ f_{\alpha} = f_{\alpha} \circ T$, then $T_{\alpha} \circ f_{\alpha\beta} \circ f_{\beta} = f_{\alpha\beta} \circ f_{\beta} \circ T = f_{\alpha\beta} \circ T_{\beta} \circ f_{\beta}$, hence $T_{\alpha} \circ f_{\alpha\beta} = f_{\alpha\beta} \circ T_{\beta}$ since the quotient map f_{β} is surjective. Suppose that T is continuous. Let O_{α} be an open set in E_{α} , we have

$$f_{\alpha}^{-1}\left(T_{\alpha}^{-1}\left(O_{\alpha}\right)\right)=\left(T_{\alpha}\circ f_{\alpha}\right)^{-1}\left(O_{\alpha}\right)=\left(f_{\alpha}\circ T\right)^{-1}\left(O_{\alpha}\right)$$

which is open in E since $f_{\alpha} \circ T$ is continuous, then $T_{\alpha}^{-1}(O_{\alpha})$ is open in E_{α} . Conversely, suppose that T_{α} is continuous for all $\alpha \in \Lambda$. Since E is topologically isomorphic to a subalgebra of $\varprojlim E_{\alpha}$, T is continuous if and only if $f_{\alpha} \circ T$ is continuous for all $\alpha \in \Lambda$. Since $f_{\alpha} \circ T = T_{\alpha} \circ f_{\alpha}$ and T_{α} is continuous for all $\alpha \in \Lambda$, we deduce that T is continuous.

PROPOSITION 2.2. Let $(E,(p_{\alpha})_{\alpha\in\Lambda})$ be a locally m-pseudoconvex algebra with proper pseudo-normed factors $(E_{\alpha})_{\alpha\in\Lambda}$. The following assertions are equivalent:

- (j) $U(\ker(f_{\alpha\beta})) \subset \ker(f_{\alpha\beta})$ for all $U \in M(E_{\beta})$ and $\alpha \leq \beta$ in Λ ;
- (jj) there exists a unique projective system $\{(M(E_{\alpha}), h_{\alpha\beta}), \alpha \leq \beta\}$ such that $h_{\alpha\beta}(U) \circ f_{\alpha\beta} = f_{\alpha\beta} \circ U$ for all $U \in M(E_{\beta})$ and $\alpha \leq \beta$ in Λ ; furthermore, if E_{α} is complete for all $\alpha \in \Lambda$, then $h_{\alpha\beta}$ is continuous for all $\alpha \leq \beta$ in Λ .

PROOF. (jj) \Rightarrow (j): Let $U \in M(E_{\beta})$ and $x_{\beta} \in \ker(f_{\alpha\beta})$, then we have $f_{\alpha\beta}(U(x_{\beta})) = h_{\alpha\beta}(U)(f_{\alpha\beta}(x_{\beta})) = 0$ and so $U(x_{\beta}) \in \ker(f_{\alpha\beta})$.

(j) \Rightarrow (jj): Let $\alpha \leq \beta$ in Λ and $U \in M(E_{\beta})$. Since $U(\ker(f_{\alpha\beta})) \subset \ker(f_{\alpha\beta})$ and by using the universal property of the quotient (see Preliminaries), there exists a unique linear map $V: E_{\alpha} \to E_{\alpha}$ such that $V \circ f_{\alpha\beta} = f_{\alpha\beta} \circ U$. Let $x_{\alpha} = x + \ker(p_{\alpha}), y_{\alpha} = y + \ker(p_{\alpha}) \in E_{\alpha}$ where $x, y \in E$. Put $x_{\beta} = x + \ker(p_{\beta})$ and $y_{\beta} = y + \ker(p_{\beta})$, clearly $x_{\beta}, y_{\beta} \in E_{\beta}$. By definition of the map $f_{\alpha\beta}$, we get $f_{\alpha\beta}(x_{\beta}) = x_{\alpha}$ and $f_{\alpha\beta}(y_{\beta}) = y_{\alpha}$. We have

$$V(x_{\alpha}y_{\alpha}) = V(f_{\alpha\beta}(x_{\beta}) f_{\alpha\beta}(y_{\beta}))$$

