
Annales Mathematicae Silesianae 30 (2016), 181–191
DOI: 10.1515/amsil-2016-0007

ALIENATION OF THE JENSEN, CAUCHY AND
D’ALEMBERT EQUATIONS

Barbara Sobek

Abstract. Let (S,+) be a commutative semigroup, σ : S → S be an endo-
morphism with σ2 = id and let K be a field of characteristic different from
2. Inspired by the problem of strong alienation of the Jensen equation and
the exponential Cauchy equation, we study the solutions f, g : S → K of the
functional equation

f(x+ y) + f(x+ σ(y)) + g(x+ y) = 2f(x) + g(x)g(y) for x, y ∈ S.

We also consider an analogous problem for the Jensen and the d’Alembert
equations as well as for the d’Alembert and the exponential Cauchy equations.

1. Introduction

The notions of alienation and strong alienation, introduced by J. Dhombres
[1], describe the phenomenon that a functional equation, resulting from adding
up two functional equations side by side, splits back into the system of these
two equations. More precisely, let E1(f) = 0 and E2(f) = 0 be two functional
equations for a function f : X → Y , where X is a nonempty set and (Y,+, 0)
is a monoid. Following J. Dhombres [1] and Gy. Maksa and M. Sablik [8], we
say that the equations E1 and E2 are alien with respect to X and Y , if every
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solution f : X → Y of equation

E1(f) + E2(f) = 0

solves the system {
E1(f) = 0

E2(f) = 0.

The equations E1 and E2 are strongly alien whenever a pair (f, g) is a solution
of

E1(f) + E2(g) = 0

only if the system {
E1(f) = 0

E2(g) = 0

holds.
The problems of alienation and strong alienation of functional equations

have been studied by many authors (see e.g. [1]-[8]). In particular, as regards
the additive and exponential Cauchy equations, R. Ger [3] showed, in a quite
general setting, that a pair of functions (f, g), satisfying functional equation

f(x+ y) + g(x+ y) = f(x) + f(y) + g(x)g(y),

need not solve the system{
f(x+ y) = f(x) + f(y)

g(x+ y) = g(x)g(y),

unless f and g satisfy some additional assumption. Thus, in general, the ad-
ditive and exponential Cauchy equations are not strongly alien in the sense
of Dhombres. A similar problem for the exponential and logarithmic Cauchy
equations has been considered by Z. Kominek and J. Sikorska [7]. In a recent
paper [8] Gy. Maksa and M. Sablik provided a sufficient condition for the
strong alienation of the exponential Cauchy equation and the Hosszú equa-
tion.

Inspired by these results, we investigate the problem of strong alienation
for further pairs of classical functional equations. More precisely, assuming
that K is a field of characteristic different from 2, (S,+) is a commutative



Alienation of the Jensen, Cauchy and d’Alembert equations 183

semigroup and σ is an endomorphism of S with σ(σ(x)) = x for x ∈ S, in the
next section we study the solutions f, g : S → K of the functional equation

(1.1) f(x+ y) + f(x+ σ(y)) + g(x+ y) = 2f(x) + g(x)g(y) for x, y ∈ S

resulting from summing up the Jensen equation

(1.2) f(x+ y) + f(x+ σ(y)) = 2f(x) for x, y ∈ S

and the Cauchy equation

(1.3) g(x+ y) = g(x)g(y) for x, y ∈ S

side by side. We show that (1.1) forces f and g to solve the system (1.2)-(1.3),
which means that equations (1.2) and (1.3) are strongly alien. In the third
section we prove that the phenomenon of strong alienation holds also for the
pair consisting of equation (1.2) and the following generalized version of the
classical d’Alembert equation (cf. [10])

(1.4) h(x+ y) + h(x+ σ(y)) = 2h(x)h(y) for x, y ∈ S.

In the last section we study the problem of strong alienation of equations (1.3)
and (1.4). It turns out that, contrary to the previous pairs, these equations,
in general, are not strongly alien. We present a sufficient condition for the
strong alienation of (1.3) and (1.4).

