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THE MOTIVIC IGUSA ZETA SERIES OF SOME
HYPERSURFACES NON-DEGENERATED WITH RESPECT

TO THEIR NEWTON POLYHEDRON

Hans Schoutens

Abstract. We describe some algorithms, without using resolution of singu-
larities, that establish the rationality of the motivic Igusa zeta series of certain
hypersurfaces that are non-degenerated with respect to their Newton poly-
hedron. This includes, in any characteristic, the motivic rationality for poly-
diagonal hypersurfaces, vertex singularities, binomial hypersurfaces, and Du
Val singularities.

1. Introduction

Fix a field κ, of arbitrary characteristic, but often also assumed to be
algebraically closed. We use the term scheme W to mean a separated scheme
of finite type over κ; and variety to mean a reduced scheme (so that varieties
are not assumed to be irreducible). Denef and Loeser have proposed a motivic
variant of the classical Igusa zeta series ([3, 12]), and showed its rationality
in characteristic zero by means of motivic integration, quantifier elimination
for Henselian valued fields, and resolution of singularities (the latter two are
only available at present in characteristic zero, whence their restriction to this
case; see [5, 7]). Recall that the Grothendieck ring GrpVarκq is the universal
Euler characteristic on varieties over κ, that is to say, the quotient of the free
Abelian group on isomorphism classes rV s of varieties V over κ modulo the
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scissor relations

rV s “ rV ´W s ` rW s,

for W a locally closed subvariety of V , with multiplication given by fiber
products. For each n, let LnpW q be the n-th truncated jet space of W (see
below for a discussion), and put1

IguW ptq :“
8
ÿ

n“1

rLnpW qst
n

as a power series over GrpVarκq. They prove in [5] that IguW is rational over
the localization G :“ GrpVarκqL, where L :“ rA1

κs denotes the Lefschetz class.
Moreover, they also show that this motivic Igusa zeta series specializes to
the classical one–thus reproving its rationality, but gaining in the process an
enormous amount of uniformity–as follows: if W0 is a model of W over a
finitely generated Z-algebra O, then for almost all maximal ideals m ⊆ O,
the motivic Igusa zeta series specializes to the classical one via the counting
function rLnpW qs ÞÑ |W0pO{mnq|.

In the present paper, we will show rationality, in arbitrary characteristic,
for a class of hypersurfaces W ⊆ Ad`1

κ . In fact, we will describe a very ex-
plicit algorithm that allows one to calculate the motivic Igusa zeta series. It
should be mentioned from the onset that this is done not via resolution of
singularities,2 and hence not in the usual terms of exceptional divisors. In fact,
the main motivation for the present work was to get a different approach to
motivic rationality, avoiding resolution of singularities, not only so that we
would also obtain results in positive characteristic, but also in order to get
more explicit formulas: the method using resolution, going back to work of
Igusa and Denef, calculates poles in terms of the dual graph of the resolution,
but it is a well-known and irritating fact that the resulting rational function
has far too many apparent poles. This is the main stumble-block for verifying
the monodromy conjecture ([19, 20]), and has resulted in an extensive litera-
ture about locating ‘candidate poles’ (see [21] and the references therein). As
all worked-out examples so far show, this phenomenon does not occur in our
approach.

To discuss the algorithm–which is a motivic variant of a method intro-
duced by Igusa, which he coined the stationary phase method ; see [11, 15]
and the references therein–let me restrict here to the case of a plane curve in

1Different indexing practices might lead to slightly different series as found in the
literature.

2Indeed, all rationality results in this paper can be proven, regardless of characteristic,
by this method, since hypersurfaces that are non-degenerate with respect to their Newton
polyhedron admit embedded resolutions by toric methods.
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characteristic zero, given by a polynomial F pX,Y q with a unique singularity
at the origin O. To a variable X, we associate in general a generic jet

ux :“ x0 ` x1ξ ` x2ξ
2 ` . . .

in the countable new parametric variables xi, called the jet variables. Here
is how we calculate ∇nW , for a given n. The equations of ∇nW are the
coefficients–given by some polynomials in the first n jet variables, and called
the jet equations–of the first n powers of ξ in the expansion of F pux, uyq.

In its simplest form, the algorithm is encoded by a tree, where each time a
splitting occurs between smooth and non-smooth loci (see Corollary 2.2). This
is motivated by the fact that ρ : ∇nW ÑW is a locally trivial fibration on the
smooth locus ofW , that is to say, away from the origin, so that the branch over
the smooth locus is easy, and the only complications arise above the origin.
The jet fiber ρ´1pOq above the origin is obtained by putting x0 “ y0 “ 0
in the jet equations. After this substitution, we can factor out some power
ξe from F pux, uyq. The sum F̃ of the monomials in F which have lowest order
in this new expansion is called the first initial form of F . If F̃ has again a
singularity at the origin, so that the new jet fiber above the singularity is
obtained by putting x1 “ y1 “ 0, we can repeat the process to the curve
given by the initial form F̃ , where, because of the extra factor ξe, we now
only have to consider jets of length n´ e. However, it may happen that F̃ is
just a monomial, the smooth locus of which is empty. In this case, we formally
invert one of the jet variables, and only put the remaining variables to zero.
We show that all but one of the leafs (=endpoints) in this tree come from some
smooth curve, with the remaining one, after a finite number of steps, yielding
jet equations which are isomorphic to the original ones (or, more generally,
to one of the previously found jet equations). This yields a recursion relation
among different jet spaces, from which the rationality of IguW then easily
follows.

Let me illustrate this on the cuspidal curve F “ X2´Y 3. The jet equations
are given by the expansion

(1.1) px0`x1ξ` . . . q
2´py0`y1ξ` . . . q

3 “ px2
0´y

3
0q`p2x0x1´3y2

0y1qξ` . . .

as the coefficients of the powers 1, ξ, . . . , ξn´1. Let us write

Ŋxpiq :“ xi ` xi`1ξ ` xi`2ξ
2 ` . . .

for the i-th twisted generic jet. Putting x0 and y0 equal to zero, the jet fiber
above the origin is then given by

px1ξ ` . . . q
2 ´ py1ξ ` . . . q

3 “ ξ2
´

Ŋxp1q
2
´ Ŋyp1q

3
ξ
¯
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showing that F̃ “ X2. The singular locus of F̃ is therefore given by x1 “ 0
(the smooth locus is empty, yielding a “dead” branch in the algorithm tree),
and the jet fiber above this locus is given by

px2ξ
2 ` . . . q2 ´ py1ξ ` . . . q

3 “ ξ3
´

Ŋxp2q
2
ξ ´ Ŋyp1q

3
¯

.

This time Y 3 is the initial form, forcing us to consider its singular locus
y1 “ 0. This in turn gives again the initial form X2, prompting the additional
equation x2 “ 0, so that we finally arrive at

px3ξ
3 ` x4ξ

4 ` . . . q2 ´ py2ξ
2 ` y3ξ

3 ` . . . q3 “ ξ6
´

Ŋxp3q
2
´ Ŋyp2q

3
¯

.

Factoring out ξ6, we see that we get, up to the change of variables xi ÞÑ xi´3

and yi ÞÑ yi´2, the same expansion as in (1.1), except that we now only have to
look at the first n´6 terms. The former therefore leads to a recursion relation
between r∇nW s and r∇n´6W s, and, ultimately, to a relation between IguW
and t6 IguW , so that, when solved for IguW , proves the latter’s rationality.

The main point of the algorithm therefore is that at each point, we can
make the initial form non-singular by inverting some of the variables. In the
literature, this phenomenon is referred to as being non-degenerate with re-
spect to its Newton polyhedron (see, for instance, [13, 15]). I expect that our
rationalization algorithm can be made to work for any such hypersurface, but
at present, some extra control of the growth of various monomials is required,
and we will establish this only for the following types:
diagonal given by an equation u0X

n0
0 ` ¨ ¨ ¨ ` udX

nd

d “ 0 with an isolated
singularity (the latter condition holds automatically in characteristic zero
and holds in characteristic p if at most one of the ni is divisible by p; see
Theorem 5.9);

vertex singularity given by the cone on a smooth projective variety, or
analytically isomorphic to such a cone; see §4.

Du Val singularity or canonical isolated surface singularity; see §6.
linear deformation of a poly-diagonal given by an equation of the form

u1X
n1
1 ` ¨ ¨ ¨ ` udX

nd

d ` v1Xjp1qY
µ1

1 ` ¨ ¨ ¨ ` veXjpeqY
µe
e “ 0

where pX1, . . . , Xdq and the Yi are tuples of distinct variables.
Most of these cases are subsumed under the latter case, where in positive char-
acteristic, we have to impose some separability condition; see Theorem 7.3.
We should add that similar results are obtained in [1, Theorem 2.4] and [9,
Proposition 2.1.3] using methods from toric resolution, similar to the p-adic
case from [4]. Whereas these results apply to the class of all non-degenerated
hypersurfaces, the poles of the resulting rational functions seem harder to
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analyze. The stationary phase method is also applied to non-degenerate hy-
persurfaces in [22, 23], though not in the motivic setting.

