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INVARIANT MEANS ON BANACH SPACES

Radosław Łukasik

Abstract. In this paper we study some generalization of invariant means
on Banach spaces. We give some sufficient condition for the existence of the
invariant mean and some examples where we have not it.

1. Introduction

Invariant means on amenable groups are an important tool in many parts
of mathematics, especially in harmonic analysis (see [7, 8]). For basic proper-
ties of invariant means, we refer the reader to [7].

Invariant means and their generalizations for vector-valued functions play
also an important role in the stability of functional equations and selections
of set-valued functions (see [10, 3, 4, 11, 1]).

The space of all bounded functions from a group (G,+) into a Banach
space X is denoted by B(G,X). Let us recall the definition of the amenable
group.
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Definition 1.1. A semigroup (S,+) is called left [respectively right ]
amenable if and only if there exists a linear map L : B(S,R)→ R such that

inf f(S) ≤ L(f) ≤ sup f(S), f ∈ B(S,R),

L(af) = L(f), a ∈ S, f ∈ B(S,R)

[L(fa) = L(f), a ∈ S, f ∈ B(S,R)],

where

af(x) = f(a+ x), a, x ∈ S, f ∈ B(S,R)

[fa(x) = f(x+ a), a, x ∈ S, f ∈ B(S,R)].

If both left and right invariant means exist, then S is called amenable.

Remark 1.2. Every commutative semigroup is amenable.

Some generalization of invariant mean for vector-valued functions was in-
vestigated in [3] and [12] where we can find the following definition.

Definition 1.3. We say that a linear function m : B(G,X) → X is an
invariant mean if the following conditions hold:
(i) for every f ∈ B(G,X) and a ∈ G there is

m(f(a+ ·)) = m(f(·+ a)) = m(f),

(ii) for every f ∈ B(G,X) and closed convex bounded subset V of X

(1.1) im(f) ⊂ V =⇒ m(f) ∈ V.

There arises a natural question if for a given amenable group (G,+) and
a Banach space X, the space B(G,X) admits an invariant mean. Z. Gajda
showed ([3, Theorem 2.3]) that the answer is true if the space X is reflexive.

Theorem 1.4. Let G be an amenable group, and let X be a reflexive
Banach space. Then B(G,X) admits an invariant mean.

Next, J. Tabor ([12, Theorem 1]) proves that invariant mean cannot be
constructed for functions with values in non-reflexive Banach spaces (it was
proved earlier by F. Bombal, G. Vera [2] in Spanish).

Theorem 1.5. Let X be an arbitrary non-reflexive Banach space. Then
B(Z, X) does not admit an invariant mean.
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2. Notions

In this work (X, ‖·‖) is Banach space over the field R. The map κ : X →
X∗∗ is given by

κ(x)(x∗) = x∗x, x ∈ X, x∗ ∈ X∗.

We use some generalized definition of an invariant mean (see [4]).

Definition 2.1. Let (S,+) be a left [right] amenable semigroup, (X, ‖·‖)
be a Banach space. A linear map M : B(S,X)→ X is called a left [right ]
invariant mean if

‖M‖ ≤ 1,

M(c1S) = c, c ∈ X,

M(af) = M(f), a ∈ S, f ∈ B(S,X)

[M(fa) = M(f), a ∈ S, f ∈ B(S,X)],

where

af(x) = f(a+ x), a, x ∈ S, f ∈ B(S,X)

[fa(x) = f(x+ a), a, x ∈ S, f ∈ B(S,X).]

If M is a left and right invariant mean, then M is called an invariant mean.

It is easily seen that if M : B(S,X)→ X satisfies conditions of definition
1.3, then M satisfies conditions of definition 2.1.

Definition 2.2. A Banach space (X, ‖·‖) is said to have the invariant
mean property if and only if for every left [right] amenable semigroup (S,+)
there exists a left [right] invariant mean M : B(S,X)→ X.

We define some property which has been studied by Godefroy [5], Godefroy
and Kalton [6], Rao [9].

Definition 2.3. A Banach space X is said to be constrained in its bidual
if X is the range of a norm one linear projection when canonically embedded
in its bidual X∗∗.
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Definition 2.4. A Banach space X has the finite-infinte intersection
property if for every collection {B(xt, rt) : t ∈ T} of closed balls in X

(IPf,∞)

(
∀J⊂T, |J|<∞

⋂
t∈J

B(xt, rt) 6= ∅

)
=⇒

⋂
t∈T

B(xt, rt) 6= ∅.

We use some part of a result from the work of Godefroy and Kalton [6,
Corollary 6.6].

