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STRONG UNIQUE ERGODICITY OF RANDOM
DYNAMICAL SYSTEMS ON POLISH SPACES

Paweł Płonka

Abstract. In this paper we want to show the existence of a form of asymp-
totic stability of random dynamical systems in the sense of L. Arnold using
arguments analogous to those presented by T. Szarek in [6], that is showing it
using conditions generalizing the notion of tightness of measures. In order to do
that we use tightness theory for random measures as developed by H. Crauel
in [2].

1. Introduction

In the theory of random dynamical systems it is still usual to show asymp-
totic stability or the existence of random attractors by showing the existence
of invariant compact random set. This may be problematic especially if the
phase space is infinite dimensional. This paper shows weaker criteria for a form
of asymptotic stability of random dynamical systems, that is for the existence
of a unique invariant random probability measure such that any random prob-
ability measure will evolve under the action of the random dynamical system
towards it.

In order to transfer this results to the case of random dynamical systems
in the sense of L. Arnold (see [1]) we will use the Prokhorov theory developed
for random probability measures on Polish spaces by H. Crauel in [2] follow-
ing M. Valadier [7], which was used in the theory of random attractors and
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associated invariant measures developed by H. Crauel and F. Flandoli in [3].
We will use this theory to introduce criteria for the existence of invariant
measures as well as asymptotic stability of measures associated with random
dynamical spaces on Polish spaces.

Let assume that ϕ is a continuous random dynamical system over Pol-
ish space X and measurable dynamical system (Ω,F ,P, θt∈T) where T ∈
{Z+,R+}, and Φ(t) is an associated skew product as defined in section 2. As-
sociated with ϕ is a space of probability measures over F ⊗B(X) also defined
below and denoted PΩ(X). Here we will assume that PΩ(X) is a Polish space
with metric d which happens if and only if Ω is countably generated (see [2]).
Under such assumption we can define a class of non-expansive random dynami-
cal systems such that d(Φ(t)µ,Φ(t)ν) ≤ d(µ, ν) for all t ∈ T and µ, ν ∈ PΩ(X).
We are interested in finding a ϕ-invariant measure µ0 ∈ PΩ(X) such that
Φ(t)µ→ µ0 in the topology of weak convergence for all µ ∈ PΩ(X), for non-
expansive random dynamical systems. Note that because of non-expansiveness
(and using the fact that Φ(t+s) = Φ(t)Φ(s)) it is enough to show this for some
discrete random dynamical system defined by {Φ(nt0)}n∈N where t0 > 0, that
is why we treat only discrete case for the rest of the paper.

2. Basic definitions and notations

Let X be a Polish space, that is a separable completely metrizable topolog-
ical space. We will always assume that X is equipped with a complete metric
d(x, y). By B(x, ε) we will denote a closed ball centered at x with radius ε. If
A ⊆ X, then by Aε,0 we will denote an ε-neighborhood of A, that is

Aε,0 := {x ∈ X : d(x,A) < ε},

where d(x,A) := inf{d(x, y) : y ∈ A}. By Aε we will denote a closed ε-
neighborhood of A, that is

Aε := {x ∈ X : d(x,A) ≤ ε}.

By B(X) we will denote Borel subsets of X, and by Bb(X) we will denote
bounded Borel subsets of X. If A ∈ B(X), then diamA := sup{d(x, y) : x, y ∈
A} denotes the diameter of A. By Cε(X) we will denote a family of ε-compact
subsets of X, that is if A ∈ Cε(X) then A is closed and there exists n ∈ N and
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x1, . . . , xn ∈ X such that

A ⊆
n⋃
i=1

B(xi, ε).

Furthermore by Ckε (X) we will denote those sets A ∈ Cε(X) for which there
are x1, . . . , xk ∈ X such that A ⊆

⋃k
i=1B(xi, ε).