2. Jet schemes

We work over a fixed algebraically closed field κ, and ‘scheme’ will always
means separated scheme of finite type over κ. The n-th jet scheme of a scheme
W , denoted ∇nW , is by definition the Hilbert scheme of κrξs{ξnκrξs-rational
points, that is to say

MorκpSpecpArξs{ξnArξsq,W q – MorκpSpecA,∇nW q,

for any κ-algebra A. Taking A “ κ, we recover the n-th truncated jet space
LnpW q as the reduction of ∇nW . Below we will describe a general method
to calculate these jet schemes, from which their existence and uniqueness can
be inferred (for some rigorous proof see [2] or for a more general version,
see [18, §4]). An important point has to be borne in mind: in contrast with
Denef and Loeser, we calculate jet schemes of arbitrary schemes, not just
varieties. Note that taking jets does not commute with taking reduction. The
present method is, in fact, inspired by my work on schemic Grothendieck rings
[17, 18] (in which Grothendieck rings are proposed that can handle nilpotent
structure), although in the present paper, we will only take classes of jets inside
the classical Grothendieck ring, thus disregarding their nilpotent structure.
I do not know whether the motivic Igusa zeta series are already rational over
these more general schemic Grothendieck rings. The main point in allowing
non-reduced schemes, however, is that, even when primarily interested in a
reduced hypersurface in this paper, we must consider certain initial forms that
are not necessarily reduced in order for the algorithm to work.

We let ρW,n : ∇nW Ñ W be the canonical split projection (associating to
a jet its origin) with sectionW ãÑ ∇nW , and we view closed subschemes ofW
as closed subschemes of ∇nW via the latter embedding. Recall the following
fibration theorem (see, for instance, [6, Lemma 4.1] or [18, Theorem 4.14]).

Theorem 2.1. If W is a d-dimensional smooth variety, then the split
projection ρW,n : ∇nW Ñ W is a locally trivial fibration with general fiber
Adpn´1q
κ . In particular,

r∇nW s “ rW s ¨ Ldpn´1q

in GrpVarκq.
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Corollary 2.2. Given a d-dimensional scheme W , and a closed sub-
scheme V containing the singular locus of W , we have an equality

r∇nW s “ rW ´ V s ¨ Ldpn´1q ` rρ´1
W,npV qs

in GrpVarκq.

Proof. Let ρ :“ ρW,n. Put W 1 :“ ∇nW and V 1 :“ ρ´1pV q, so that

rW 1s “ rW 1 ´ V 1s ` rV 1s

in GrpVarκq. By the openness of jets see, for instance, [18, Theorem 4.4]), we
have an isomorphism W 1 ´ V 1 – ∇npW ´ V q. Since W ´ V is smooth by the
choice of V , Theorem 2.1 yields r∇npW ´ V qs “ rW ´ V s ¨ Ldpn´1q, and the
assertion follows. �

Given two closed immersions W ãÑ V and Y ãÑ X, we say that their
analytic germs are isomorphic, if the formal completions pVW and pXY are
isomorphic as formal schemes (for formal schemes, see [10, II.§9]). In case
W “ P and Y “ Q are closed points, this means that the completions of
the local rings OV,P and OX,Q are isomorphic (or, in the terminology of [16],
these local rings are similar).

Proposition 2.3. If the closed immersions W ãÑ V and Y ãÑ X have
isomorphic analytic germs, then

rρ´1
V,npW qs “ rρ

´1
X,npY qs

in GrpVarκq.

Proof. One could prove this directly, but it readily follows from the for-
malism from [18]. By [18, Lemma 4.9], we have, for each pair, an isomorphism
of formal motives

∇nppVW q – pz∇nV qρ´1
V,npW q

and ∇np pXY q – pz∇nXqρ´1
X,npY q

,

By assumption, pVW – pXY , and this isomorphism is preserved after taking
jets, and so we get

pz∇nV qρ´1
V,npW q

– pz∇nXqρ´1
X,npY q

.

Taking classes yields an equality in the formal Grothendieck ring, whence one
in the classical Grothendieck ring using [17, Theorem 7.7]. In other words,
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the underlying reduced varieties have the same class in GrpVarκq. Since the
underlying variety of a formal completion is just the locus along which one
completes, we get the desired equality. �

Let us define the analytic singularities of a variety W as its formal com-
pletion xWW sing along its singular locus W sing.

Corollary 2.4. Let V and W be varieties with isomorphic analytic sin-
gularities. Then IguV is rational over G if and only if IguW is.

Proof. Let d and e be the respective dimensions of V and W . By Corol-
lary 2.2, we have, for each n, an equality

(2.1)
r∇nV s “ rV ´ V sings ¨ Ldpn´1q ` rρ´1

V,npV
singqs

r∇nW s “ rW ´W sings ¨ Lepn´1q ` rρ´1
W,npW

singqs

in GrpVarκq. Moreover, by our assumption and Proposition 2.3, we also have

(2.2) rρ´1
V,npV

singqs “ rρ´1
W,npW

singqs.

Multiplying all terms in (2.1) by tn, summing over all n, and using (2.2) then
yields

(2.3) IguV ´
LdrV ´ V sings

1´ Ld
“ IguW ´

LerW ´W sings

1´ Le

over G, from which the assertion is now immediate. �

3. Directed jets

In this section, we fix the formalism needed to describe our rationalization
algorithms.

Tagged and formal equations

To any natural number a, we associate its tagged version a7, and we call a
the underlying value (or untagged version) of a7, which we might denote for
emphasis by a6. We can add tagged and/or untagged numbers by the rule that
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the underlying value of the sum is the sum of the underlying values of the
terms, where the sum is tagged if and only if at least one term is tagged (e.g,.
2` 37 “ 57). Let N7 be the collection of all natural numbers and their tagged
versions. We extend this component-wise on tuples giving a map Nm7 Ñ Nm,
sending a tuple θ P Nm7 to its underlying value θ6. We define a partial order
on Nm7 by α ĺ β if and only if for each j “ 1, . . . ,m, either αj is untagged
and αj ď β6j , or αj is tagged and αj “ βj .

We will introduce two equational conventions in this section that are useful
for discussing jet equations. To each variable X (we use uppercase letters to
indicate indeterminates defining the base schemes), we associate its tagged
version X7, which we will treat as an invertible variable. Given a tagged
number a7, we write

Xa
7 :“ Xa7 “ X

a7

7 .

Hence, we may associate to a polynomial F P κrXs, the polynomial F pX7q,
which is just F pXq but viewed in the Laurent polynomial ring κrX, 1

X s. There-
fore, we interpret the equation F pX7q “ 0 as defining the locally closed sub-
scheme given by F pXq “ 0 and X is invertible. We may extend this practice
to several variables, tagging some and leaving others unchanged. For instance,
the tagged equation X2

7 `X7Y
3`Z3

7 “ 0 should be thought of as an element
of the mixed Laurent polynomial ring κrX,Y, Z, 1

X ,
1
Z s, and is equivalent with

the conditions X2`XY 3`Z3 “ 0 together with the requirement that X and
Z are invertible. In particular, in a given polynomial, if a variable is tagged
somewhere, it must be so everywhere. More precisely, for θ P Nm7 , we call a
variable Yi in Y tagged by θ, if the corresponding entry θi in θ is tagged, and
we refer to θi as the weight of Yi. Let κtYθu be the algebra generated over
the polynomial ring κrYs by the the inverses of the variables that are tagged
by θ; we refer to such an algebra as a mixed Laurent polynomial ring. We
make κtYθu into a Z-graded ring by giving the i-th variable Yi degree θ

6

i , and
denote the corresponding grading by degθp¨q.

Our second convention is the use of a formal variable ξ, fixed once and for
all. Given a power series F px, ξq P κrxsrrξss with coefficients in a polynomial
ring κrxs (with x a possibly countable tuple of variables), we interpret the
(formal) equation F ” 0 as the condition on the x-variables that F be identical
zero as a power series in ξ. In other words, if F px, ξq “ f0pxq ` f1pxqξ `
f2pxqξ

2 ` . . . , then F ” 0 stands for the (infinite) conjunction f0 “ f1 “

f2 “ ¨ ¨ ¨ “ 0. As F ” 0 and ξiF ” 0 yield equivalent systems of equations,
we may extend this to include Laurent polynomials. Similarly, for each n, the
equivalence F px, ξq ” 0 mod ξn stands for the conjunction f0 “ f1 “ ¨ ¨ ¨ “
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fn´1 “ 0. An example of a combination of both conventions is

0 ” px` y7ξq
2 ` pz7 ` wξq

3,

which is equivalent to the conditions

x2 ` z3 “ 2xy ` 3z2w “ y2 ` 3zw2 “ w3 “ 0 in κrx, y,
1

y
, z,

1

z
, ws.

To any variable X, we associate its jet variables x “ px0, x1, . . . q, denoted
by the corresponding lower case letters. Moreover, we identify X with x0 (this
will correspond to the section of ρW,n discussed before Theorem 2.1). For
t P N7, we let xptq be the twisted tuple of variables xi with i ě t6. We define
the generic jet series of X as

ux “ X ` x1ξ ` x2ξ
2 ` . . .

and its tagged version

ux7 “ X7 ` x1ξ ` x2ξ
2 ` . . .

Note that only the constant term is actually tagged, which accords with the
fact that a power series is invertible if and only if its constant term is. Given
t P N7, we will use the following notational convention: by ξtux, we mean the
series ξtux, if t is untagged, and ξt

6

ux7, if t is tagged. We extend this practice
to tuples of variables Y component-wise, with corresponding jet variables
y “ pY,y1,y2, . . . q. In particular, ypθq denotes the tuple of all the variables
xi with i ě t6 and ξθuy is the tuple of all ξtux, for X a variable in Y and t its
θ-weight. We put

κtyθu :“ κtYθu bκrYs κrys.