$$= V(f_{\alpha\beta}(x_{\beta}y_{\beta})) = f_{\alpha\beta}(U(x_{\beta}y_{\beta}))$$

$$= f_{\alpha\beta}(x_{\beta}U(y_{\beta})) = f_{\alpha\beta}(x_{\beta}) f_{\alpha\beta}(U(y_{\beta}))$$

$$= f_{\alpha\beta}(x_{\beta}) V(f_{\alpha\beta}(y_{\beta})) = x_{\alpha}V(y_{\alpha})$$

and similarly on the other side, so V is a multiplier of E_{α} . This shows the existence of the map $h_{\alpha\beta} \colon M(E_{\beta}) \to M(E_{\alpha})$ such that $h_{\alpha\beta}(U) \circ f_{\alpha\beta} = f_{\alpha\beta} \circ U$ for all $U \in M(E_{\beta})$ and $\alpha \leq \beta$ in Λ . Let $\alpha \leq \beta$ in Λ , $U_1, U_2 \in M(E_{\beta})$ and $\lambda \in \mathbb{C}$,

$$h_{\alpha\beta} (U_1 + \lambda U_2) \circ f_{\alpha\beta} = f_{\alpha\beta} \circ (U_1 + \lambda U_2)$$

$$= (f_{\alpha\beta} \circ U_1) + \lambda (f_{\alpha\beta} \circ U_2)$$

$$= h_{\alpha\beta} (U_1) \circ f_{\alpha\beta} + \lambda h_{\alpha\beta} (U_2) \circ f_{\alpha\beta}$$

$$= (h_{\alpha\beta} (U_1) + \lambda h_{\alpha\beta} (U_2)) \circ f_{\alpha\beta},$$

hence $h_{\alpha\beta}\left(U_{1}+\lambda U_{2}\right)=h_{\alpha\beta}\left(U_{1}\right)+\lambda h_{\alpha\beta}\left(U_{2}\right)$ since $f_{\alpha\beta}$ is surjective. Also,

$$\begin{split} h_{\alpha\beta}\left(U_{1}\circ U_{2}\right)\circ f_{\alpha\beta} &= f_{\alpha\beta}\circ U_{1}\circ U_{2}\\ &= h_{\alpha\beta}\left(U_{1}\right)\circ f_{\alpha\beta}\circ U_{2}\\ &= h_{\alpha\beta}\left(U_{1}\right)\circ h_{\alpha\beta}\left(U_{2}\right)\circ f_{\alpha\beta}, \end{split}$$

then $h_{\alpha\beta}\left(U_{1}\circ U_{2}\right)=h_{\alpha\beta}\left(U_{1}\right)\circ h_{\alpha\beta}\left(U_{2}\right)$ since $f_{\alpha\beta}$ is surjective. Let $\alpha\leq\beta\leq\gamma$ in Λ and $W\in M(E_{\gamma})$,

$$(h_{\alpha\beta} \circ h_{\beta\gamma})(W) \circ f_{\alpha\gamma} = h_{\alpha\beta} (h_{\beta\gamma} (W)) \circ f_{\alpha\beta} \circ f_{\beta\gamma}$$

$$= f_{\alpha\beta} \circ h_{\beta\gamma} (W) \circ f_{\beta\gamma} = f_{\alpha\beta} \circ f_{\beta\gamma} \circ W$$