Let us denote by (Ω,F ,P) a probability space and by T ∈ {Z,Z+,R,R+}
the time space. By PΩ(X) we will denote the set of probability measures on
(Ω × X,F ⊗ B(X)), such that if µ ∈ PΩ(X), then πΩµ(B) = µ(π−1

Ω (B)) =
P(B) for all B ∈ B(X), where πΩ(ω, x) = ω is a projection on Ω. As stated
in [1] such measures correspond to functions µ·(·) : Ω × B(X) → [0, 1] such
that ω 7→ µω(B) is a measurable function for every B ∈ B(X), the function
B 7→ µω(B) is a probability measure for each ω ∈ Ω and such that

µ(A) =

∫
Ω

∫
X

1A(ω, x)µω(dx)P(dω)

for A ∈ F ⊗B(X), is a measure in PΩ(X). If µ ∈ PΩ(X) then the correspond-
ing µω is called a factorization of µ with respect to P. By PAΩ (X) we will
denote the set of measures in PΩ(X) which are supported on A ∈ F ⊗B(X),
that is if µ ∈ PAΩ (X) then µ(A) = 1. By P(X) we will denote probability
measures on (X,B(X)). Note that if µ ∈ P(X) then ω 7→ µ describes the
corresponding measure in PΩ(X).

Let us denote by Cb(X) the set of all continuous and bounded real func-
tions. The space Cb(X) is equipped with the standard supremum norm. Fol-
lowing [1] we will introduce the space L1

P(Ω, Cb(X)) of functions f : Ω→ Cb(X)
measurable and such that ‖f‖ :=

∫
Ω
‖f(ω, ·)‖dP <∞. Note that if f ∈ Cb(X)

then (ω, x) 7→ f(x) describes the corresponding function in L1
P(Ω, Cb(X)). For

any measure µ and function f let us introduce notation µ(f) =
∫
fdµ. The

smallest topology on PΩ(X) which makes the operator f 7→ µ(f) continuous,
where f ∈ L1

P(Ω, Cb(X)) is called the topology of weak convergence on PΩ(X).
Similarly the topology of weak convergence for P(X) is understood by us as
the smallest topology which makes f 7→ µ(f) continuous for f ∈ Cb(X) and
µ ∈ P(X).

By (θt)t∈T we will denote a metric dynamical system over Ω. That is it
satisfies the following conditions

(ω, t) 7−→ θt(ω)

is measurable,

θ0(ω) = id(ω)
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θt+s(ω) = θt ◦ θs(ω)

for s, t ∈ T,

θtP(F ) = P(θ−1
t F ) = P(F )

for t ∈ T, F ∈ F .
Let (θt)t∈T be a metric dynamical system. We call a function ϕ : T× Ω×

X → X a random dynamical system if it is B(T)⊗F ⊗B(X) measurable, the
function ϕ(t, ω, ·) : X → X is continuous and ϕ satisfies the following cocycle
property

ϕ(0, ω) = idX

for ω ∈ Ω,

ϕ(t+ s, ω) = ϕ(t, θs(ω)) ◦ ϕ(s, ω)

for s, t ∈ T, ω ∈ Ω. The following family of mappings is called a skew product
on ϕ

(ω, x) 7→ (θtω, ϕ(t, ω)x) =: Φ(t)(ω, x)

for t ∈ T. Skew product is a measurable dynamical system on (Ω × X,F ⊗
B(X)). With the following notations Φ(t)µ(·) = µ(Φ(t)−1(·)) and Φ(t)f(ω, x) =
f(Φ(t)(ω, x)) we have Φ(t)µ(f) = µ(Φ(t)f), Φ(t) is a continuous linear map-
ping on L1

P(Ω, Cb(X)) and a continuous affine mapping on PΩ(X).
Given a random dynamical system ϕ we will call a measure µ ∈ PΩ(X)

ϕ-invariant if it satisfies

Φ(t)µ = µ

for t ∈ T. We denote the set of all ϕ-invariant measures by IP(ϕ).
We call a random dynamical system to have the property of ϕ strong

unique ergodicity if there exists ν ∈ IP(ϕ) such that

lim
t→∞

Φ(t)µ = ν

for all µ ∈ PΩ(X). Notice that in this case the measure ν is unique.
In the rest of the paper we will mainly deal with discrete dynamical sys-

tems, so unless stated otherwise assume that T = Z+.
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2.1. Basic facts

Let us denote by πX(ω, x) := x the projection of Ω×X onto X. For every
µ ∈ PΩ(X) we use the following notation πXµ(A) = µ(π−1

X (A)) = Eµ·(A) for
A ∈ B(X). Following H. Crauel (see [2, Chapter 4]) we introduce notion of
tightness of measures.

Definition 2.1. We say that a set Γ ⊆ P(X) of Borel probability mea-
sures on X is tight if for every ε > 0 there exists a compact set K ⊆ X such
that

µ(K) ≥ 1− ε

for every µ ∈ Γ. We say that a set Γ ⊆ PΩ(X) of probabilities on X × Ω is
tight if the set πXΓ = {πXµ : µ ∈ Γ} is tight.