With these conventions, we can now write down the equations of a jet
scheme more succinctly. If W ⊆ Amκ is the closed subscheme defined by the
equations G1pYq “ ¨ ¨ ¨ “ GspYq “ 0, then ∇nW is defined by the conditions

(3.1) G1puyq ” G2puyq ” ¨ ¨ ¨ ” Gspuyq ” 0 mod ξn and ypnq “ 0,

where n P Nm is the tuple all of whose entries are equal to n. Recall that the
latter condition simply means that all jet variables xi “ 0 for all i ě n and
all variables X in Y.
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Directed jets

We extend the notion of jet scheme, by considering certain (initial) linear
subspaces of jet schemes. Given θ P Nm7 , we define the n-th directed jet scheme
∇θnW along θ, as the locally closed subscheme of ∇nW defined by the condi-
tions xi “ 0 for i ă d6, and xd6 is invertible if d is tagged, for all variables X
in Y and where d is the weight of X in θ. We may also refer to ∇θnW as the
subscheme of all jets along, or with initial direction θ.

Proposition 3.1. If W ⊆ Amκ is the closed subscheme defined by the
equations G1pYq “ ¨ ¨ ¨ “ GspYq “ 0, and θ P Nm7 , then ∇θnW is isomorphic
to the locally closed subscheme given by

(3.2) G1pξ
θ
uyq ” ¨ ¨ ¨ ” Gspξ

θ
uyq ” 0 mod ξn and ypn´ θq “ 0

in κtyθurrξss.

Proof. For each variable X in Y and d P Nn
7 , let

uxpdq :“ xdξ
d6 ` xd6`1ξ

d6`1 ` . . .

where xd is tagged if d is. Let uypθq be the tuple of all truncated generic jets
uxpdq with d the θ-weight of X in Y. Hence, with this notation, the defining
equations of ∇θnW are

G1puypθqq ” ¨ ¨ ¨ ” Gspuypθqq ” 0 mod ξn

and xi “ 0 for i ă d or i ě n. Consider the change of variables τθ given by
xi ÞÑ xi´d, for all i ě d (preserving any tagging), so that ξθuy “ τθpuypθqq.
Applying τθ, we get isomorphic equations

τθpG1puypθqqq ” ¨ ¨ ¨ ” τθpGspuypθqqq ” 0 mod ξn and ypn´ θq “ 0,

from which the claim now easily follows. �

The second set of equations in (3.2), namely that all xi “ 0 for i ě n´ d6,
are called the initial conditions, whereas the first conditions will be called the
formal jet equations.
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Example 3.2. Recall that ρW,n : ∇nW ÑW is the canonical projection of
the jet scheme onto the base scheme. Let us calculate the fiber ρ´1

W,npOq of the
origin. If G1 “ ¨ ¨ ¨ “ Gs “ 0 are the equations defining W , then ∇nW is given
by the equations Gipuyq ” 0 mod ξn, and ρ´1

W,npOq is the closed subscheme
given by Y “ 0 (recall that Y “ y0), that is to say,

(3.3) ρ´1
W,npOq “ ∇

1
nW.

Definition 3.3. Given θ P Nm7 , define the θ-twisted motivic Igusa-zeta
series of W to be

IguθW ptq :“
8
ÿ

n“0

r∇θnW stn.

Hence, IguW is just the case in which the twist is zero.

As we shall see, for inductive arguments to go through, we will show that
all twisted motivic Igusa-zeta series are rational.

Frobenius transforms

Assume that κ has characteristic p. Given a closed subscheme W ⊆ Amκ
with defining equations G1 “ ¨ ¨ ¨ “ Gs “ 0, its q-th Frobenius transform
W pqq, is the closed subscheme with equations Gq1 “ ¨ ¨ ¨ “ Gqs “ 0, where q is
some positive power of p. One easily verifies that W pqq is well-defined, that
is to say, independent from the choice of defining equations. The next result
calculates the directed jet scheme of a Frobenius transform:

Lemma 3.4. Given a closed subscheme W ⊆ Amκ over a field κ of charac-
teristic p ą 0, a power q of p, and a tuple θ P Nm7 , we have an equality

r∇θnW pqqs “ r∇θr n
q sW s ¨ L

mpn´r n
q sq

in GrpVarκq, for all n.

Proof. Let G1pYq “ ¨ ¨ ¨ “ GspYq “ 0 be the equations of W , so that
Gq1 “ ¨ ¨ ¨ “ Gqs “ 0 are the equations of W pqq. By (3.2), the defining jet
equations of ∇θnW pqq are

Gq1pξ
θ
uyq ” ¨ ¨ ¨ ” Gqspξ

θ
uyq ” 0 mod ξn,
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whereas the initial conditions are xi “ 0 for i ě n´degθpXq and all variables
X in Y. Expanding each Gkpξθuyq “

ř

l gklpyqξ
l, the jet equations become

ÿ

l

gklpyq
qξql ” 0 mod ξn k “ 1, . . . , s.

With a :“ rnq s, these equations are equivalent with the condition that all
gqklpyq “ 0 for l ă a and k “ 1, . . . , s. Note that these equations do not
involve any of the variables from the initial conditions, that is to say, the
ypn ´ θq. Therefore, in GrpVarκq, since we may take radicals, their class is
the same as the class of the equations gklpyq “ 0 for l ă a and the same
initial conditions. On the other hand, by the same argument, the former are
equivalent to the jet equations G1pξ

θ
uyq ” ¨ ¨ ¨ ” Gspξ

θ
uyq ” 0 mod ξa, that

is to say, the jet equations of ∇θaW . So remains to count the number of free
variables that remain after imposing the initial conditions ypa ´ θq “ 0 for
the a-th jet, namely mpn´ aq, whence the assertion. �

Corollary 3.5. Given a closed subscheme W ⊆ Amκ over a field κ of
characteristic p ą 0, a power q of p, and a tuple θ P Nm7 , we have a functional
equation among power series

IguθW pqqptq “ IguθW pt
qLmpq´1qq ¨ p

q´1
ÿ

i“0

t´iL´imq

over G :“ GrpVarκqL. In particular,W has a rational motivic Igusa-zeta series
if and only if some (respectively, any) Frobenius transform does.

Proof. Splitting the sum over all n ě 1 by their residue modulo q, we
get

IguθW pqqptq “
q´1
ÿ

i“0

ÿ

ně1

r∇θqn´iW pqqstqn´i

“

q´1
ÿ

i“0

ÿ

ně1

r∇θnW stqn´iLmpnq´i´nq,

where the second equality comes from Lemma 3.4. Factoring out terms not
involving n from the inner sum, the assertion follows readily. �
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4. Motivic rationality over a vertex singularity

By a cone C, we mean a homogeneous hypersurface in An. We call C
smooth, if the origin is its only singularity, that is to say, if ProjpAq is smooth,
where A “ ΓpOC , Cq is the (graded) affine coordinate ring of C. Conversely,
any cone is obtained by choosing a polarization, that is to say, an ample line
bundle L, on a projective hypersurface W and letting A be the section ring
‘nH

0pW,Lnq; the cone is smooth if W is. The degree of C is the degree of
its defining homogeneous equation, which is equal to the multiplicity at the
origin. By a formal (smooth) cone we mean the formal completion pCO of a
(smooth) cone at the origin. In particular, its ring of global sections is equal
to the completion pOC,O.

By a vertex singularity, we mean a germ that is analytically isomorphic to
a smooth cone, in other words, pW,P q is a vertex singularity if pOW,P – pOC,O
for some smooth cone C. The multiplicity of the vertex is the multiplicity of
the origin at the corresponding formal cone. An example of a vertex singularity
(of multiplicity two) is an ordinary double point on a planar curve, e.g., X2`

X3 ` Y 2.

Lemma 4.1. Given a d-dimensional (formal) cone W of degree e, the fiber
ρ´1
W,npOq above the origin is isomorphic to ∇n´eWˆApd`1qpe´1q, for any n ą e.

Proof. The proof for a formal cone is identical to the affine case, and so
we leave the details of the former to the reader. Let H “ 0 be the homoge-
neous equation of W , in the d` 1 variables Y. By (3.3), the fiber ρ´1

W,npOq is
isomorphic to the directed jet scheme ∇1

nW , and hence by (3.2) given by

ξeHpuyq ” 0 mod ξn and ypn´ 1q “ 0,

for n ą e. Factoring out ξe yields the jet equation Hpuyq ” 0 mod ξn´e of
∇n´eW , and the initial condition has pd` 1qpe´ 1q free variables. �

Remark 4.1. The argument still applies if instead of a single homogeneous
equation of degree e, we have several such equations, all of the same degree.
Put differently, we may take W in the above to be an intersection of (formal)
cones of a fixed degree, where d` 1 is then the embedding dimension of W .

Theorem 4.2. For a d-dimensional scheme W (in arbitrary characteris-
tic) with a (unique) vertex singularity P of degree e, its motivic Igusa-zeta
series IguW over the localization G of the Grothendieck ring is rational. More
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precisely, there exists a polynomial Q with coefficients in G, such that

IguW “
Qptq

p1´ Ldtqp1´ Lpd`1qpe´1qteq
.

Proof. By Corollary 2.4 and the definition of vertex singularity, we may
reduce to the case that W is a smooth cone. By Corollary 2.2, we have an
equality

r∇nW s “ rW ´ P s ¨ Ldpn´1q ` rρ´1
W,npP qs.