$$= f_{\alpha\gamma} \circ W = h_{\alpha\gamma} (W) \circ f_{\alpha\gamma},$$

consequently $(h_{\alpha\beta} \circ h_{\beta\gamma})(W) = h_{\alpha\gamma}(W)$ since $f_{\alpha\gamma}$ is surjective. Thus $h_{\alpha\beta} \circ h_{\beta\gamma} = h_{\alpha\gamma}$. Let $\alpha \in \Lambda$, if E_{α} is complete, then every multiplier of E_{α} is continuous. Now by assuming that E_{α} is complete for all $\alpha \in \Lambda$, we will show that $h_{\alpha\beta}$ is continuous for all $\alpha \leq \beta$ in Λ (see also, the proof of Theorem 2.12 in [5]). For $\alpha \in \Lambda$ and $r \geq 0$, let $B_{\alpha}(0,r) = \{x_{\alpha} \in E_{\alpha} \colon \overline{p}_{\alpha}(x_{\alpha}) \leq r\}$. We denote by $\|\cdot\|_{\alpha}$ the operator pseudo-norm on $M(E_{\alpha})$. Let $\alpha \leq \beta$ in Λ , $f_{\alpha\beta}$ is open by the open mapping theorem, so there is $\lambda \geq 0$ such that $\lambda B_{\alpha}(0,1) \subset f_{\alpha\beta}(B_{\beta}(0,1))$, i.e., $B_{\alpha}(0,1) \subset f_{\alpha\beta}(B_{\beta}(0,r))$ where $r = \lambda^{-k_{\beta}}$ and k_{β} is the homogenity index of \overline{p}_{β} . Let $U \in M(E_{\beta})$,

$$||h_{\alpha\beta}(U)||_{\alpha} = \sup \{ \overline{p}_{\alpha} (h_{\alpha\beta}(U) (f_{\alpha}(x))) : f_{\alpha}(x) \in B_{\alpha}(0,1) \}$$

$$\leq \sup \{ \overline{p}_{\alpha} (h_{\alpha\beta}(U) (f_{\alpha\beta}(f_{\beta}(x)))) : f_{\beta}(x) \in B_{\beta}(0,r) \}$$

$$= \sup \{ \overline{p}_{\alpha} (f_{\alpha\beta}(U (f_{\beta}(x)))) : f_{\beta}(x) \in B_{\beta}(0,r) \}$$

$$\leq \sup \{ \overline{p}_{\beta} (U (f_{\beta}(x))) : f_{\beta}(x) \in B_{\beta}(0,r) \}$$

$$\leq \sup \{ ||U||_{\beta} \overline{p}_{\beta} (f_{\beta}(x)) : f_{\beta}(x) \in B_{\beta}(0,r) \}$$

$$= r||U||_{\beta}.$$

Therefore $h_{\alpha\beta}$ is continuous.

Theorem 2.3. Let $(E, (p_{\alpha})_{\alpha \in \Lambda})$ be a complete locally m-pseudoconvex algebra with proper pseudo-normed factors $(E_{\alpha})_{\alpha \in \Lambda}$. Assume that E satisfies conditions (i) and (j). Then $M(E) \cong \varprojlim_{\alpha} M(E_{\alpha})$ within an algebra isomorphism φ . Furthermore, if each factor E_{α} is complete, then every multiplier of E is continuous and φ is a topological algebra isomorphism where M(E) is endowed with its pseudo-seminorm topology.

PROOF. Take $T \in M(E)$. By Propositions 2.1 and 2.2,

$$(T_{\alpha})_{\alpha \in \Lambda} \in \prod_{\alpha \in \Lambda} M(E_{\alpha}),$$