H. Crauel showed that πX : PΩ(X) → P(X) is a continuous surjective
mapping such that if K ⊆ P(X) is compact, then π−1

X (K) is compact in
PΩ(X) (see [2, Theorem 4.14]). From this he obtains the following Prokhorov-
type theorem.

Theorem 2.2. Suppose that Γ ⊆ PΩ(X). Then Γ is tight if and only if it
is relatively compact with respect to the topology of weak convergence. In this
case it is also relatively sequentially compact.

Let ϕ be a discrete random dynamical system and Φ(n) its skew product
associated with ϕ. Assume that there exists µ ∈ PΩ(X) such that the family
{Φ(n)µ}n∈N is tight. Then the sequence of measures {νn}n∈N defined by

νn(·) :=
1

n

n∑
k=1

Φ(k)µ(·)

for n ∈ N, is also tight. Then Theorem 2.2 says that it has some convergent
subsequence with a limit ν∗. From [1, Theorem 1.5.8] we know that ν∗ ∈
IP(ϕ), that is ν∗ is a ϕ-invariant measure.

Now we will prove a lemma which we will use later on.

Lemma 2.3. Let µ ∈ PΩ(X). If for every ε > 0 there exists a set Cε ∈
Cε(X) such that

πXΦ(n)µ(Cε) ≥ 1− ε

for n ∈ N, then {Φ(n)µ}n∈N is tight.
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Proof. Let ε > 0. For each ε
2n chose C ε

2n
by assumption. Set K :=⋂∞

k=1C ε

2k
. Since X is a Polish space, K is a compact set and we have

πXΦ(n)µ(X \K) = πXΦ(n)µ(

∞⋃
k=1

X \ C ε

2k
)(2.1)

≤
∞∑
k=1

πXΦ(n)µ(X \ C ε

2k
) ≤

∞∑
k=1

ε

2k
= ε.

Which in accordance with Definition 2.1 shows that {Φ(n)µ}n∈N is tight. �

In his book H. Crauel also showed that PΩ(X) is a Polish space if and
only if the space (Ω,F ,P) is countably generated, that is there exists a set
of generators F′ ⊆ F which is countable and for every F ∈ F there exists
G ∈ F′ such that P(F∆G) = 0. We will maintain this assumption through
the rest of the paper. In that case we can define the following metric.

Definition 2.4. Let F′ = {Gm : m ∈ N} be a set of generators for F ,
such that G0 = Ω. For µ, ν ∈ PΩ(X) we define

d(µ, ν) :=

∞∑
m=0

1

2m
sup{

∫
Gm

|µω(f)− νω(f)|P(dω) : f ∈ Cb(X), 0 ≤ f ≤ 1,

|f(x)− f(y)| ≤ d(x, y), x, y ∈ X}.

Notice that the metric d depends on the choice of the generating family
F′, but of course all are equivalent in the sense that they generate the same
topology. In this paper we need it only to show convergence in the weak
topology, and the dependence on the generating family may be relevant only
in the definition of non-expansiveness of ϕ where it will be noticed. Now we
will prove two lemmas that we will use later on. Notice that they are not
dependent on the choice of the generating family.

Lemma 2.5. Let ε > 0 and µ1, µ2 ∈ PΩ(X). If d(µ1, µ2) ≤ ε2 then

πXµ1(Aε) ≥ πXµ2(A)− ε

for A ∈ B(X).

Proof. Take A ∈ B(X) and define f(x) := max{ε− d(x,A), 0}. Then we
have

εµi,ω(A) ≤ µi,ω(f) ≤ εµi,ω(Aε)
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for i = 1, 2 and ω ∈ Ω, where µi,ω denotes the disintegration of µi. From this
we obtain

επXµ2(A)− επXµ1(Aε) = ε

∫
Ω

µ2,ω(A)P(dω)− ε
∫

Ω

µ1,ω(Aε)P(dω)

≤
∫

Ω

(µ2,ω(f)− µ1,ω(f))P(dω)

≤ sup{
∫

Ω=G0

|µ2,ω(f)− µ1,ω(f)|P(dω) : f ∈ Cb(X), 0 ≤ f ≤ 1,

|f(x)− f(y)| ≤ d(x, y), x, y ∈ X}

≤
∞∑
m=1

1

2m
sup{

∫
Gm

|µ2,ω(f)− µ1,ω(f)|P(dω) : f ∈ Cb(X),

0 ≤ f ≤ 1, |f(x)− f(y)| ≤ d(x, y), x, y ∈ X}

= d(µ1, µ2) ≤ ε2.