By Lemma 4.1, the last term is equal to r∇n´mW s¨Lr, where r :“ pd`1qpe´1q.
Multiplying with tn, and summing over all n ą e, we get

IguW “ p`
rW ´ P s ¨ L´d

p1´ Ldtq
` Lrte IguW

for some polynomial p over G, accounting for terms with n ď e. Solving
for IguW , then shows that the latter is rational with denominator equal to
p1´ Ldtqp1´ Lrteq. �

5. The linear rationalization algorithm

In this section, we fix a hypersurfaceW ⊆ Amκ defined by a single equation
F pYq. If F is not homogeneous, we can no longer expect such a simple relation
as in Lemma 4.1 between the jet scheme and the fiber above the singular locus.
Write F as a sum of distinct, non-zero monomials F “

ř

i µi.

Twisted initial forms

As we will shortly see, the following hypersurfaces derived from W will
play an important role: for every θ P Nm7 , let W̃ θ be defined as follows. Let
ordθpF q, or ordθpW q, be the order of F in the grading of κtYθu, that is to say,
the minimum of all degθpµiq, and let W̃ θ be the hypersurface with defining
equation

F̃ θ :“
ÿ

degθpµiq“ordθpW q

µi.
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In particular, W “ W̃ 0. We call W̃ θ, or rather, F̃ θ, the θ-twisted initial form
of W . Here is an example to view the previous conventions and definitions at
work:

Example 5.1. Let F “ X9 ` X2Y 4 ` Z4 and θ “ p2, 37, 5q. Hence
∇p2,3

7,5q
n W is the locally closed subscheme of ∇nW given by the conditions

X “ x1 “ Y “ y1 “ y2 “ Z “ z1 “ z2 “ z3 “ z4 “ 0 and y3 is invertible.
Using (3.2), its formal jet equations are

ξ18
ux9 ` ξ16

ux2
uy4
7 ` ξ

20
uz4 ” 0 mod ξn

and xpn´ 2q “ ypn´ 3q “ zpn´ 5q “ 0. Hence, ordp2,37,5qpW q “ 16 and the
twisted initial form W̃ p2,37,5q is given by F̃ p2,3

7,5q “ X2Y 4
7 , that is to say, by

the two conditions X2 “ 0 and Y is a unit.

Regular base

We will deduce rationality by splitting off regular pieces of various twisted
initial forms, until we arrive at a recursive relation involving the jet scheme
of the original hypersurface. We will also consider open subschemes of hyper-
surfaces, and we refer to these as locally closed hypersurfaces. Given a locally
closed hypersurface W ⊆ Am, we say that θ P Nm7 is W -regular if W̃ θ is
regular. For our purposes, it is important to include in this the case that W
is given by a monomial in which all variables are tagged, since this defines
the empty scheme, which we consider to be regular! As with jets, directed jets
above regular base have a locally trivial fibration, a fact which will allow us
to determine their contribution to the Igusa-zeta series.

Proposition 5.2. Let W ⊆ Am be a locally closed hypersurface. For each
W -regular tuple θ P Nm7 , we have an equality

r∇θnW s “ rW̃ θs ¨ Lpm´1qpn´1q`ordθpW q´|θ|

in GrpVarκq.

Proof. Let F be the defining equation of W and write it as a sum of
distinct, non-zero monomials F “

ř

i µi. Let us put a :“ ordθpW q; recall that
it is the minimum of all degθpµiq. Let G :“ F̃ θ and H :“ F ´ G. By (3.2),
the formal jet equation of ∇θnW is

ξaGpuyq ` ξa`1Hpuyq ” 0 mod ξn
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whereas the initial condition is ypn´ θq “ 0. Leaving aside for now the latter
initial conditions, factoring out ξa, yields the formal jet equation

(5.1) Gpuyq ` ξHpuyq ” 0 mod ξn´a.

Compare this with the formal jet equation of ∇n´aW̃ θ given by

(5.2) Gpuyq ” 0 mod ξn´a.

Let gl and hl be the (untwisted) jet equations of G and H respectively, that
is to say, Gpuyq “

ř

glpyqξ
l and Hpuyq “

ř

hlpyqξ
l. Using (5.1), it is now easy

to see that the jet equations of ∇θnW are

(5.3) glpyq ` hl´1pyq “ 0

for l “ 0, . . . , n´ a´ 1, whereas those for ∇n´aW̃ θ are

(5.4) glpyq “ 0

for l “ 0, . . . , n ´ a ´ 1. Recall that G “ g0, H “ h0, and each gl, hl only
depends on the tuples of jet variables y0 “ Y,y1, . . . ,yl´1. In [18, Theorem
4.14], we showed that the gl with l ą 0 are linear in the yl´1, and we can
locally solve for one of these variables. Let us reprove this result by showing
that, for each l ą 0, we have

(5.5) glpyq “
ÿ

X in Y

xl´1
BG

BX
` ql

where ql is a polynomial depending only on the yi with i ă l´1. Indeed, write
uy “ y̆ ` ξl´1yl´1, where y̆ is the truncated generic jet given as

ř

iăl´1 ξ
iyi.

By Taylor expansion, we get

(5.6) Gpuyq ” Gpy̆q `
ÿ

X in Y

xl´1ξ
l´1 BG

BX

ˇ

ˇ

ˇ

ˇ

y̆

mod ξl.

Since Y ” y̆ mod ξ, the formal jet equation therefore becomes

Gpy̆q `
ÿ

xl´1ξ
l´1 BG

BX
” 0 mod ξl.

In the expansion of Gpy̆q into powers of ξ, the coefficient in front of ξl´1 only
depends on the yi for i ă l ´ 1, whence our claim (5.5).

Now, since we assumed G to be regular, the basic open sets UX given by
inverting BG{BX for each variable X in Y form a covering of the hypersurface
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determined by G. On UX , using (5.5), we can solve for the jet variable xl´1

in (5.4), and for the same reason, also in (5.3), since hl´1 only depends on
the jet variables yi with i ă l ´ 1. In other words, ∇θnW and ∇n´aW̃ θ have
isomorphic jet equations on each basic open UX . On the other hand, their
respective initial conditions are ypn ´ θq “ 0 and ypn ´ aq “ 0, which is
a difference of |a´ θ| “ ma ´ |θ| conditions. Moreover, our argument also
shows, as in [18, Theorem 4.14], that ∇n´aW̃ θ and W̃ θ ˆ Apn´a´1qpm´1q are
locally isomorphic, on each basic open UX . The desired equality in the Gro-
thendieck ring follows now easily from these local calculations (see for instance
[18, Lemma 4.13]). �

Recursion

Given α,β P Nm7 , we will write α CW β, if α ĺ β and there exists some
s ą 0 such that

F pξβuyq “ ξsF pξαuyq.

An easy calculation shows that necessarily s “ ordβpW q ´ ordαpW q. The
definition also implies that α and β have the same tagged entries. Note that
F is homogeneous in the classical sense if and only if 0CW 1.

Lemma 5.3. If αCW β, then

r∇βnW s “ r∇αn´sW s ¨ Lsm´|β|`|α|

in G, for all n ą s, with s “ ordβpW q ´ ordαpW q.

Proof. By (3.2), the formal jet equations of ∇βnW are

F pξβuyq ” 0 mod ξn and ypn´ βq “ 0.

By assumption, the power series in the formal jet equation equals ξsF pξαuyq,
and so yields the formal jet equation

(5.7) F pξαuyq ” 0 mod ξn´s.

However, (5.7) is also the jet equation of ∇αn´sW , again by (3.2). As the initial
condition for ∇αn´sW is given by ypn´ s´αq “ 0, the difference between the
two directed jet schemes lies in the number of free variables not covered by the
respective initial conditions, a number equal to |s´ β `α| “ sm´ |β| ` |α|,
whence the assertion. �
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Rationalizing trees

We are interested in subtrees of Nm7 , and will use the following terminology:
by a tree we mean a connected partially ordered subset of (nodes from) Nm7
such that any initial segment is totally ordered. The unique minimum is called
the root of the tree, and any maximal element is called a leaf. By a branch,
we will mean a chain from a node α to a leaf β. By the way we defined the
ordering on Nm7 , if the i-th entry of a node is tagged, then any node above
it has the same i-th entry. In particular, the tagged entries of the root never
change.

To describe the various successor functions on the trees we will construct,
denote by ei, for each i, the function on Nm7 which increases the i-th entry
by one (note that per our addition convention, each entry stays in whichever
state, tagged or untagged, it was), and by e7i, the function which tags the i-th
entry but leaves the remaining entries unchanged. As we often label by means
of variables rather than indices, we write instead eX and e7X , if X is the i-th
variable in an m-tuple of variables Y.

Given a binary vector ε, we let eε (respectively, e7ε) be the composition of
all ei (respectively, all e

7

i) for which εi “ 1. Note that all these transformations
commute with each other. Finally, for two binary vectors δ ĺ η, we let eηδ be
the composition of eδ and e7η´δ. For instance,

e
p1,1,0,1,0q
p0,0,0,1,0qp2, 3

7, 1, 4, 1q “ e7
p1,1,0,0,0qep0,0,0,1,0qp2, 3

7, 1, 4, 1q

“ e71e
7
2e4p2, 3

7, 1, 4, 1q “ p27, 37, 1, 5, 1q.

Note that eηδ pθq has underlying value equal to θ6 ` δ. More precisely, taking
in account our addition convention, we have

eηδ pθq “ e7η´δpθ ` δq.