 $T_{\alpha} \circ f_{\alpha\beta} = f_{\alpha\beta} \circ T_{\beta}$ and $h_{\alpha\beta}(T_{\beta}) \circ f_{\alpha\beta} = f_{\alpha\beta} \circ T_{\beta}$ for all $\alpha \leq \beta$ in Λ . Hence $h_{\alpha\beta}(T_{\beta}) \circ f_{\alpha\beta} = T_{\alpha} \circ f_{\alpha\beta}$ and consequently $h_{\alpha\beta}(T_{\beta}) = T_{\alpha}$ since the map $f_{\alpha\beta}$ is surjective. This shows that $(T_{\alpha})_{\alpha\in\Lambda}\in\varprojlim M(E_{\alpha})$. Thus the map $\varphi\colon M(E)\to\varprojlim M(E_{\alpha}),\ T\to (T_{\alpha})_{\alpha\in\Lambda}$, is well defined. We will show that φ is an algebra isomorphism. Let $T,S\in M(E)$ and $\lambda\in\mathbb{C},\ T_{\alpha}\circ f_{\alpha}=f_{\alpha}\circ T$ and $S_{\alpha}\circ f_{\alpha}=f_{\alpha}\circ S$, then $(T_{\alpha}+\lambda S_{\alpha})\circ f_{\alpha}=f_{\alpha}\circ (T+\lambda S)$, so $(T+\lambda S)_{\alpha}=T_{\alpha}+\lambda S_{\alpha}$ by Proposition 2.1. Also, $T_{\alpha}\circ S_{\alpha}\circ f_{\alpha}=T_{\alpha}\circ f_{\alpha}\circ S=f_{\alpha}\circ T\circ S$, hence $(T\circ S)_{\alpha}=T_{\alpha}\circ S_{\alpha}$ by Proposition 2.1. Let $T\in M(E)$, if $T_{\alpha}=0$ for all $\alpha\in\Lambda$, then $f_{\alpha}\circ T=T_{\alpha}\circ f_{\alpha}=0$ for all $\alpha\in\Lambda$ and consequently T=0. Let $(U_{\alpha})_{\alpha\in\Lambda}\in\varprojlim M(E_{\alpha})$ and define the map $T=\Phi^{-1}\circ\varprojlim U_{\alpha}\circ\Phi\colon E\to E$ where $\varprojlim U_{\alpha}$ is the multiplier of $\varprojlim E_{\alpha}$ defined by

$$\left(\varprojlim U_{\alpha}\right)\left(x_{\alpha}\right)_{\alpha} = \left(U_{\alpha}\left(x_{\alpha}\right)\right)_{\alpha}$$

and $\Phi \colon E \to \varprojlim E_{\alpha}$ is the topological algebra isomorphism given by $\Phi(x) = (f_{\alpha}(x))_{\alpha}$. Clearly T is a multiplier of E, also $f_{\alpha} \circ T = f_{\alpha} \circ \Phi^{-1} \circ \varprojlim U_{\alpha} \circ \Phi = U_{\alpha} \circ f_{\alpha}$ for all $\alpha \in \Lambda$, so $\varphi(T) = (U_{\alpha})_{\alpha}$. If E_{α} is complete for all $\alpha \in \Lambda$, then every multiplier of E_{α} is continuous, hence every multiplier of E is continuous by Proposition 2.1. The pseudo-seminorm topology on M(E) is the topology defined by the family of pseudo-seminorms $q_{\alpha}(T) = ||T_{\alpha}||_{\alpha}, \ \alpha \in \Lambda$, so φ is a topological algebra isomorphism.

PROPOSITION 2.4. Let $(E,(p_{\alpha})_{\alpha\in\Lambda})$ be a locally m-pseudoconvex algebra with approximate identity $(e_{\omega})_{\omega\in\Omega}$. Then E satisfies conditions (i) and (j).

PROOF. Let $T \in M(E)$, $x \in \ker(f_{\alpha})$ and $\omega \in \Omega$,

$$f_{\alpha}(T(x)) = f_{\alpha}(T(x - xe_{\omega} + xe_{\omega}))$$

$$= f_{\alpha}(T(x) - T(xe_{\omega})) + f_{\alpha}(T(xe_{\omega}))$$

$$= f_{\alpha}(T(x) - T(x)e_{\omega}) + f_{\alpha}(xT(e_{\omega}))$$

$$= f_{\alpha}(T(x) - T(x)e_{\omega}) + f_{\alpha}(x)f_{\alpha}(T(e_{\omega}))$$

$$= f_{\alpha}(T(x) - T(x)e_{\omega}).$$

Since $T(x) e_{\omega} \to_{\omega} T(x)$ and f_{α} is continuous, we deduce that $f_{\alpha}(T(x)) = 0$. Now we will show that $U(\ker(f_{\alpha\beta})) \subset \ker(f_{\alpha\beta})$ for all $U \in M(E_{\beta})$ and $\alpha \leq \beta$ in Λ . Since $(e_{\omega})_{\omega \in \Omega}$ is an approximate identity in E and $f_{\beta} : E \to E_{\beta}$ is a surjective continuous homomorphism, it follows that $(f_{\beta}(e_{\omega}))_{\omega \in \Omega}$ is an approximate identity in E_{β} (see [8, Theorem 4.1]). Let $U \in M(E_{\beta})$, $x_{\beta} \in \ker(f_{\alpha\beta})$ and $\omega \in \Omega$,