Which after rearrangement gives us

πXµ1(Aε) ≥ πXµ2(A)− ε.

For small ε > 0 that is true even if Ω has a different position in generating
family. �

Lemma 2.6. Let A ∈ Bb(X) be nonempty and µ, ν ∈ Pπ
−1
X A

Ω (X). Then

d(µ, ν) ≤ 4 diamA.

Proof. Let y ∈ A and let f ∈ Cb(X) be such that 0 ≤ f ≤ 1 and
|f(x)− f(y)| ≤ d(x, y) for x, y ∈ X. Then

|µω(f)− νω(f)| ≤ |µω(f)− f(y)|+ |f(y)− νω(f)|

= |
∫
A

(f(x)− f(y))µω(dx)|+ |
∫
A

(f(y)− f(x))νω(dx)|

≤
∫
A

d(x, y)µω(dx) +

∫
A

d(x, y)νω(dx)

≤ diamA+ diamA = 2 diamA
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which is true for P-almost all ω ∈ Ω. From this and Definition 2.4 we obtain

d(µ, ν) ≤ 2 diamA
∑
m∈N

1

2m
P(Gm)

≤ 2
∑
m∈N

1

2m
diamA = 4 diamA. �

3. Criteria for the existence of an invariant measure

Now we will introduce the definition of the concentration of random dy-
namical systems. Following the definition there is an example of a random
dynamical system which is concentrating and which doesn’t have an invariant
measure.

Definition 3.1. We say that ϕ is concentrating if for every ε > 0 there
exists A ∈ B(X) with diamA ≤ ε and α > 0 such that

lim inf
n→∞

πXΦ(n)µ(A) ≥ α

for all µ ∈ PΩ(X).

Example 3.2. Let H be an infinite dimensional separable Hilbert space
and let us denote the orthonormal basis of it using the following subset B =
{u1, u2, . . .}∪ {v1, v2, . . .} ⊆ H. Let us also choose real numbers r1, r2, . . . ∈ R
such that

√
2

2 > r1 > r2 > . . . and limn→∞ rn = 0 and for each i ∈ N define
Xi = ui + riS(0, 1) where S(0, 1) = {

∑∞
k=1 αkvk ∈ H :

∑∞
k=1 α

2
k = 1}. Let

X =
⋃∞
i=1Xi. Observe that Xi are closed subsets of H and Xi ∩Xj = ∅ for

i 6= j which makes X a closed subset of H and thus a Polish space. Now for
eachm ∈ N define Tm : X → Xm such that for each x = ui+ri

∑∞
k=1 αkvk ∈ X

we have

Tm(ui + ri

∞∑
k=1

αkvk) = um + rm

∞∑
k=1

αkvk+1.

Now let us define Ω = NZ+

, let F be the product σ-algebra and let P be
defined by

P({ω ∈ Ω : ω0 = i0, . . . , ωk = ik}) =
1

2i0
· . . . · 1

2ik
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and canonically extended to the whole of F . Now let us define a random
dynamical system ϕ by the formula

ϕ(n, ω) =

{
T(θn−1ω)0 ◦ . . . ◦ Tω0 for n ≥ 1,
idX for n = 0.

Then one can see that πXΦ(n)µ(Xl) = 1
2l for µ ∈ PΩ(X) and l ∈ N. Since

diamXi = ri for each i ∈ N the condition of concentration holds trivially as
for every ε > 0 we can choose rl < ε and fix A = Xl and α = 1

2l . Suppose
that there exists some ϕ-invariant measure µ0 ∈ PΩ(X). It is possible to show
that if x ∈ suppπXΦ(n)µ0 and x = ui + ri

∑∞
k=1 αkvk then αn = 0. Since

suppπXΦ(n)µ0 = suppπXµ0 for every n ∈ N we obtain that suppπXµ0 = ∅.

Below we introduce the definition of non-expansiveness. Notice that this
condition may be dependent on the choice of generating family in the definition
of metric d. For this paper its enough that this condition will hold for just
one such choice.

Definition 3.3. We say that ϕ is non-expansive if

d(Φ(1)µ,Φ(1)ν) ≤ d(µ, ν)

for all µ, ν ∈ PΩ(X).