Note that eηδ can fail to be an increasing function (if in the above example
we replace p0, 0, 0, 1, 0q by p0, 1, 0, 1, 0q the resulting tuple is p27, 47, 1, 5, 1q,
which is not comparable with p2, 37, 1, 4, 1q because the second entries are
both tagged but distinct). We do have

(5.8) p@iqrif θi tagged then ηi “ 0s ñ θ ĺ eηδ pθq.

We will use these transformations mainly through the following result.
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Lemma 5.4. Let W ⊆ Amκ be a closed subscheme. For every θ P Nm7 , and
every binary vector η, we have an identity

r∇θnW s “
ÿ

γĺη

r∇e
η
γpθq
n W s

in GrpVarκq, for all n.

Proof. LetY be the variables definingW . Let us derive first the following
equality in GrpVarκq for a given variety V . For binary vectors γ ĺ η, let V̄ ηγ
be the locally closed subvariety obtained from V by adding, for every variable
X in Y such that degηpXq “ 1, the condition that X “ 0 if degγpXq “ 0,
and the condition that X is invertible, if degγpXq “ 1. As γ runs over all
binary vectors with γ ĺ η, the V̄ ηγ form a partition of V , and so

(5.9) rV s “
ÿ

γĺη

rV̄ ηγ s.

Apply this to V :“ ∇θnW . Since by (3.2), the formal jet equations for V are
Fipξ

θ
uyq ” 0 mod ξn, for i “ 1, . . . , s, where F1 “ ¨ ¨ ¨ “ Fs “ 0 are the

defining equations of W , the formal jet equations of V̄ ηγ are Fipξθ`η´γuyq ” 0
mod ξn, for i “ 1, . . . , s, together with inverting all X for which degγpXq “ 1.

As these are precisely the formal jet equations for ∇e
η
η´γpθq
n W , we proved the

assertion (note that summing over all γ is the same as summing over all
η ´ γ). �

We define by induction on the height of a tree in Nm7 for it to be a resolution
tree as follows: any singleton is a resolution tree; if T is a resolution tree, then
so is T 1 which is obtained from T first by choosing a leaf γ of T and a binary
vector η such that whenever an entry γi is tagged, the corresponding entry ηi
is zero, and then by adding on to T at γ all the eηδ pγq as new leafs, for δ ĺ η.
By (5.8), the new subset is indeed a tree. In particular, if every entry of some
node θ P T is tagged and T is a resolution tree, then θ is necessarily a leaf of
T . Moreover, any truncation of a resolution tree T , that is to say, all nodes
of T greater than or equal to a fixed node, is again a resolution tree.

Lemma 5.5. Let W ⊆ Am be a closed subscheme and let T ⊆ Nm7 be a
finite subtree with root θ. If T is a resolution tree, then

r∇θnW s “
ÿ

γPT leaf

r∇γnW s
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in GrpVarκq, for all n. In particular, we have an identity among motivic zeta
series

(5.10) IguθW “
ÿ

γPT leaf

IguγW .

Proof. An easy induction on the height of a node, using Lemma 5.4,
yields the first assertion. The second then follows by multiplying with tn and
summing over all n. �

Definition 5.6. We say that a finite tree T ⊆ Nm7 is W -rationalizing, for
some closed subscheme W ⊆ Am, if for every leaf γ, either γ is W -regular or
we can find θ ă γ in T such that θ CW γ.

Theorem 5.7. If T is a W -rationalizing resolution tree with root θ P Nm7 ,
then the twisted Igusa-zeta series IguθW is rational over G :“ GrpVarκqL.

Proof. By (5.10), it suffices to show that IguγW is rational over G, for
every leaf γ of T , and we will do this by induction on the number upγq of
untagged entries. If upγq “ 0, then γ is necessarily W -regular, and hence by
Proposition 5.2, we have

r∇γnW s “ rW̃γs ¨ Lpm´1qn`r

in GrpVarκq, where r :“ ordγpW q ´ |γ| ´ m ` 1. Multiplying with tn and
summing then yields

IguγW “
LrrW̃γs

1´ Lm´1
.

For a general leaf γ, we are done by the same argument if it is W -regular,
and so we may assume that δ CW γ, for some node δ. By definition, δ has
the same tagged entries as γ. Moreover, by definition of resolution tree, any
successor of δ not on the branch to γ has fewer untagged variables. In par-
ticular, any other leaf lying above δ has fewer untagged variables and hence
by induction, its motivic Igusa zeta series is rational. On the other hand, by
Lemma 5.3, the directed jet class along γ is given by

r∇γnW s “ r∇δn´sW s ¨ Lr

in G, for all n ą s, with s :“ ordγpW q ´ ordδpW q and r :“ sm´ |γ| ` |δ|.
Multiplying with tn and summing over all t, we get an identity

(5.11) IguγW “ p` Lrts IguδW ,
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where p is some polynomial in t (accounting for the small values of n). By
(5.10), (5.11) and our induction hypothesis applied to the truncation of T at
δ, we therefore have an identity

IguδW “ Q` IguγW “ Q` p` Lrts IguδW

for some rational series Q over G, stemming from the remaining leafs. Solving
for IguδW then proves its rationality, whence also that of IguγW by (5.11), as
we needed to show. �

Linear singularities

The algorithm that we will use here to construct anW -rationalizing resolu-
tion tree with root 0, thus establishing the rationality of the motivic Igusa-zeta
series of a hypersurfaceW by Theorem 5.7, relies on the simple form the singu-
lar locus takes. Namely, we say that a hypersurface W has linear singularities
at a closed point P , if, after a translation of P to the origin, the singular locus
ofW is contained in a finite union of coordinate subspaces, where a coordinate
subspace is a closed subscheme given by equations Yi1 “ ¨ ¨ ¨ “ Yis “ 0 for
some subset Yij of the variables. To be more precise, define the Milnor ideal
MilW ofW as the radical of the ideal generated by F and all its partial deriva-
tives, where F is the defining equation of W . We will apply the algorithm to
hypersurfaces all of whose twisted initial forms have linear singularities; in the
literature, this condition is commonly known as being non-degenerated with
respect to its Newton polyhedron.

Lemma 5.8. A hypersurface W is regular if and only if its Milnor ideal
is the unit ideal. Moreover, W is non-degenerated with respect to its Newton
polyhedron if and only if the Milnor ideal of every initial form contains a
monomial.

Proof.The first assertion is the well-known Jacobian criterion for smooth-
ness (see, for instance, [14, Theorem 30.3] or [8, Corollary 16.20]). The second
assertion is just a rephrasing of the definition. �

Single-branch linear rationalization algorithm for diagonal
hypersurfaces with an isolated singularity

In its simplest form, the algorithm works as follows: assume for every
twisted initial form W̃ θ of W , there exists a variable X such that the basic
subset pW̃ θqX is smooth (depending on the situation, we may have to choose
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such a variable more carefully, as will be the case in §7 below). We then apply
Lemma 5.4 with η the binary vector giving weight one to X and zero to the
remaining variables. In its simplest implementation, any tagged node will be
a leaf, and, in fact W -regular, whence requires no further action. We continue
this process (on the remaining untagged leaf) until we reach an untagged leaf
γ with 0 CW γ, at which point we can invoke Theorem 5.7. If such a leaf γ
can be found, we say that the algorithm stops.

To illustrate our algorithm, let us look at a hypersurface W with an equa-
tion of the form

F :“ r1Y
a1
1 ` ¨ ¨ ¨ ` rmY

am
m

with ai ą 0 and ri P κ; we will refer to such a W as a diagonal hypersurface.
In characteristic zero, the origin is an isolated singularity, but in positive
characteristic, this is only the case if at most one of the powers ai is divisible by
the characteristic. In the isolated singularity case, the algorithm as described
above does apply: any twisted initial form is again a diagonal hypersurface;
if it is one of the powers Y aii , its regular locus, although empty, is obtained
by inverting Yi, even if ai is divisible by the characteristic; in the remaining
case, we can always invert one variable whose power is not divisible by the
characteristic, yielding a smooth twisted initial form. So remains to show that
this algorithm stops, that is to say, will eventually produce a leaf γ such that
0 CW γ. To see this, note that the set of all ordθpW q, with θ running over
all untagged nodes in the tree, is equal to the union of the semi-groups aiN,
for i “ 1, . . . ,m. Therefore, if e is the least common multiple of all ai, it will
occur as some ordγpW q for some untagged leaf γ in this algorithm. It is now
easy to see that W̃γ “W , and hence we showed:

Theorem 5.9. The motivic Igusa zeta-series IguW of a diagonal hyper-
surface W with an isolated singularity is rational over G.

In the next section, we will work out in complete detail the implementation
of this algorithm for the diagonal surface X2`Y 3`Z4 “ 0. Generalizing these
calculations, we will derive the following formula:

Corollary 5.10. If r1Y
a1
1 `¨ ¨ ¨`rmY

am
m “ 0 is the equation of the diago-

nal hypersurface W with an isolated singularity, then there exists a polynomial
QW ptq P Grts such that

IguW “
QW ptq

p1´ Lm´1tqp1´ LN teq
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where e is the least common multiple of a1, . . . , am, and where

(5.12) N “ ep
a1 ´ 1

a1
` ¨ ¨ ¨ `

am ´ 1

am
q.

