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A SIMPLE PROOF OF THE POLAR DECOMPOSITION
THEOREM

Pawer. WOJCIK

Abstract. In this expository paper, we present a new and easier proof of the
Polar Decomposition Theorem. Unlike in classical proofs, we do not use the
square root of a positive matrix. The presented proof is accessible to a broad
audience.

1. Introduction

The algebra of all real (or complex) n x n matrices is denoted by M, (K).
Let us recall a well-known result.

THEOREM 1.1 (Polar Decomposition). Suppose that A € M, (K) is a
nonzero matrix. Then there are U, P € M, (K) such that U is unitary, P > 0,
and A=UP.

This result is called the Polar Decomposition, and its proof uses the square
root of a positive matrix (or The Functional Calculus). Different proofs can
be found, e.g., in [1l 2 B]. The aim of this article is to introduce a new proof
of the Polar Decomposition. Let us point out that our proof neither uses the
square root of a positive operator nor The Functional Calculus.

It should be easier to prove Polar Decomposition Theorem, if we consider
operators instead of matrices. Using elementary techniques, Polar Decompo-
sition will be proved. Throughout this paper we assume that the considered
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Hilbert spaces are finite dimensional and their dimensions are not less than 2.
Let B(H; K) denote the Banach space of all bounded linear operators (between
Hilbert spaces H and K) and we write B(H) for B(H;H). We shall identify
B(H) (where dim’H = n) and M, (K) in the natural way. Let us denote the
unit sphere by S(H) := {z € H : ||z|| = 1}. Throughout this work, all Hilbert
spaces are assumed to be real or complex.

If P € B(H), then P is positive if (Pz|x) > 0 for all € H. In symbols
this is denoted by P > 0. If U € B(H), then U is an isometry if |[Uz|| = ||z||
for all x € H, or, equivalently, (Ux|Uy) = (z|y) for all x,y € H.

2. A new and easy proof

In this section we present an elementary proof of the Polar Decomposition.
The method of proof presented here is different from that of [I} 2, B]. We start
with the following lemma.

LEMMA 2.1. Assume that dimH = 2. If A € B(H;K) and A # 0, then
there are vectors x1,x2 in S(H) such that x1lxy and Axy Ll Ax,.

PRrROOF. Fix x,z € S(H) such that x Lz. If (Az|Az) = 0, we define z; := x,
To 1= Z.
Now, assume that (Az|Az) = ¢ # 0. Then we define a vector y := EE

follows that (Az|Ay) € R and y € S(H). Moreover, zLy and (Ay|Az) € R.
Then we define a mapping ¢: [0,1] — K by

(a4 Uttty t(=e) + (1~ t)y
ot~ (A=) | Ay ra=m))
Define now Ny (t) :=||(1 —t)z + ty|| and Na(t) := |[t(—x) + (1 — t)y||. It is
easy to check that ¢(t) € R for all ¢ € [0, 1]. Indeed, we have
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In fact, we can write ¢: [0,1] — R. It is easy to see that ¢ is continuous.

el
o= (a(5) () - (o) ()

which means ¢(0) = —p(1). Thus we get ¢(0) <0 < (1) or ¢(1) <0 < ¢(0).
Without loss of generality, we may assume that ¢(0) < 0 < ¢(1). Using the
Darboux property we get ¢(t,) = 0 for some t, € [0,1]. Thus for the vectors

and

o (1 —to)x+toy S to(—x) + (1 —t,)y
PO~ t)z oyl TP (fte(—a) + (1 —to)y]

we have z1lzy and 0 = ¢(t,) = (A(x1) |A(z2)), therefore Azxy Ll Azy. The
proof is complete. O

The next result is a consequence of the above lemma.

THEOREM 2.2. Assume that dimH =n. If A € B(H;K) and A # 0, then
there are vectors x1,...,x, in S(H) such that

zjlxy and AzjlAzy, jke{l,...,n},j#k.

PROOF. We proceed by induction (with respect to the dimension of H).
For n = 2 we have proved that it is true (see Lemma .

Assume the statement holds for n. We will prove it for n + 1. Suppose
that dim#H = n + 1. Obviously S(#H) is compact. Therefore there is a y,
in S(H) such that ||A| = ||Ay,||. It is clear that dim{y,}* = n. Then, by

inductive assumption, there are the vectors zq,...,2, € S ({yo}*) C S(H)
such that xz; Lz, and Ax; LAz, for j,k € {1,...,n}, j # k. We define a
vector Tp41 := Y. It is easy to observe that z; Lz, for all j € {1,...,n}.