$$f_{\alpha\beta}\left(U\left(x_{\beta}\right)\right) = f_{\alpha\beta}\left(U\left(x_{\beta} - x_{\beta}f_{\beta}\left(e_{\omega}\right) + x_{\beta}f_{\beta}\left(e_{\omega}\right)\right)\right)$$

$$= f_{\alpha\beta}\left(U\left(x_{\beta}\right) - U\left(x_{\beta}f_{\beta}\left(e_{\omega}\right)\right)\right) + f_{\alpha\beta}\left(U\left(x_{\beta}f_{\beta}\left(e_{\omega}\right)\right)\right)$$

$$= f_{\alpha\beta}\left(U\left(x_{\beta}\right) - U\left(x_{\beta}\right)f_{\beta}\left(e_{\omega}\right)\right) + f_{\alpha\beta}\left(x_{\beta}U\left(f_{\beta}\left(e_{\omega}\right)\right)\right)$$

$$= f_{\alpha\beta}\left(U\left(x_{\beta}\right) - U\left(x_{\beta}\right)f_{\beta}\left(e_{\omega}\right)\right) + f_{\alpha\beta}\left(x_{\beta}\right)f_{\alpha\beta}\left(U\left(f_{\beta}\left(e_{\omega}\right)\right)\right)$$

$$= f_{\alpha\beta}\left(U\left(x_{\beta}\right) - U\left(x_{\beta}\right)f_{\beta}\left(e_{\omega}\right)\right).$$

Since $U(x_{\beta}) f_{\beta}(e_{\omega}) \to_{\omega} U(x_{\beta})$ and $f_{\alpha\beta}$ is continuous, we deduce that

$$f_{\alpha\beta}\left(U\left(x_{\beta}\right)\right)=0.$$

COROLLARY 2.5 ([5, Theorems 2.6 and 2.12]). Let $(E, (p_{\alpha})_{\alpha \in \Lambda})$ be a complete locally m-pseudoconvex algebra with approximate identity. Suppose that each factor $E_{\alpha} = E/\ker(p_{\alpha})$ in the generalized Arens-Michael decomposition of E is complete. Then every multiplier of E is continuous and $M(E) \cong \varprojlim M(E_{\alpha})$ within a topological algebra isomorphism where M(E) is endowed with its pseudo-seminorm topology.

Proof. It follows from Theorem 2.3 and Proposition 2.4. \Box

COROLLARY 2.6. Let $(E, (p_{\alpha})_{\alpha \in \Lambda})$ be a locally C^* -algebra. Then every multiplier of E is continuous and $M(E) \cong \varprojlim M(E_{\alpha})$ within a topological algebra isomorphism where M(E) is endowed with its seminorm topology.

PROOF. By [7, Theorem 2.6] and [10, Corollary 1.12], E has an approximate identity and each factor E_{α} is complete.

Now we will describe multiplier algebras of complete uniform topological algebras.

PROPOSITION 2.7. Let $(E,(p_{\alpha})_{\alpha\in\Lambda})$ be a uniform topological algebra. Then

$$\ker (f_{\alpha}) = \bigcap \left\{ \ker (\chi) : \chi \in \Delta_{\alpha} (E) \right\}$$

for all $\alpha \in \Lambda$ and

$$\ker (f_{\alpha\beta}) = \bigcap \{\ker (\mu \circ f_{\alpha\beta}) : \mu \in \Delta (E_{\alpha})\}\$$

for all $\alpha \leq \beta$ in Λ .

PROOF. First, we will show that $\Delta_{\alpha}(E)$ and $\Delta(E_{\alpha})$ are non empty sets. Let F_{α} be the completion of $(E_{\alpha}, \overline{p}_{\alpha})$, F_{α} is a uniform Banach algebra. By [8, Lemma 5.1], F_{α} is commutative and semisimple. Then $\Delta(F_{\alpha})$ is a non empty set since F_{α} is not a radical algebra, hence $\Delta_{\alpha}(E)$ and $\Delta(E_{\alpha})$ are non empty sets (see [9, Proposition 7.5]).