Now we prove the main theorem in the form of two lemmas followed by
main assertion of this paper.

Lemma 3.4. If ϕ is non-expansive and concentrating then there exists a
ϕ-invariant measure ν ∈ IP(ϕ).

Proof. Let us take arbitrary ε > 0 and µ ∈ PΩ(X). Put ε̄ = ε2

64 and
choose A ∈ B(X) and α > 0 from the definition of concentration for ε̄. Let us
define a new measure νn for each n ∈ N by

νn(B) :=
Φ(n)µ(B ∩ π−1

X (A))

Φ(n)µ(π−1
X (A))

for B ∈ F × B(X). Observe that

πXνn(B) = νn(π−1
X (B)) =

Φ(n)µ(π−1
X (B) ∩ π−1

X (A))

Φ(n)µ(π−1
X (A))

=
Φ(n)µ(π−1

X (B ∩A))

Φ(n)µ(π−1
X (A))

=
πXΦ(n)µ(B ∩A)

πXΦ(n)µ(A)
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for B ∈ B(X). Since ϕ is concentrating, we can define

δ := sup{γ > 0 : ∃C ε
2
∈C ε

2
(X) lim inf

n→∞
πXΦ(n)µ(C ε

2
) ≥ γ}.

Let C ε
2
∈ C ε

2
(X) be chosen in accordance to the definition of δ. Then we have

πXΦ(n)ν(C
ε
2
ε
2

) ≥ 1− ε

2

for all n ∈ N and ν ∈ PΩ(X) which are supported on π−1(A). We show this
by contradiction. Suppose that there exists some n0 ∈ N and ν0 ∈ PΩ(X)
supported on π−1

X (A) such that

πXΦ(n0)ν0(C
ε
2
ε
2

) < 1− ε

2
.

By Ulam’s theorem there exists a compact set K ⊆ X\C
ε
2
ε
2
such that

πXΦ(n0)ν0(K) ≥ ε

2
.

By non-expansiveness of ϕ we have

d(Φ(n0)ν0,Φ(n0)ν) ≤ d(ν0, ν)

for any ν ∈ PΩ(X). Then by Lemma 2.6 we have

d(ν0, ν) ≤ 4 diamA ≤ ε

16
.

From Lemma 2.5 we obtain

πXΦ(n0)ν(K
ε
2 ) ≥ ε

2

for any ν ∈ PΩ(X) supported on π−1
X (A). Notice that from definition of con-

centration we obtain πXΦ(n)µ(A) ≥ α
2 for large enough n ∈ N, which together

with inequality (2.1) gives us πXΦ(n)µ ≥ α
2 πXνn for large enough n ∈ N. So

we obtain

πXΦ(n+ n0)µ(K
ε
2 ) ≥ α

2
Φ(n0)νn(K

ε
2 ) ≥ αε

8
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for large enough n ∈ N. Since K ε
2 ∩ C ε

2
= ∅ we have

lim inf
n→∞

πXΦ(n)µ(K
ε
2 ∪ C ε

2
) ≥ lim inf

n→∞
πXΦ(n)µ(K

ε
2 )

+ lim inf
n→∞

πXΦ(n)µ(C ε
2
) ≥ αε

8
+ δ > δ.

Since K
ε
2 ∪ C ε

2
is ε

2 -compact set this contradicts the definition of δ.
Now we define recursively the numbers nk, and measures νk, µk as follows.

Let n0 = 0, µ0 = ν0 = µ. Now if nk−1, µk−1, νk−1 are given, we choose nk in
accordance to the definition of concentration such that

πXΦ(nk)µk−1(A) ≥ α

2

and define

νk(B) :=
Φ(n)µk−1(B ∩ π−1

X (A))

Φ(n)µk−1(π−1
X (A))

for B ∈ F × B(X), and

µk(B) :=
1

1− α
2

(Φ(nk)µk−1(B)− α

2
νk(B))

for B ∈ F × B(X). By using this definitions we can observe that

Φ(n1 + n2 + . . .+ nk)µ =
α

2
Φ(n2 + . . .+ nk)ν1

+
α

2
(1− α

2
)Φ(n3 + . . .+ nk)ν2 + . . .+

α

2
(1− α

2
)k−1νk + (1− α

2
)kµk

for any k ∈ N. Now take k ∈ N such that (1− (1− α
2 )k)(1− α

2 ) ≥ 1− ε. Then
we have

πXΦ(n)µ(C
ε
2
ε
2

) =
α

2
πXΦ(n− n1)ν1(C

ε
2
ε
2

)