We will show that Az; L Az, for all j € {1,...,n}. Assume, contrary to
our claim, that (Az; |Az,11) = ¢ # 0, for some x;, € {z1,...,2z,}. We define
a vector u := 15z;,. It follows that ulz,1, [Ju] =1 and

(1) (Au|Azyq1) = |c| € R.
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Let « € (0,1). It is easy to check that au + 1 — a?x,41 € S(H). Therefore

2
| AJI? > HA (au+ 1-— a2xn+1) H

— 2|| Aul|? + 2%Re (amemnm) (1= o)Az
and making use of , we obtain
1A]? > o[ Aulf? + 201 — a2 (Au| Az, 1) + (1 - 0?)]| Ago |
= —a?||Au)? + 2av/1 — a2|e| + (1 — a2)|| A2

It follows from the above inequality that

o?[|A|? > 2| Au)? + 2aV/1 — a2c|
and

o (| AJI? = [|Aul|?) > 2a/1 - a2[d].
Thus we have

o (| A = [[Aul?) > 2v/1 — a2|c].

By letting « tend to 0, we get 0 > 2|¢|, which is a contradiction.

0

As an illustration of the applications of this theorem we prove here the
polar decomposition of an operator. The main result of this paper is the

following.

THEOREM 2.3 (Polar Decomposition). Let ‘H be a Hilbert space such that
dimH =n. If A € B(H), then there are U, P € B(H) such that U is unitary,

P>0,and A=UP.

PROOF. Assume that dim(ker A)+ = p. Thus we obtain dim ker A = n—p.
It is clear that A| ey 4)+ : (ker A)= — H is injective. We choose {x1,..., 2} C

S(H) N (ker A)* such that

zjlxy and Az; LAz, j ke{l,...,p},j#k,
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by Theorem By the injectivity of Al (e 4y, We obtain Azy # 0 for all k €
{1,...,p}. It is easy to see that {z1,...,z,} and { A ”Axl, .. ‘Aw ”A:cp}

are two orthonormal bases for (ker A)* and A ((ker A)*), respectively.
Let {e1,...,en—p} be an orthonormal basis for ker A and let {y1,...,yn—p}

be an orthonormal basis for A ((ker A)~) . Then we define a positive operator
PeB(H)b

Pz = ||Axg||lzk, ke{l,...,p}; Pe:=0, te{l,...,n—p}.

We can now define an isometry U € B(H) b

Uzxy = ||A1 ”A;Ck, ke{l,....,p}; Uer:=wy, te{l,...,n—p}.
We have
UPzx = U (||Axg||zr) = [|Azg||U () = || Az HA HA:ck = Axy,
and UPe; = U (0) = 0 = Ae;. We have shown that UP and A coincide on the
basis, thus they are equal: UP = A. This completes the proof. ([
3. Remark

Now, we are going to present one more application of Theorem[2.2] Namely,
we will prove that any injective operator can restrict to a similarity (a scalar
multiple of an isometry).

THEOREM 3.1. Assume that dimH = n = 2m > 4. Let A € B(H) be
injective. Then there is a subspace M CH such that dim M = fn =m and
Al is a similarity (a scalar multiple of an isometry).

PROOF. We choose {x1,xa, ..., 2o, } C S(H) such that

zjlay and Axj LAz, j,ke{l,2,....2m},j #k;

see Theorem [2.2] Without loss of generality, we may assume that

[Az1[] < |Aze|| < ... < [[Azgml.
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Choose v € R such that
[Az || < ... < [[Azy || <y < [[Azmpa | < -0 < | Az
We consider the following collection of subspaces:

X, : = span{xy, Tom, },

X : = span{xa, Tom—_1},

X 2 = span{ @, Tyg1}-

It is easy to observe that X; 1 Xy for j,k € {1,...,m}, j # k. Since
S(X1) = X1 N S(H), the unit sphere S(X;) is an arcwise connected subset
of H. Moreover, we have ||Az1]] < v < ||Azoy||. Hence there is a vector
wy € S(X7) such that v = || Aw||.

In a similar way we obtain a vector we € S(X32) such that v = ||Aws]|.
Indeed, since S(X2) = X5 N S(H), the unit sphere S(X32) is an arcwise con-
nected subset of H. Moreover, we have | Azz|| < v < ||Az2y,—1]|. Hence there
is a vector wy € S(X32) such that v = [|Aws||.

This and similar reasoning shows that there are vectors wy, ..., w,, such
that

w; € S(X;), v =||Aw;l|, where je€ {1,...,m}.

It is easy to check that {wi,...,w,,} is an orthonormal set in H.
It is not hard to see that A(X;)LA(Xy) for j,k € {1,...,m}, j # k.
Therefore {%Awl, cees %Awm} is also an orthogonal set in H. We define a

subspace M := span{wy, ..., wy,}. Thus we have dim M =m = %n Now, we
define an operator T' € B(M;H) as follows:

1
Twj = —Aw;, je€{1,2,...,m}.
Y

It follows that 7" is an isometry. Finally, we get A|,, = ~T. The proof is
complete. O

THEOREM 3.2. Assume that dimH =n =2m +1 > 3. Let A € B(H) be
injective. Then there is a subspace M CH such that dim M = 1(n+1) = m+1
and Al,, is a similarity.

The proof of Theorem [3.2] runs similarly.
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