By [1, Theorem 6], $p_{\alpha}(x) = \sup\{|\chi(x)| : \chi \in \Delta_{\alpha}(E)\}$ for all $x \in E$ and $\alpha \in \Lambda$, then $\ker(f_{\alpha}) = \ker(p_{\alpha}) = \cap\{\ker(\chi) : \chi \in \Delta_{\alpha}(E)\}$ for all $\alpha \in \Lambda$. Let $\alpha \leq \beta$ in Λ and $x_{\beta} \in E_{\beta}$,

$$x_{\beta} \in \ker(f_{\alpha\beta}) \iff f_{\alpha\beta}(x_{\beta}) = 0 \iff \mu(f_{\alpha\beta}(x_{\beta})) = 0 \text{ for all } \mu \in \Delta(E_{\alpha})$$

$$\iff x_{\beta} \in \cap \{\ker(\mu \circ f_{\alpha\beta}) : \mu \in \Delta(E_{\alpha})\}.$$

PROPOSITION 2.8. Let $(E, (p_{\alpha})_{\alpha \in \Lambda})$ be a uniform topological algebra. Then E satisfies conditions (i) and (j).

PROOF. By Proposition 2.7, $\ker(f_{\alpha}) = \bigcap \{\ker(\chi) : \chi \in \Delta_{\alpha}(E)\}$ for all $\alpha \in \Lambda$. If T is a multiplier of E, then $T(\ker(\chi)) \subset \ker(\chi)$ for all $\chi \in \Delta_{\alpha}(E)$ by [6, Theorem 2.9] and [8, Lemma 5.1], so

$$T(\ker(f_{\alpha})) = T(\cap \{\ker(\chi) : \chi \in \Delta_{\alpha}(E)\})$$

$$\subset \cap \{T(\ker(\chi)) : \chi \in \Delta_{\alpha}(E)\}$$

$$\subset \cap \{\ker(\chi) : \chi \in \Delta_{\alpha}(E)\} = \ker(f_{\alpha}).$$

By Proposition 2.7, $\ker(f_{\alpha\beta}) = \bigcap \{\ker(\mu \circ f_{\alpha\beta}) : \mu \in \Delta(E_{\alpha})\}$ for all $\alpha \leq \beta$ in Λ . If U is a multiplier of E_{β} , then $U(\ker(\delta)) \subset \ker(\delta)$ for all $\delta \in \Delta(E_{\beta})$ by [6, Theorem 2.9] and [8, Lemma 5.1], so $U(\ker(\mu \circ f_{\alpha\beta})) \subset \ker(\mu \circ f_{\alpha\beta})$ for all $\mu \in \Delta(E_{\alpha})$, and consequently

$$U(\ker(f_{\alpha\beta})) = U(\cap \{\ker(\mu \circ f_{\alpha\beta}) : \mu \in \Delta(E_{\alpha})\})$$

$$\subset \cap \{U(\ker(\mu \circ f_{\alpha\beta})) : \mu \in \Delta(E_{\alpha})\}$$

$$\subset \cap \{\ker(\mu \circ f_{\alpha\beta}) : \mu \in \Delta(E_{\alpha})\} = \ker(f_{\alpha\beta}).$$

THEOREM 2.9. Let $(E,(p_{\alpha})_{\alpha\in\Lambda})$ be a complete uniform topological algebra. Then $M(E)\cong \varprojlim M(E_{\alpha})$ within an algebra isomorphism φ . Furthermore, if each factor E_{α} is complete, then every multiplier of E is continuous and φ is a topological algebra isomorphism where M(E) is endowed with its seminorm topology.