Multi-branch linear rationalization algorithm for monomial
hypersurfaces

Instead of choosing one variable at a time occurring as a monomial in the
Milnor ideal, Lemma 5.4 allows us to choose several, or even all, to create
a new level in the resolution tree. We will see this at work in more detail
in §6, but just as an illustration, let us use this variant of the algorithm to
calculate the motivic Igusa zeta series of a monomial hypersurface W , that is
to say, defined by an equation Xν “ 0, with X an m-tuple of variables. If the
characteristic is p, then we can apply Corollary 3.5, to reduce to the case that
ν is not a multiple of p. For simplicity, let us assume that no variable occurs
linearly, so that the Milnor ideal of W is just the product of all variables.
Hence, we will apply Lemma 5.4 with η “ 1, so that γ runs over all binary
vectors. For γ “ 1, homogeneity yields 0C 1 so that 1 is designated as a leaf
by the algorithm, that is to say, we are done with this branch. The remaining γ
have at least one tagged entry, and we now proceed by induction. For instance,
if W is the planar curve defined by XaY b “ 0, then the algorithm produces
the following tree

p0, 0q

eXeY

ssggggg
ggggg

ggggg
ggggg

ggggg

e
7
X

eYwwppp
ppp

ppp
pp

eXe
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OOO e
7
X

e
7
Y
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p1, 1q p07, 1q
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ppp
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e
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Y
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p1, 07q

eX

��

e
7
X

''NN
NNN

NNN
NNN

p07, 07q

p07, 2q p07, 17q p2, 07q p17, 07q

Figure 1. The rationalization tree for the XaY b “ 0

Since the leafs all of whose entries are tagged have empty initial form,
they do not contribute, whereas we have recursion relations p0, 0q C p1, 1q,
p07, 1qC p07, 2q, and p1, 07qC p2, 07q. Apply Lemma 5.5 to the two truncations
above the nodes p07, 1q and p0, 17q respectively, and use (5.11), to get

Igu
p07,1q
W “

pp0,1q

p1´ tbL2b´1q
and Igu

p1,07q
W “

pp1,0q

p1´ taL2a´1q
,
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for some polynomials pp0,1q and pp1,0q over G. Another application of Lemma
5.5, this time to the entire tree, gives

IguW “
pp1,0q

p1´ taL2a´1q
`

pp0,1q

p1´ taL2a´1q
` Igu

p1,1q
W .

Using (5.11) once more than yields

IguW “
pp1,1q `

pp1,0q
p1´taL2a´1q

`
pp0,1q

p1´taL2a´1q

p1´ ta`bL2a`2b´2q

for some polynomial pp1,1q. It is rather obvious how this generalizes to several
variables, and so, without further argument, we state:

Theorem 5.11. LetW ⊆ Am be a monomial hypersurface given by Xν “ 0
with ν “ pν1, . . . , νmq not a multiple of the characteristic. Then IguW is a
rational function over G with denominator given as the product of all p1 ´
taLam´sq, where a runs over all s-fold sums νi1 ` ¨ ¨ ¨ ` νis , with 1 ď i1 ă
¨ ¨ ¨ ă is ď m and s “ 1, . . . ,m.

6. Motivic rationality over Du Val surfaces

In this section, we implement a multi-branching algorithm to calculate ex-
plicitly the motivic Igusa zeta series of Du Val surfaces, which over a field κ of
characteristic different p ‰ 2, are precisely the isolated canonical singularities
(at the origin O). Over C, they can be realized, up to analytic isomorphism,
as the quotients A2{Γ, where Γ ⊆ SL2pCq is a finite subgroup. A complete
invariant is the dual resolution graph viewed as one of the following Dynkyn
diagrams: Ak, Dk, E6, E7, or E8, and we therefore will denote them simply
by the latter letters. The main result of this section is the rationality of their
motivic Igusa-zeta series over G, summarized by the following table, where
we listed in the last column only the relevant factor in the denominator (the
other factor being p1´ L2tq).

If κ has characteristic p “ 2, then Ak,Dk and E6 no longer have an isolated
singularity, the only condition which is relevant in the proof below. A change
of variables, however, always reduces their equation to a surface defined by
an (almost separable) poly-diagonal (see §7), the rationality of which we will
establish below. For instance, taking the least obvious case,Dk when k is even,
make the change of variables Y ÞÑ Y ` Z

k´2
2 , yielding the almost separable

poly-diagonal X2 ` Y 2Z “ 0. Therefore, in the sequel, we will assume p ‰ 2.
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Table 1. Denominator of the Igusa-zeta series for Du Val surfaces (p ‰ 2)

Du Val surface W equation denominator of p1´ L2tq IguW

Ak
k odd

X2 ` Y 2 ` Zk`1 p1´ L2k`1tk`1q

k even p1´ L4k`2t2k`2q

Dk X2 ` Y 2Z ` Zk´1 p1´ L4k´5t2k´2q

E6 X2 ` Y 3 ` Z4 p1´ L23t12q

E7 X2 ` Y 3 ` Y Z3 p1´ L29t18q

E8 X2 ` Y 3 ` Z5 p1´ L60t30q

The E6-surface

Let us work step-by-step through the rationalization algorithm for the
Du Val surface E6 with equation X2 ` Y 3 ` Z4. Being a diagonal surface,
its motivic rationality follows from Corollary 5.10, but we will use a slight
modification by allowing multi-branching (that is to say, tagging possibly more
than one variable at the same time). We first take a ‘short-cut’ by observing
that the origin O is an isolated singularity, so that we only need to calculate
the class of ∇p1,1,1qn E6 “ ρ´1

E6,n
pOq by Corollary 2.2. By (3.2), its formal jet

equations are

ξ2
ux2 ` ξ3

uy3 ` ξ4
uz4 ” 0 mod ξn

together with the initial conditions xi “ yi “ zi “ 0 for i ě n´1. The twisted
initial form isX2. According to the algorithm, we have a single branching given
by the transformations e7X and eX . The twisted initial form of e7Xp1, 1, 1q “
p17, 1, 1q is defined by X2

7 “ 0 and hence is empty. So remains the untagged
leaf eXp1, 1, 1q “ p2, 1, 1q, with jet equations

ξ4
ux2 ` ξ3

uy3 ` ξ4
uz4 ” 0 mod ξn

and in addition to the previous initial conditions, also xn´2 “ 0. As the
twisted initial form is Y 3, we branch with e7Y and eY . The twisted initial
form of e7Y p2, 1, 1q “ p2, 17, 1q is Y 3

7 “ 0, whence empty, leaving us with
eY p2, 1, 1q “ p2, 2, 1q, whose jet equations are

(6.1) ξ4
ux2 ` ξ6

uy3 ` ξ4
uz4 ” 0 mod ξn
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and an additional initial condition yn´2 “ 0. The new twisted initial form
is X2 ` Z4. At this point, inverting either variable X or Z yields a regular
surface. However, instead of choosing one, we may perform a multi-branching
step, in which we consider all four possibilities eXeZ , e

7

XeZ , eXe
7

Z , or e
7

Xe
7

Z ,
when applying (5.9), yielding the four leafs p3, 2, 2q, p27, 2, 2q, p3, 2, 17q, and
p27, 2, 17q respectively. The corresponding initial forms are given by X2`Y 3 “

0, X2
7 “ 0, Z4

7 “ 0, and X2
7 ` Z

4
7 “ 0. The middle two clearly are empty, and

as the last is smooth, we may invoke Proposition 5.2, to get

r∇p2
7,2,17q

n E6s “ rẼ6
p27,2,17q

s ¨ L2n´2`4´5 “ rX2
7 ` Z

4
7 s ¨ L2n´3

as ordp27,2,17qpE6q “ 4. This leaves the first leaf, p3, 2, 2q, with formal jet
equations

ξ6
ux2 ` ξ6

uy3 ` ξ8
uz4 ” 0 mod ξn

and the two additional initial conditions xn´3 “ zn´2 “ 0. Its twisted initial
form X2 ` Y 3 becomes non-singular if we invert X or Y , suggesting another
multi-branching step. Inverting one and equating the other to zero leads once
more to contradictory equations, so we only have to deal with the two leafs
p37, 27, 2q and p4, 3, 2q. For the former, we may invoke once more Proposi-
tion 5.2, yielding the class

rX2
7 ` Y

3
7 s ¨ L2n´2`6´7,

as ordp37,2,27qpE6q “ 6. The latter has formal jet equations

ξ8
ux2 ` ξ9

uy3 ` ξ8
uz4 ” 0 mod ξn

together with the vanishing of xi, yi and zi for i greater than or equal to
respectively n´ 4, n´ 3, and n´ 2. Since p4, 3, 2q has the same twisted initial
form as p2, 2, 1q, we may repeat our previous argument. Tagging both variables
gives the leaf p47, 3, 27q and

rX2
7 ` Z

4
7 s ¨ L2n´2`8´9

as ordp47,3,27qpE6q “ 8. The latter leaf is p5, 3, 3q, with formal jet equations

ξ10
ux2 ` ξ9

uy3 ` ξ12
uz4 ” 0 mod ξn
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together with xi, yi, zi “ 0 for i ě n ´ 5, n ´ 3, n ´ 3 respectively. As the
twisted initial form is Y 3, we again branch over e7Y and eY leading to the leaf
p5, 4, 3q, with formal jet equations

ξ10
ux2 ` ξ12

uy3 ` ξ12
uz4 ” 0 mod ξn

together with xi, yi, zi “ 0, for i ě n´5, n´4, n´3 respectively. As X2 is the
new twisted initial form, we branch over e7X and eX , yielding the leaf p6, 4, 3q,
with formal jet equations

ξ12
ux2 ` ξ12

uy3 ` ξ12
uz4 ” 0 mod ξn

together with xi, yi, zi “ 0 for i ě n´6, n´4, n´3 respectively. AsW itself is
the twisted initial form of this leaf, that is to say, 0CW p6, 4, 3q, our algorithm
has come to a halt. Indeed, if we factor out ξ12 in the last equation, we get
the pn´ 12q-th formal jet equations. Since we have |p6, 4, 3q| “ 13 additional
initial conditions, we are left with 3 ¨ 12 ´ 13 “ 23 free variables xi, yi, zi for
n ´ 12 ď i ă n ´ 6, n ´ 4, n ´ 3 respectively, as predicted by Lemma 5.3.
Putting everything together, we showed that r∇nE6s is equal to

(6.2) rE6 ´OsL2n´2`2rẼ6
p27,2,17q

sL2n´3`rẼ6
p37,27,2q

sL2n´3`r∇n´12E6sL23

Multiplying with tn, summing over all n, and solving for the zeta series yields

IguE6
“

QE6

p1´ L2tqp1´ L23t12q

for some polynomial QE6 over G. A schematic representation of these calcu-
lations is given by the rationalization tree in Figure 2, in which we equated,
for brevity, a leaf to the class of the corresponding directed jet scheme (giving
only its defining polynomial).