Theorem 2.5. Let X be a Banach space not containing `1. The following
conditions are equivalent:
(i) X is a dual space.
(ii) X satisfies (IPf,∞).
(iii) X is constrained in its bidual.

3. Main result

We start with some auxiliary theorem.

Theorem 3.1. Let (S,+) be a left [right] amenable semigroup and let
L : B(S,R)→ R be a left [right] invariant mean. The map Λ: B(S,X)→ X∗∗

defined by the formula

Λ(f)(x∗) := L(x∗ ◦ f), x∗ ∈ X∗, f ∈ B(S,X),

is linear, continuous and

‖Λ‖ ≤ 1,

Λ(c1S) = κ(c), c ∈ X,

Λ(af) = Λ(f), a ∈ S, f ∈ B(S,X)

[Λ(fa) = Λ(f), a ∈ S, f ∈ B(S,X)].

Proof. Assume that (S,+) is a left amenable semigroup. Let f, g ∈
B(S,X), α, β ∈ R, x∗, y∗ ∈ X∗. First we show that Λ is well defined. In-
deed, we have

Λ(f)(αx∗ + βy∗) = L((αx∗ + βy∗) ◦ f) = L(αx∗ ◦ f + βy∗ ◦ f)

= αL(x∗ ◦ f) + βL(y∗ ◦ f) = αΛ(f)(x∗) + βΛ(f)(y∗),
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and

‖Λ(f)‖ = sup{Λ(f)(x∗) : ‖x∗‖ ≤ 1} = sup{L(x∗ ◦ f) : ‖x∗‖ ≤ 1} ≤ ‖f‖ .

The function Λ is linear:

Λ(αf + βg)(x∗) = L(x∗ ◦ (αf + βg)) = L(αx∗ ◦ f + βx∗ ◦ g)

= αL(x∗ ◦ f) + βL(x∗ ◦ g) = αΛ(f)(x∗) + βΛ(g)(x∗).

We have also

Λ(c1S)(x∗) = L(x∗ ◦ (c1S)) = L(x∗c1S) = x∗c = κ(c)(x∗), c ∈ X,

and

Λ(af)(x∗) = L(x∗ ◦a f) = L(a(x∗ ◦ f)) = L(x∗ ◦ f) = Λ(f)(x∗), a ∈ S.

The proof is analogous when (S,+) is a right amenable semigroup. �

Now we have a result which gives us a sufficient condition for the invariant
mean property.

Theorem 3.2. If X is constrained in its bidual then the space X has the
invariant mean property.

Proof. Let (S,+) be a left amenable semigroup, ϕ : X∗∗ → X be a norm
one linear projection such that ϕ ◦ κ = idX . Let further Λ: B(S,X)→ X∗∗

be a function from Theorem 3.1. We define the function M : B(S,X)→ X by
the formula M = ϕ ◦ Λ. It is easily seen that M is linear and its norm is not
great then 1. We have also

M(c1S) = ϕ(Λ(c1S)) = ϕ(κ(c)) = c, c ∈ X,

and

M(af) = ϕ(Λ(af)) = ϕ(Λ(f)) = M(f), a ∈ S, f ∈ B(S,X).

The proof is analogous when (S,+) is a right amenable semigroup. �

Corollary 3.3. If X is a reflexive space or has the Hahn-Banach exten-
sion property, then X has the invariant mean property.
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Proof. If X is a reflexive space then we take ϕ = κ−1 in Theorem 3.2.
If X has the Hahn-Banach extension property then we take ϕ in Theorem
3.2 as an extension of κ−1 : κ[X] → X to the linear and continuous map on
X∗∗. �

Corollary 3.4. If (X, ‖·‖) is a normed space then the dual space X∗ has
the invariant mean property.

Proof. Let κ∗ : X∗ → X∗∗∗, ϕ : X∗∗∗ → X∗ be functions given by formu-
las

κ∗(x∗)(x∗∗) := x∗∗x∗, x∗ ∈ X∗, x∗∗ ∈ X∗∗,

ϕ(x∗∗∗)(x) := x∗∗∗κ(x), x ∈ X,x∗∗∗ ∈ X∗∗∗.

It is easy to see that ϕ is well defined, it is linear and has norm not greater
than 1. We have also

ϕ(κ∗(x∗))(x) = κ∗(x∗)(κ(x)) = κ(x)(x∗) = x∗x, x ∈ X,x∗ ∈ X∗.

In view of Theorem 3.2, the space X∗ has the invariant mean property. �

Lemma 3.5. Let I be an infinite set, S be a set defined by

(3.1) S = {f : I → {0, 1} : the set f−1({1}) is finite}

with the operation +: S × S → S given by the formula

(f + g)(i) =

{
1, f(i) = 1 ∨ g(i) = 1,

0, f(i) = g(i) = 0,
i ∈ I, f, g ∈ S.