PROOF. It follows from Theorem 2.3 and Proposition 2.8. \Box

REMARK. Let $(E, (p_{\alpha})_{\alpha \in \Lambda})$ be a complete uniform topological algebra which is also a symmetric *-algebra. Then $\chi(x^*) = \overline{\chi(x)}$ for all $x \in E$ and $\chi \in \Delta(E)$ (see [9, Lemma 6.4]). Take $x \in E$ and $\alpha \in \Lambda$. By [1, Theorem 6],

$$p_{\alpha}(x^*x) = \sup \{ |\chi(x^*x)| : \ \chi \in \Delta_{\alpha}(E) \} = \sup \{ |\chi(x)|^2 : \ \chi \in \Delta_{\alpha}(E) \}$$
$$= (\sup \{ |\chi(x)| : \ \chi \in \Delta_{\alpha}(E) \})^2 = p_{\alpha}(x)^2.$$

Therefore $(E, (p_{\alpha})_{\alpha \in \Lambda})$ is a locally C^* -algebra, and so each factor E_{α} is complete.

As an application of previous results, we deduce the Arhippainen unitization theorem [1, Theorem 4] on uniform topological algebras.

PROPOSITION 2.10. Let $(E, (p_{\alpha})_{\alpha \in \Lambda})$ be a uniform topological algebra, and let $M_c(E)$ be the algebra of all continuous multipliers of E. Then there is a family of seminorms $(q_{\alpha})_{\alpha \in \Lambda}$ on $M_c(E)$ such that

- 1. $(M_c(E), (q_\alpha)_{\alpha \in \Lambda})$ is a uniform topological algebra;
- 2. the map $L: E \to M_c(E)$, L(x)(y) = xy, is an algebra isomorphism (into) and $q_{\alpha}(L(x)) = p_{\alpha}(x)$ for all $x \in E$ and $\alpha \in \Lambda$.

PROOF. 1. By Propositions 2.1, 2.2 and 2.8, we define the map $\psi: M_c(E) \to \varprojlim M_c(E_\alpha)$, $T \to (T_\alpha)_{\alpha \in \Lambda}$. As in the proof of Theorem 2.3, ψ is an injective homomorphism. We endow $M_c(E)$ with the topology defined by the family of seminorms $q_\alpha(T) = \|T_\alpha\|_\alpha$, $\alpha \in \Lambda$, where $\|.\|_\alpha$ is the operator norm on $M_c(E_\alpha)$. Let $T \in M_c(E)$,

$$q_{\alpha}(T^{2}) = \|(T^{2})_{\alpha}\|_{\alpha} = \|(T_{\alpha})^{2}\|_{\alpha} = \|T_{\alpha}\|_{\alpha}^{2} = q_{\alpha}(T)^{2}$$

since $\|.\|_{\alpha}$ has the square property. Let $T \in M_c(E)$ with $q_{\alpha}(T) = 0$ for all $\alpha \in \Lambda$, then $T_{\alpha} = 0$ for all $\alpha \in \Lambda$, so T = 0 since ψ is injective.

2. Since E is proper, L is an algebra isomorphism (into). Let $x \in E$ and $\alpha \in \Lambda$, $(L(x))_{\alpha} \circ f_{\alpha} = f_{\alpha} \circ L(x)$, then

$$(L(x))_{\alpha}(f_{\alpha}(y)) = (f_{\alpha} \circ L(x))(y) = f_{\alpha}(xy) = f_{\alpha}(x)f_{\alpha}(y)$$

for all $y \in E$. Since the map $l: (E_{\alpha}, \overline{p}_{\alpha}) \to (M_c(E_{\alpha}), \|.\|_{\alpha}), \ l(x_{\alpha})(y_{\alpha}) = x_{\alpha}y_{\alpha}$, is an isometric isomorphism (into), it follows that

$$\|(L(x))_{\alpha}\|_{\alpha} = \overline{p}_{\alpha}(f_{\alpha}(x)) = p_{\alpha}(x),$$

so
$$q_{\alpha}(L(x)) = p_{\alpha}(x)$$
.

PROPOSITION 2.11. Let E be a uniform topological algebra without unit, and let E_e be the algebra obtained from E by adjoining the unit. Then the map $g: E_e \to M_c(E), \ g((x,\lambda)) = L(x) + \lambda I$ is an algebra isomorphism (into).