It is now also clear how this generalizes to any diagonal hypersurface,
yielding a proof of Corollary 5.10. Indeed, with e the least common multiple
of the ai, the algorithm stops at the leaf γ :“ p ea1 , . . . ,

e
am
q, whose order is e.

During this process, we introduced |γ| many additional initial conditions. As
we have me more jet variables for the n-th jet as for the pn ´ eq-th jet, this
yields N “ me´ |γ| free variables, explaining formula (5.12).

Let us apply this algorithm also to the Du Val surfaces Ak and E8. The
former is given by X2 ` Y 2 ` Zk`1. If k is odd, then e “ k ` 1 and N “

3pk ` 1q ´ pk`1
2 ` k`1

2 ` 1q “ 2k ` 1, and hence

IguAk
“

QAk

p1´ L2tqp1´ L2k`1tk`1q
.
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Figure 2. The rationalization tree for the E6-surface

If k is even, then e “ 2pk`1q and N “ 6pk`1q´ pk`1`k`1`2q “ 4k`2,
so that

IguAk
“

QAk

p1´ L2tqp1´ L4k`2t2pk`1qq
.

Finally, since E8 has equation X2 ` Y 3 ` Z5, the values are e “ 30 and
N “ 90´ p15` 10` 5q “ 60, so that

IguE8
“

QE8

p1´ L2tqp1´ L60t30q
.

Although a priori W̃ θ depends on the embedding of W in some affine
space, its class may be more independent from this embedding. For instance,
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in (6.2), all but the two middle terms are independent from an embedding.
To which extent does this hold?

The E7-surface

This time, the defining equation is X2 ` Y 3 ` Y Z3 “ 0 (and, as before,
assuming that the characteristic is not equal to 2 or 3), which again has an
isolated (canonical) singularity. As this is no longer just a sum of powers, it
will lead to a more complicated rationalization tree, given in Figure 3 below.

Corollary 5.5 yields

r∇nE7s “ qL2n´3 ` r∇n´18E7sL29

where q is equal to

rE7 ´OsL`rX2` Y Z3
7 s`rY Z

3
7 sL´1`2rX2

7` Y
3
7 s`rX

2
7` Y Z

3
7 s`rY

3
7` Y 7Z

3
7 s.

Using the identities

rX2 ` Y Z3
7 s “ L2 ´ L “ rY Z3

7 s,

rX2
7 ` Y Z

3
7 s “ pL´ 1q2,

rY 3
7 ` Y 7Z

3
7 s “ pL´ 1qrX2

7 ` Y
3s,

we get

q “ LrE7 ´Os ` pL` 1qrX2
7 ` Y

3
7 s ` 2LpL´ 1q.

Regardless the value of q, the usual argument yields the rationality of IguE7
,

with denominator equal to p1´ L2tqp1´ L29t18q.

The Dk-surface

The general equation of the Dk-surface is X2 ` Y 2Z ` Zk´1 for k ě 4
(assuming the characteristic is different from 2). Depending on whether k is
odd or even, we have two slightly different rationalization trees, both leading
from the root p1, 1, 1q to pk ´ 1, k ´ 2, 2q, where

r∇pk´1,k´2,2q
n Dks “ r∇n´2k`2Dks ¨ L4k´5,



172 Hans Schoutens

p1, 1, 1q

eX

��

e
7
X

''OO
OOO

OOO
OO

p2, 1, 1q

eY

��

e
7
Y

''NN
NNN

NNN
NN

p17, 1, 1q “ 0

p2, 2, 1q

eX

��

e
7
X

''NN
NNN

NNN
NN

p2, 17, 1q “ 0

p3, 2, 1q

eZ

��

e
7
Z

''NN
NNN

NNN
NN

p27, 2, 1q “ 0

p3, 2, 2q

eXeY

��

e
7
X

e
7
Y

&&NN
NNN

NNN
NNNeXe

7
Y

sshhhhh
hhhhh

hhhhh
hhhhh

hh

e
7
X

eYxxppp
ppp

ppp
pp

p3, 2, 17q “ 0

p4, 27, 2q “ 0 p37, 3, 2q “ 0 p4, 3, 2q

eX

��

e
7
X

&&NN
NNN

NNN
NNN

p37, 27, 2q rX2
7 ` Y 3

7 sL
2n´3

p5, 3, 2q

eY eZ

��

e
7
Y
e
7
Z

&&NN
NNN

NNN
NNNe

7
Y
eZ

sshhhhh
hhhhh

hhhhh
hhhhh

hh

eY e
7
Zxxppp

ppp
ppp

pp
p47, 3, 2q “ 0

p5, 37, 3q “ 0 p5, 4, 27q p5, 4, 3q

eX

��

e
7
X

&&MM
MMM

MMM
MMM

p5, 37, 27q rY 3
7 ` Y 7Z

3
7 sL

2n´3

rX2 ` Y Z3
7 sL

2n´3 p6, 4, 3q

eXeY

��

e
7
X

e
7
Y

&&MM
MMM

MMM
MMM

e
7
X

eY

sshhhhh
hhhhh

hhhhh
hhhhh

hh

eXe
7
Yxxqqq

qqq
qqq

qq
p57, 4, 3q “ 0

p67, 5, 3q “ 0 p7, 47, 3q “ 0 p7, 5, 3q

eXeZ

��

e
7
X

e
7
Z

&&MM
MMM

MMM
MMM

e
7
X

eZ

sshhhhh
hhhhh

hhhhh
hhhhh

hh

eXe
7
Zxxqqq

qqq
qqq

qq
p67, 47, 3q rX2

7 ` Y 3
7 sL

2n´3

p77, 5, 4q “ 0 p8, 5, 37q p8, 5, 4q

eY

��

e
7
Y

&&MM
MMM

MMM
MMM

p77, 5, 37q rX2
7 ` Y Z3

7 sL
2n´3

rY Z3
7 sL

2n´4 p8, 6, 4q

eX

��

e
7
X

&&NN
NNN

NNN
NNN

p8, 57, 4q “ 0

p9, 6, 4q p87, 6, 4q “ 0

r∇n´18E7sL29

Figure 3. The rationalization tree for the E7-surface
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since we have 3p2k´ 2q ´ |pk ´ 1, k ´ 2, 2q| “ 4k´ 5 free variables. The equa-
tions for the directed jet along the starting value p1, 1, 1q has formal jet equa-
tions

ξ2
ux2 ` ξ3

uy2
uz ` ξk´1

uzk´1 ” 0 mod ξn.

It is not hard to see that the initial part of the tree is given by alternating eX
and eY . As a result, in respectively the first and second term, the power of ξ
is each time increased by 2. This goes on until one of them catches up with
the power ξk´1, and this depends on the parity of k. So assume first that k is
odd. In that case, we arrive at the node pk´1

2 , k´1
2 , 1q, whose directed jet has

jet equations

ξk´1
ux2 ` ξkuy2

uz ` ξk´1
uzk´1 ” 0 mod ξn.

The remainder of the tree is given in Figure 4 below, where the middle part
gets repeated until the indicated value is reached.
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Figure 4. Bottom part of the rationalization tree for Dk, when k is odd

The tree for even k is analogous, where this time, the starting value is
pk2 ,

k´2
2 , 1q, with formal jet equations

ξkux2 ` ξk´1
uy2
uz ` ξk´1

uzk´1 ” 0 mod ξn.
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The remainder of the tree, with the middle part again repeated, is given by
Figure 5.
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Figure 5. Bottom part of the rationalization tree for Dk, when k is even

Note that rY 2
7Zs “ L2 ´ L appears rk2 s times as an end value, and

rX2
7 ` Y

2
7Zs “ pL´ 1q2

appears rk`2
2 s many times. It follows that r∇nDks is equal to

`

rDk´OsL`rX2
7` Z

k´1
7 s`

k ` 1

2
pL2´Lq`pL´1q2

˘

L2n´3`r∇n´2k`2DksL4k´5

in the odd case, and to

`

rDk´OsL`rY 2
7Z7 ` Z

k´1
7 s`

k

2
pL2´Lq`pL´1q2

˘

L2n´3`r∇n´2k`2DksL4k´5

in the even case. In particular, the motivic Igusa-zeta series IguDk
is rational

with denominator equal to p1´ L2tqp1´ L4k´5t2k´2q.
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7. Linear deformations of poly-diagonals

We work over an arbitrary domain A. By a poly-diagonal over A, we mean
a polynomial over A of the form

ř

ckY
νk
k , with ck units in A and Yk tuples of

distinct variables. We define the class of linear deformations of poly-diagonals
recursively as follows: 0 belongs to the class, and if F belongs to the class,
then so does F ` aXYµ, where a is a unit in A, µ P Nm, and Y an m-tuple
of variables not yet occurring among the variables of F (but X can be any
variable, including one of the Y-variables). A moment’s reflection then yields
that any linear deformation of a poly-diagonal can be written, for a choice of
distinct variables Xi, Yik, Zj , in the canonical form

(7.1) F “ H `
d
ÿ

i“1

aiX
ni
i `XiGi

with ai units in A, and HpZq (a possibly zero) and the GipYiq non-zero poly-
diagonals over A. Note that every variable occurs at most once to a higher
power. We will refer to the Xi, that is to say, those variables that occur in
at least two terms, as the twisting variables; similarly, we call any monomial
occurring in one of the Gi a twisted monomial. In other words, if XYν is a
monomial in F with X a twisting variable and Y a tuple of variables distinct
from X, then Yν (that is to say, without the twisting variable) is a twisted
monomial.