Then (S,+) is an abelian semigroup and |S| = |I|.

Proof. It is easy to see that the operation + is commutative. If we have
f, g, h ∈ S, then

(f + (g + h))(i) =

{
1, f(i) = 1 ∨ g(i) = 1 ∨ h(i) = 1

0, f(i) = g(i) = h(i) = 0

= ((f + g)) + h)(i), i ∈ I.
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We have also

|I| ≤ |S| ≤
∣∣∣⋃
n∈N

In
∣∣∣ = |N× I| = |I|. �

It is known that if X is constrained in its bidual, then X satisfies (IPf,∞)
and an inverse implication is an open problem. Theorem 3.2 and the corollary
from the following theorem give us implications:

X is constrained in its bidual ⇒ X has the invariant mean property ⇒ X
satisfies (IPf,∞).

Theorem 3.6. Let X be a Banach space, {B(xi, ri) : i ∈ I} be a family
of closed ball in X such that

∀J⊂I, |J|<∞
⋂
i∈J

B(xi, ri) 6= ∅.

Let further (S,+) be a semigroup from Lemma 3.5. If there exists an invariant
mean M : B(S,X)→ X, then ⋂

i∈I
B(xi, ri) 6= ∅.

Proof. Fix i0 ∈ I. For every J ⊂ I, |J | <∞ we take

yJ ∈
⋂
i∈J

B(xi, ri) ∩B(xi0 , ri0).

We define f : S → X by the formula

f(g) = yJ ⇐⇒ J = {j ∈ I : g(j) = 1}, g ∈ S.

Since yJ ∈ B(xi0 , ri0) for every J ⊂ I, |J | <∞, f is bounded.
Let M : B(S,X) → X be an invariant mean. Fix k ∈ I. Let h = 1{k}.

Then h ∈ S and

(h+ g)(k) = 1, g ∈ S.

Hence

k ∈ {i ∈ I : (h+ g)(x) = 1}, g ∈ S,
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and

hf(g) = f(h+ g) = y{i∈I: (h+g)(x)=1} ∈ B(xk, rk), g ∈ S.

We obtain

M(f) = M(hf) ∈ B(xk, rk),

which means that

M(f) ∈
⋂
k∈I

B(xk, rk)

showing that
⋂
k∈I

B(xk, rk) 6= ∅. �

Corollary 3.7. If the Banach space X has the invariant mean property
then X satisfies (IPf,∞).

Now, in the view of Theorem 2.5, we can write the following result.

Theorem 3.8. Let X be a Banach space not containing `1. The following
conditions are equivalent:
(i) X is a dual space.
(ii) X is constrained in its bidual.
(iii) X has the invariant mean property.
(iv) X satisfies (IPf,∞).

Lemma 3.9. For every cardinal number γ ≥ 1 there exists a commutative
group (G,+) such that |G| = γ.

Proof. If γ is finite and γ = n then we take G = Zn. If γ is infinite and
A is a set of cardinality γ, then we define the set

G :=

{
n∑
i=1

εi1{ai} : ε1, . . . , εn ∈ Z, a1, . . . , an ∈ A, n ∈ N

}
⊂ B(A,R).

Observe that (G,+) is a commutative group and

|A| ≤ |G| ≤
∣∣∣⋃
n∈N

(Z×A)n
∣∣∣ =

∣∣∣⋃
n∈N

An
∣∣∣ ≤ |A× N| = |A|. �
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Lemma 3.10. Let (G,+) be an uncountable group and γ be a cardinal
number such that ℵ0 ≤ γ ≤ |G|. There exists a subgroup G0 of the group G
such that |G0| = γ.

Proof. Let γ be a cardinal number such that ℵ0 ≤ γ ≤ |G|. Let further
A ⊂ G be a set such that |A| = γ. We define

G0 = 〈A〉 =

{
n∑
i=1

ai : ai ∈ Ã, n ∈ N

}
=
⋃
n∈N

Ã+ . . .+ Ã︸ ︷︷ ︸
n

,

where Ã = A ∪ −A. Hence

|G0| =
∣∣∣⋃
n∈N

Ã+ . . .+ Ã︸ ︷︷ ︸
n

∣∣∣ =
∣∣∣⋃
n∈N

Ãn
∣∣∣ = |N× Ã| = |A| = γ. �

Remark 3.11. We have the same result for the semigroup: If (S,+) is an
uncountable semigroup and γ is a cardinal number such that ℵ0 ≤ γ ≤ |S|,
then there exists a subsemigroup S0 of the semigroup S such that |S0| = γ.