PROOF. It is easy to show that g is an algebra homomorphism. Let $(x, \lambda) \in E_e$ with $g((x, \lambda)) = 0$, then $L(x) = -\lambda I$. Suppose $\lambda \neq 0$, $I = -\lambda^{-1}L(x) = L(-\lambda^{-1}x)$, so $-\lambda^{-1}x$ is a left unit in E. Since E is commutative, $-\lambda^{-1}x$ is a unit in E, a contradiction. Thus L(x) = 0 and consequently x = 0 since E is proper.

COROLLARY 2.12 ([1, Theorem 4]). Let $(E, (p_{\alpha})_{\alpha \in \Lambda})$ be a uniform topological algebra without unit. Then there is a family of seminorms $(s_{\alpha})_{\alpha \in \Lambda}$ on E_e such that $(E_e, (s_{\alpha})_{\alpha \in \Lambda})$ is a uniform topological algebra and $s_{\alpha}((x, 0)) = p_{\alpha}(x)$ for all $x \in E$ and $\alpha \in \Lambda$.

PROOF. For each $\alpha \in \Lambda$, we define a seminorm on E_e by

$$s_{\alpha}((x,\lambda)) = q_{\alpha}(L(x) + \lambda I)$$
 for all $x \in E$ and $\lambda \in \mathbb{C}$.

By Propositions 2.10 and 2.11, $(E_e, (s_\alpha)_{\alpha \in \Lambda})$ is a uniform topological algebra and $s_\alpha((x,0)) = q_\alpha(L(x)) = p_\alpha(x)$ for all $x \in E$.

Remark. We have

$$s_{\alpha}\left((x,\lambda)\right) = q_{\alpha}\left(L\left(x\right) + \lambda I\right) \le q_{\alpha}\left(L\left(x\right)\right) + |\lambda|q_{\alpha}\left(I\right) = p_{\alpha}\left(x\right) + |\lambda|$$

for all $x \in E$ and $\lambda \in \mathbb{C}$. This shows that the topology on E_e defined by the family of seminorms $(s_{\alpha})_{\alpha \in \Lambda}$ is weaker than the usual topology on E_e defined by the family of seminorms $(\tilde{p}_{\alpha})_{\alpha \in \Lambda}$ where $\tilde{p}_{\alpha}((x,\lambda)) = p_{\alpha}(x) + |\lambda|$.

References

- [1] Arhippainen J., On locally convex square algebras, Funct. Approx. 22 (1993), 57–63.
- Haralampidou M., The Krull nature of locally C*-algebras, in: Function Spaces (Edwardsville, IL, 2002), 195–200, Contemp. Math., 328, Amer. Math. Soc., Providence, 2003.
- [3] Haralampidou M., Palacios L., Signoret C., Multipliers in locally convex *-algebras, Rocky Mountain J. Math. 43 (2013), 1931–1940.
- [4] Haralampidou M., Palacios L., Signoret C., Multipliers in perfect locally m-convex algebras, Banach J. Math. Anal. 9 (2015), 137–143.

- [5] Haralampidou M., Palacios L., Signoret C., Multipliers in some perfect locally m-pseudoconvex algebras, Proceedings of the 8th International Conference on Topological Algebras and their Applications, 2014, Ed. by A. Katz, Series: De Gruyter Proceedings in Mathematics. To appear.
- [6] Husain T., Multipliers of topological algebras, Dissertationes Math. 285 (1989), 36 pp.
- [7] Inoue A., Locally C*-algebras, Mem. Faculty Sci. Kyushu Univ. (Ser. A) 25 (1971), 197–235.
- [8] Mallios A., Topological Algebras. Selected Topics, North-Holland, Amsterdam, 1986.
- [9] Michael E.A., Locally multiplicatively convex topological algebras, Mem. Amer. Math. Soc. 11 (1952), 79 pp.
- [10] Phillips N.C., Inverse limits of C*-algebras, J. Operator Theory 19 (1988), 159–195.

ECOLE NORMALE SUPÉRIEURE AVENUE OUED AKREUCH TAKADDOUM, BP 5118, RABAT MOROCCO

e-mail: mohammed.elazhari@yahoo.fr