Throughout the paper, unless otherwise stated, (S,+) is a commutative
semigroup, σ is an endomorphism of S with σ(σ(x)) = x for x ∈ S and K
is a field of characteristic different from 2. In what follows, we will write σx
instead of σ(x).

2. Jensen and Cauchy equations

The following result states that the Jensen equation and the exponential
Cauchy equation are strongly alien in the sense of Dhombres.

Theorem 2.1. Assume that a pair of functions (f, g), where f, g : S → K,
satisfies equation (1.1). Then f solves (1.2) and g satisfies (1.3).
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Proof. If g = 0 or g = 1, then g satisfies equation (1.3), which implies
that f solves (1.2). So, assume that g 6= 0 and g 6= 1. In the proof we apply
some ideas from [9]. Making use of (1.1), for every x, y, z ∈ S, we get

(f + g)(x+ y + z) + f(x+ y + σz) = 2f(x+ y) + g(x+ y)g(z),(2.1)

(f + g)(x+ σy + z) + f(x+ σy + σz) = 2f(x+ σy) + g(x+ σy)g(z),(2.2)

(f + g)(x+ y + z) + f(x+ σy + σz) = 2f(x) + g(x)g(y + z)(2.3)

and

(2.4) (f + g)(x+ σy + z) + f(x+ y + σz) = 2f(x) + g(x)g(σy + z).

Summing up equalities (2.1) and (2.2) side by side, and subtracting from the
equality thus obtained the sum of equalities (2.3) and (2.4), we infer that

2[f(x+ y) + f(x+ σy)] + [g(x+ y) + g(x+ σy)]g(z)

= 4f(x) + g(x)[g(z + y) + g(z + σy)] for x, y, z ∈ S.

Thus, applying (1.1) again, we obtain

(2.5) [g(x+ y) + g(x+ σy)]g(z)− 2g(x+ y)

= g(x)[g(z + y) + g(z + σy)− 2g(y)] for x, y, z ∈ S.

Replacing in (2.5) y by σy, we get

(2.6) [g(x+ σy) + g(x+ y)]g(z)− 2g(x+ σy)

= g(x)[g(z + σy) + g(z + y)− 2g(σy)] for x, y, z ∈ S.

Hence, subtracting (2.5) from (2.6) side by side, we arrive at

(2.7) g(x+ y)− g(x+ σy) = g(x)[g(y)− g(σy)] for x, y ∈ S,

whereas by summing up (2.5) and (2.6) side by side, we get

(2.8) [g(x+ y) + g(x+ σy)] · [g(z)− 1]

= g(x)[g(z + y) + g(z + σy)− g(y)− g(σy)] for x, y, z ∈ S.
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Fix x0, z0 ∈ S with g(x0) 6= 0 and g(z0) 6= 1 and define a function U : S → K
in the following way

U(y) =
g(x0 + y) + g(x0 + σy)

g(x0)
for y ∈ S.

Then

(2.9) U(σy) = U(y) for y ∈ S

and, by (2.8),

(2.10) g(x+ y) + g(x+ σy)− g(y)− g(σy) = U(y)[g(x)− 1] for x, y ∈ S.

Furthermore, in view of (2.8), we have

U(y) =
g(z0 + y) + g(z0 + σy)− g(y)− g(σy)

g(z0)− 1
for y ∈ S

and

(2.11) g(x+ y) + g(x+ σy) = g(x)U(y) for x, y ∈ S.

So, from (2.7) and (2.11) it follows that

(2.12) 2g(x+ y) = g(x)V (y) for x, y ∈ S,

where the function V : S → K is defined by

(2.13) V (y) = U(y) + g(y)− g(σy) for y ∈ S.

Since, in view of (2.9), V (y)+V (σy) = 2U(y) for y ∈ S, making use of (2.10)
and (2.12), we obtain

2g(x)U(y) = g(x)V (y) + g(x)V (σy) = 2g(x+ y) + 2g(x+ σy)

= 2U(y)[g(x)− 1] + 2g(y) + 2g(σy) for x, y ∈ S.