The next theorem shows that if an invariant mean exists for some abelian
group, then an invariant mean exists on each subgroup of this group.

Theorem 3.12. Let (G,+) be a group, (X, ‖·‖) be a Banach space. Assume
that there exists a left [right] invariant mean M : B(G,X) → X. Then, for
every subgroup G0 of the group G, there exists a left [right] invariant mean
M : B(G0, X)→ X.

Proof. Assume that there exists a left invariant mean M : B(G,X)→ X
(for a right invariant mean the proof is similar). Let G0 be a subgroup of the
group G. We have the right coset of G0 in G:

G\G0 = {G0 + gα : gα ∈ G,α ∈ A},

where α 6= β =⇒ gα + G0 6= gβ + G0. We define M0 : B(G0, X) → X by the
formula

M0(f0) = M(ψ(f0)), f0 ∈ B(G0, X),

where ψ : B(G0, X)→ B(G,X) is given by

ψ(f0)(g0 + gα) = f0(g0), f0 ∈ B(G0, X), g0 ∈ G0, α ∈ A.
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We notice that ψ(af0)) = aψ(f0)), a ∈ G0, f0 ∈ B(G0, X). Indeed we have

ψ(af0)(g0 + gα) = af0(g0) = f0(a+ g0) = ψ(f0)(a+ g0 + gα)

= aψ(f0)(g0 + gα), f0 ∈ B(G0, X), a, g0 ∈ G0, α ∈ A.

We will show that M0 is an invariant mean. The linearity of M0 follows from
the linearity of M and ψ. Since ‖ψ‖ = 1, we obtain that ‖M0‖ ≤ ‖M‖ = 1.
We have also

M0(c1G0
) = M(c1G) = c, c ∈ X,

M0(af0) = M(ψ(af0)) = M(aψ(f0)) = M(ψ(f0))

= M0(f0), f0 ∈ B(G0, X), a ∈ G0. �

Now we prove that if we have an invariant mean on some semigroup, then
sets of cardinality less than cardinality of this semigroup do not change the
value of this mean.

Lemma 3.13. Let (S,+) be an infinite right cancellative semigroup, (X, ‖·‖)
be a normed space, and µ : 2S → X be a mapping such that

‖µ(D)‖ ≤ 1, D ⊂ S,

µ(A ∪B) = µ(A) + µ(B), A,B ⊂ S,A ∩B = ∅,

µ(tD) = µ(D), t ∈ S,D ⊂ S,

where

tD := {s ∈ S : t+ s ∈ D}, t ∈ S, D ⊂ S.

Then, for every set D ⊂ S such that |D| < |S|, we have µ(D) = 0.

Proof. Let D ⊂ S be such that |D| < |S|. Suppose that

∀t∈SD ∩ tD 6= ∅.

Then for every t ∈ S there exist some st ∈ D such that t + st ∈ D. We
define sets As := {t ∈ S : st = s}. Observe that S =

⋃
s∈D

As. Thus there exists

s0 ∈ D such that |D| < |As0 |. Let ϕ : As0 → D be the map given by

ϕ(t) = t+ s0, t ∈ As0 .
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Since (S,+) is a right cancellative semigroup, we obtain that ϕ is one-to-one
and we have |As0 | ≤ |D|, which is a contradiction. Thus there exist t ∈ S such
that D ∩ tD = ∅. Since |D ∪ tD| = |D|, it follows from above consideration
that there exists a sequence (tn)n∈N of elements S such that(

D ∪
n⋃
k=1

tkD

)
∩ tn+1D = ∅, n ∈ N.

Hence we have

1 ≥ µ

(
n⋃
k=1

tkD

)
=

n∑
k=1

µ(tkD) = nµ(D), n ∈ N,

which implies that µ(D) = 0. �

Since each normed space is isometrically isomorphic to some subspaces of
the space B(Ω,R) with the supremum norm (we can take as Ω a subset of all
norm one vectors of X∗ and it is easy to check that ϕ given by the formula
ϕ(x)(x∗) = x∗x, x ∈ X, x∗ ∈ Ω, is an isometric isomorphism of X onto
ϕ(X)), we may restrict our investigation to such subspaces.

Theorem 3.14. Let Ω be an infinite set, (X, ‖·‖) be a subspace of space
B(Ω,R) such that

1{ω} ∈ X, ω ∈ Ω,

‖f‖ = sup
ω∈Ω
|f(ω)|, f ∈ X.

Let further (G,+) be a group. If there exists a left (or right) invariant mean
M : B(G,X)→ X, then 1A ∈ X for all A ⊂ Ω such that |A| ≤ |G|.