+ . . .+ (1− α

2
Φ(n− n1 − . . .− nk)νk(C

ε
2
ε
2

))

≥ (1− (1− α

2
)k)(1− α

2
) ≥ 1− ε

for n ≥ n1+. . .+nk. For smaller n we can use Ulam’s lemma to find a compact
set K ⊆ X such that

πXΦ(n)µ(K ∪ C
ε
2
ε
2

) ≥ πXΦ(n)µ(K) ≥ 1− ε.
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We have shown that conditions of Lemma 2.3 are met, so we have tightness
of the sequence {Φ(n)µ}n∈N, which by discussion in section 2.1 gives us the
existence of an invariant measure. �

Lemma 3.5. Let ϕ be non-expansive. If for every ε > 0 there exists α > 0
such that for every µ1, µ2 ∈ PΩ(X) there exists A ∈ Bb(X) with diamA ≤ ε
and n0 ∈ N such that

πXΦ(n0)µi(A) > α

for i = 1, 2, then

lim
n→∞

d(Φ(n)µ1,Φ(n)µ2) = 0

for µ1, µ2 ∈ PΩ(X).

Proof. From Definition 2.4 it can be shown that if µ1, µ2, ν1, ν2 ∈ PΩ(X)
and a, b ∈ R are such that aµ1 + bν1, aµ2 + bν2 ∈ PΩ(X) then

d(aµ1 + bν1, aµ2 + bν2) ≤ ad(µ1, µ2) + bd(ν1, ν2).

We will use this fact later on.
Let ε > 0 and µ1, µ2 ∈ PΩ(X). From assumption of the theorem take

α > 0, A ∈ Bb(X) with diamA ≤ ε
4 and n0 ∈ N such that

πXΦ(n0)µi(A) > α

for i = 1, 2. Let us define four sequences of measures {µki }k∈N, {νki }k∈N for
i = 1, 2 such that µ0

i = ν0
i = µi for i = 1, 2 and having defined the sequences

for k − 1 we define

νki (B) :=
Φ(n0)µk−1

i (B ∩ π−1
X (A))

πXΦ(n0)µk−1
i (A)

µki :=
1

1− α
Φ(n0)µk−1

i − α

1− α
νki

for i = 1, 2. Then it is easy to see that

Φ(kn0)µi = (1− α)kµki + αΦ((k − 1)n0)ν1
i

+ α(1− α)Φ((k − 2)n0)ν2
i + . . .+ α(1− α)k−1νki
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for i = 1, 2. Since νki ∈ P
π−1
X A

Ω (X) for i = 1, 2 and k > 1 from Lemma 2.6 we
obtain

d(νk1 , ν
k
2 ) ≤ 4 diamA ≤ ε

for k > 1. From this, the fact mentioned in the beginning of the proof and
non-expansiveness of ϕ and general fact that d(µ1, µ2) ≤ 2 we get

d(Φ(kn0)µ1,Φ(kn0)µ2) ≤ (1− α)kd(µk1 , µ
k
2)

+ αd(Φ((k − 1)n0)ν1
1 ,Φ((k − 1)n0)ν1

2)

+ α(1− α)d(Φ((k − 2)n0)ν2
1 ,Φ((k − 2)n0)ν2

2)

+ . . .+ α(1− α)k−1d(νk1 , ν
k
2 )

≤ (1− α)kd(µk1 , µ
k
2) + αd(ν1

1 , ν
1
2)

+ . . .+ α(1− α)k−1d(νk1 , ν
k
2 ) ≤ 2(1− α)k + ε.

From non-expansiveness and the fact that k and ε were arbitrary we get the
assertion. �

Theorem 3.6. If ϕ is non-expansive and concentrating then ϕ has the
property of strong unique ergodicity.

Proof. Under the assumptions of the theorem we get from Lemma 3.4
the existence of an invariant measure ν ∈ IP(ϕ). Since ϕ is concentrating the
assumptions of Lemma 3.5 are satisfied, using the conclusion of this lemma
we obtain

lim
n→∞

d(Φ(n)µ, ν) = lim
n→∞

d(Φ(n)µ,Φ(n)ν) = 0

for all µ ∈ PΩ(X). So ϕ has the property of strong unique ergodicity. �
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