Hence U(y) = g(y)+g(σy) for y ∈ S, which together with (2.13) gives V = 2g.
Thus, taking into account (2.12), we conclude that g satisfies (1.3) and so, in
view of (1.1), f solves (1.2). �

From Theorem 2.1 and [10, Theorem 2] we derive the following result.
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Corollary 2.2. Assume that a pair (f, g) of functions mapping S into
K satisfies equation (1.1). Then g satisfies equation (1.3) and there exist a
constant c ∈ K and an additive function a : S → K such that a(σx) = −a(x)
for x ∈ S and f(x) = a(x) + c for x ∈ S.

3. Jensen and d’Alembert equations

The following result shows that the phenomenon of strong alienation takes
place also in the case of the Jensen and the d’Alembert equations.

Theorem 3.1. Assume that a pair of functions (f, h), where f, h : S → K,
satisfies equation

(3.1) (f + h)(x+ y) + (f + h)(x+ σy) = 2f(x) + 2h(x)h(y) for x, y ∈ S.

Then f satisfies (1.2) and h solves (1.4).

Proof. If h = 0 or h = 1 then h satisfies (1.4), which forces f to satisfy
(1.2). So, assume that h 6= 0 and h 6= 1. In view of (3.1), for every x, y, z ∈ S,
we have

(f + h)(x+ y + z) + (f + h)(x+ y + σz) = 2f(x+ y) + 2h(x+ y)h(z),

(f + h)(x+ σy + z) + (f + h)(x+ σy + σz) = 2f(x+ σy) + 2h(x+ σy)h(z),

(f + h)(x+ y + z) + (f + h)(x+ σy + σz) = 2f(x) + 2h(x)h(y + z)

and

(f + h)(x+ y + σz) + (f + h)(x+ σy + z) = 2f(x) + 2h(x)h(y + σz).

Furthermore, arguing as in the proof of Theorem 2.1, from these equalities we
derive

2[f(x+ y) + f(x+ σy)] + 2h(z)[h(x+ y) + h(x+ σy)]

= 4f(x) + 2h(x)[h(y + z) + h(y + σz)] for x, y, z ∈ S.
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Thus, applying (3.1) again, we get

(3.2) 2[h(z)− 1] · [h(x+ y) + h(x+ σy)]

= 2h(x)[h(y + z) + h(y + σz)− 2h(y)] for x, y, z ∈ S.

Let x0, z0 ∈ S be such that h(x0) 6= 0 and h(z0) 6= 1. Define a function
ϕ : S → K by

ϕ(y) =
h(x0 + y) + h(x0 + σy)

2h(x0)
for y ∈ S.

Then (3.2) implies that

ϕ(y) =
h(y + z0) + h(y + σz0)− 2h(y)

2[h(z0)− 1]
for y ∈ S.

Thus, setting in (3.2) z = z0 and x = x0, we obtain

(3.3) h(x+ y) + h(x+ σy) = 2h(x)ϕ(y) for x, y ∈ S

and

h(y + z) + h(y + σz) = 2h(y) + 2[h(z)− 1]ϕ(y) for y, z ∈ S,

respectively. From the last two equalities it follows that

(3.4) h(x)[ϕ(y)− 1] = [h(y)− 1]ϕ(x) for x, y ∈ S.

So, letting λ = ϕ(z0)−1
h(z0)−1 , we get ϕ = λh. Hence, making use of (3.4), we obtain

(λ− 1)h(x) = 0 for x ∈ S. Thus, as h 6= 0, we have λ = 1, which means that
ϕ = h. Therefore, from (3.3) we derive that h satisfies equation (1.4) and so,
in view of (3.1), f satisfies (1.2). �

Applying [10, Theorems 1-2], from Theorem 3.1 we deduce the following
result.

Corollary 3.2. Let K be a quadratically closed field of characteristic
different from 2. Suppose that a pair of functions (f, h), where f, h : S →
K, satisfies equation (3.1). Then there exist a function g : S → K satisfying
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equation (1.3), an additive function a : S → K and a constant c ∈ K such
that a(σx) = −a(x) for x ∈ S, f(x) = a(x) + c for x ∈ S and

h(x) =
g(x) + g(σx)

2
for x ∈ S.

4. Cauchy and d’Alembert equations

In this section we study the alienation problem for the pair of equations
(1.3) and (1.4). The following example shows that, in general, these equations
are not strongly alien to each other.