In particular, if the space (X, ‖·‖) has the invariant mean property then
X = B(Ω,R).

Proof. Let (G,+) be a group. Suppose that there exists Z ⊂ Ω, |Z| ≤
|G|, such that 1Z /∈ X. Since every bounded function from Ω to R is the
uniformly limit of simple functions, there exists A ⊂ Z such that 1A /∈ X and

∀B⊂Ω(|B| < |A| ⇒ 1B ∈ X).

Since 1{ω} ∈ X, ω ∈ Ω, we obtain that 1B ∈ X for all B ⊂ Ω, |B| < ℵ0, so we
may assume that (G,+) is infinite. Let M : B(G,X)→ X be a left (or right)
invariant mean. In view of Lemma 3.10 and Theorem 3.12, we may assume
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that |G| = |A|. Let further (P,<) be a set of all ordinal numbers less then
|A|, ϕ : A→ P , ψ : G→ P be bijections. We define sets

Bs := {ω ∈ A : ϕ(ω) < ψ(s)}, s ∈ G.

Observe that

|Bs| ≤ ψ(s) < |G| = |A|.

We define the function f : G→ B(Ω,R) by the formula

f(s) := 1Bs
, s ∈ G.

Notice that f ∈ B(G,X). We define sets

Cω := {s ∈ G : ω ∈ Bs}, ω ∈ A.

Hence we have

|G \ Cω| = |{s ∈ G : ω /∈ Bs}| = |{s ∈ G : ψ(s) ≤ ϕ(ω)}|

≤ ϕ(ω) + 1 < |A| = |G|, ω ∈ A.

In view of Lemma 3.13, we obtain

M(1{ω}1G\Cω
) = 0, ω ∈ A,

and thus

M(1{ω}1Cω) = M(1{ω}1G) = 1{ω}, ω ∈ A.

For ω ∈ Ω \A we have∥∥M(f)− 1{ω}
∥∥ =

∥∥M(f − 1{ω}1G)
∥∥ ≤ ∥∥f − 1{ω}1G

∥∥ = 1,∥∥M(f) + 1{ω}
∥∥ =

∥∥M(f + 1{ω}1G)
∥∥ ≤ ∥∥f + 1{ω}1G

∥∥ = 1,

hence

M(f)(ω) = 0, ω ∈ Ω \A.
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For ω ∈ A we have

‖M(f)‖ ≤ ‖f‖ = 1,∥∥M(f)− 2 · 1{ω}
∥∥ =

∥∥M(f)− 2M(1{ω}1Cω)
∥∥ =

∥∥M(f − 2 · 1{ω}1Cω)
∥∥

≤
∥∥f − 2 · 1{ω}1Cω(s)

∥∥ = sup
s∈G

∥∥1Bs − 2 · 1{ω}1Cω

∥∥
= sup
s∈G

sup
a∈A
|1Bs

(a)− 2 · 1{ω}(a)1Cω
(s)| = 1,

hence

M(f)(ω) = 1, ω ∈ A.

Finally we have M(f) = 1A /∈ X, which is an obvious contradiction. �

Corollary 3.15. The spaces c and c0 do not have the invariant mean
property.

Example 3.16. The space CB(R) does not have the invariant mean prop-
erty.

To prove the claim let X = CB(R) and suppose that there exists an
invariant mean M : B(N, X) → X. First we show that if f ∈ B(N, X) and
f(n)(x) ≥ 0, x ∈ R, then M(f)(x) ≥ 0, x ∈ R. Indeed, we have

‖M(f)− ‖f‖ · 1R‖ = ‖M(f − ‖f‖ · 1R1N)‖

≤ ‖f − ‖f‖ · 1R1N‖ ≤ ‖f‖ ,

and consequently

M(f)(x)− ‖f‖ ≥ −‖f‖ , x ∈ R.

For n ∈ N we define functions:

fn(x) :=


0, x ≤ 0,

nx, x ∈ (0, 1
n),

1, x ≥ 1
n ,

gn(x) :=


0, x ≤ − 1

n ,

1 + nx, x ∈ (− 1
n , 0),

1, x ≥ 0.

Let f(n) := fn, n ∈ N. Then f ∈ B(N, X). Observe that

fi(x) ≤ f(n)(x) ≤ gk(x), i, k, n ∈ N, i ≤ n, x ∈ R.
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Hence

fn ≤M(nf) = M(f) ≤ gn,

and thus

M(f)(x) = 0, x < 0,

M(f)(x) = 1, x > 0,

which contradicts the continuity of M(f).
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