We also introduce the following terminology: we say that a polynomial F is
separable in a variable X, if either the characteristic is zero, or otherwise, the
characteristic is p ą 0 and some exponent of X in F is not divisible by p. Put
differently, F is non-separable in X if there exists G such that F “ GpXpq. We
say that F is inseparable, if none of its variables are separable. In particular,
over a perfect field, an inseparable polynomial is a p-th power. We will say
that a linear deformation of a poly-diagonal, written in canonical form (7.1),
is almost separable, if no twisted monomial is inseparable and at most one
(non-twisted) monomial is inseparable.

Proposition 7.1. If a linear deformation of a poly-diagonal over a field
is almost separable, then it is non-degenerated with respect to its Newton poly-
hedron.

Proof. Let F be an almost separable linear deformation of a poly-dia-
gonal, written in canonical form (7.1). Let M :“ MilF be its Milnor ideal.
Since any subsum in F , whence in particular any initial form, is again almost
separable, it suffices by Lemma 5.8 to show that M contains a (square-free)
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monomial. If F contains a twisted term, the latter must be of the form XY kρ,
with k not divisible by the characteristic, and ρ a monomial in the remaining
variables. Since Y only occurs in the twisted term, BF {BY “ kXY k´1ρ is
a monomial in M. In the remaining case, F is just a poly-diagonal. By the
same argument, if it contains a separable variable, we are done. So we may
assume that the characteristic p is prime and F is inseparable, whence by
almost separability, a monomial, and so we are done once more. �

To give the single branching algorithm that proves the rationality of the
motivic Igusa-zeta series of an almost separable linear deformation of a poly-
diagonal F , we describe the two, partially defined, branching functions A and
A7 on Nm7 , giving the immediate successors of a node in the tree. Write F in
the canonical form (7.1), in the m variables Xi, Yij , Zk. Renumber the Yij so
that all separable variables are listed first, and do the same with the Zk. Let
W be the resulting m-tuple of all these variables in the given order, that is
to say, starting with the twisting variables X, etc. For θ P Nm7 , let Milθ be
the Milnor ideal of the initial form F̃ θ viewed as an ideal in κtWθu. If F is
almost separable, then Milθ contains at least one (square-free) monomial by
Proposition 7.1.

IfMilθ is the unit ideal, thenA andA7 remain undefined, that is to say, the
algorithm halts at such a node, turning it into a leaf. In the remaining case,
Milθ contains a non-zero monomial. Let S be all monomials in Milθ none
of whose proper factors lie in Milθ. If any of these contain an (untagged)
inseparable variable, then we let V be the variable with the highest index in
W. If all variables are separable, then we consider only those monomials in
S of minimal length (=minimal number of irreducible factors), and let V be
the untagged variable with the highest index among all variables occurring
in this latter set of monomials. Define now Apθq :“ eV θ and A7pθq :“ e7V θ
(recall that the former increases the weight of V by one, whereas the latter
tags it). Let T be the (possibly infinite) tree obtained as the orbit of the root
0 under the action of these two branching functions. Note that a node θ is
a leaf precisely when A (whence also A7) is not defined, and such a node is
then F -regular. In particular, if T is finite, all its leafs are F -regular, and
we are done. Therefore, to show that some initial part of T is rationalizing,
we need to show that for each θ on an infinite branch, we can find γ such
that θCF γ, and we then cut the tree at γ, turning the latter into a leaf. We
induct on the number m7 of tagged variables in θ, where there is nothing to
prove if m7 “ 0, since θ must then be a leaf. Recall that κtWθu is graded by
giving the variables weight θ6. We denote the degree of F in this grading by
dpθq :“ degθpF q, and its order by opθq :“ ordθpF q.

Lemma 7.2. For F almost separable, with notation as above, if e is the
(polynomial) degree of F , then dpθq ď opθq ` e, for any θ P T .
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Proof. We prove this by induction on the height of θ in T (that is to say,
the number of applications of A or A7 applied to the root), where the case of
the root 0 trivially holds. So assume the result is true for θ and we have to
show it also holds for the next node θ1 “ Apθq (the other node, A7pθq, has
the same d and o values). Let o :“ opθq and d :“ dpθq, so that d ď o` e, and
write F “

řs
i“1 µi, where the µi are the distinct monomials occurring in F .

Let V be the (necessarily untagged) variable corresponding to the entry that
is increased by one in θ. If V is not a twisting variable (that is to say, not one
of theXi), it occurs in a unique monomial µi, say, as a power V n. Moreover, µi
is then also a monomial in F̃ θ, and degθpµiq “ o. Hence degθ1pµiq “ o`n and
since no other monomials have changed their degree, dpθ1q is the maximum of
d and o ` n, whence by induction at most o ` e. Since o ď opθ1q, we showed
that dpθ1q ď opθ1q ` e, as required.

So remains the case that V is a twisting variable. Suppose V n ` V G are
all terms in F containing V , where G is a non-zero poly-diagonal. We claim
that o “ nt, where t “ degθpV q. Let ρ be one of the (twisted) monomials
in G. Assuming the claim, let us show by induction, that the difference (in
absolute value) between degθpV ρq and tn is at most e ´ 1. To this end, let
a :“ degθpV ρq. By the claim, nt “ o ď a, and so, together with our in-
duction hypothesis, we get 0 ď a ´ tn ď e ´ 1. Since degθ1pV

nq “ tn ` n
and degθ1pV ρq “ a ` 1, we see that 1 ´ n ď a ` 1 ´ tn ´ n ď e ´ n,
from which the second claim follows readily. Going back to the main proof,
since opθ1q ě o, it suffices to show that dpθ1q ď o ` e. By the first claim,
o “ tn and so degθ1pV

nq ď tn ` n ď o ` e. Moreover, by the second claim,
degθpV Gq ď o`e´1, and hence degθ1pV Gq “ degθpV Gq`1 ď o`e, proving
the assertion, as no other terms are involved.

So remains to show the claim. Suppose not, so that V n is not a term in
F̃ θ, and let V ρ1, . . . , V ρs be all non-zero monomials in F̃ θ containing V . By
assumption, no ρi is inseparable and so the partial derivative with respect
to some separable variable proves that each V ρi lies in Milθ. Therefore, all
variables in the ρi must already be tagged, lest the algorithm would have
chosen one of these instead of V . If s “ 1, then BF̃ θ{BV “ ρ1 is a unit in
Milθ, contradicting that θ is not F -regular (whence a leaf). So remains to
show that s ą 1 is also excluded. Suppose not, so that degθpρ1q “ degθpρ2q

and both monomials ρi are units in κtWθu. Let γ be the highest node in the
tree below θ for which not all variables in ρ1 or ρ2 are tagged. Hence, exactly
one variable would not have been tagged, say U in ρ1 “ Umρ11, with ρ11 a
unit in κtWγu, and the algorithm at stage γ would then pick U and tag it.
We must have degγpρ1q “ degγpρ2q, since no stage after γ can change their
degrees anymore. In particular, V Umρ11 and ρ2 are both terms of the initial
form F̃γ . However, if T is any (necessarily tagged) separable variable in ρ2,
say, ρ2 “ T k7 ρ

1
2, then BF̃γ{BT “ kV T k´1

7 ρ12, showing that V belongs to Milγ ,
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since kT k´1
7 ρ12 is a unit in κtWγu. Since one easily checks that UV but not

U belongs to the latter ideal, the algorithm could not have chosen U at that
stage since there are monomials with fewer factors in Milγ , contradiction. �

Theorem 7.3. Let W ⊆ Amκ be a linear deformation of a poly-diagonal
with equation F . If F is almost separable, then the motivic Igusa zeta series
of W is rational.

Proof. By the previous discussion, remains to show, in view of Theo-
rem 5.7, that given any infinite branch of the tree T , as constructed above,
we can find two nodes γ1 and γ2 on it such that γ1 CF γ2. To this end, write
F as a sum of monomials µi and, for each node θ, let Ωpθq be the tuple with
i-th entry equal to degθpµiq ´ opθq (recall that opθq and dpθq are the respec-
tive order and degree of F in κtYθu). By construction all entries in Ωpθq are
positive, and by Lemma 7.2, at most equal to the degree of F . Hence there
are only finitely many possibilities for Ωpθq, so that any infinite branch must
contain two nodes γ1 ă γ2 with Ωpγ1q “ Ωpγ2q. It is now easy to check that
the latter is equivalent with γ1 CF γ2. �
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