Example. Let g, h : S → C be the constant functions, say g = c and
h = d, where c, d ∈ C \ {0, 1} are such that c(1− c) = 2d(d− 1). Then, as one
can easily check, the pair (g, h) satisfies the equation resulting from adding
up (1.3) and (1.4) side by side, but neither g fulfills (1.3), nor h satisfies (1.4).

Now, we are going to show that under some additional assumptions, equa-
tions (1.3) and (1.4) are strongly alien to each other. To this end, we will need
the following simple result.

Lemma 4.1. Let (S,+, 0) be a commutative monoid. Assume that a pair
of functions (g, h), where g, h : S → K, satisfies equation

(4.1) g(x+ y) + h(x+ y) + h(x+ σy) = g(x)g(y) + 2h(x)h(y) for x, y ∈ S.

Then g satisfies (2.7) and h is even with respect to σ, i.e.

(4.2) h(x) = h(σx) for x ∈ S.

Proof. Since the monoid (S,+, 0) is commutative, from (4.1) we derive
that

h(x+ σy) = h(y + σx) for x, y ∈ S.

Applying this equality with y = 0, we obtain (4.2). Furthermore, replacing in
(4.1) y by σy and making use of (4.2), we get

(4.3) g(x+σy)+h(x+σy)+h(x+y) = g(x)g(σy)+2h(x)h(y) for x, y ∈ S.

Subtracting (4.3) from (4.1) side by side, we infer that g satisfies (2.7). �
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Theorem 4.2. Let (S,+, 0) be a commutative monoid. Assume that a pair
of functions (g, h), where g, h : S → K, satisfies equation (4.1) and g(s0) 6=
g(σs0) for some s0 ∈ S. Then g satisfies (1.3) and h satisfies (1.4).

Proof. Let a function go : S → K be given by go(x) = g(x) − g(σx) for
x ∈ S. Note that go(s0) 6= 0. Moreover, applying Lemma 4.1, we obtain

(4.4) g(x+ y)− g(x+ σy) = g(x)go(y) for x, y ∈ S.

Setting in (4.4) x = 0, we get go(y) = g(0)go(y) for y ∈ S. Since go(s0) 6= 0,
this yields g(0) = 1. Furthermore, using (4.1), for every x, y, z ∈ S, we have

(g + h)(x+ y + z) + h(x+ y + σz) = g(x+ y)g(z) + 2h(x+ y)h(z),

(g + h)(x+ σy + z) + h(x+ σy + σz) = g(x+ σy)g(z) + 2h(x+ σy)h(z),

(g + h)(x+ y + z) + h(x+ σy + σz) = g(x)g(y + z) + 2h(x)h(y + z)

and

(g + h)(x+ σy + z) + h(x+ y + σz) = g(x)g(σy + z) + 2h(x)h(σy + z).

Hence, arguing as in the proof of Theorem 2.1, from the above equalities
we obtain

[g(x+ y) + g(x+ σy)]g(z) + 2[h(x+ y) + h(x+ σy)]h(z)

= g(x)[g(z+y)+g(z+σy)]+2h(x)[h(z+y)+h(z+σy)] for x, y, z ∈ S.

According to Lemma 4.1, h satisfies (4.2). Therefore, replacing in the last
equality z by σz and subtracting the equality thus obtained from the original
one, we get

(4.5) [g(x+y)+g(x+σy)]go(z) = g(x)[go(z+y)+go(z+σy)] for x, y, z ∈ S.

Let a function U : S → K be defined in the following way

U(y) =
go(s0 + y) + go(s0 + σy)

go(s0)
for y ∈ S.

Then, in view of (4.5), we have

(4.6) g(x+ y) + g(x+ σy) = g(x)U(y) for x, y ∈ S.
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Consequently, taking into account (4.4), we obtain

(4.7) 2g(x+ y) = g(x)[go(y) + U(y)] for x, y ∈ S.

Furthermore, as g(0) = 1, setting in (4.6) x = 0, we conclude that g(y) +
g(σy) = U(y) for y ∈ S. Thus go(y) + U(y) = 2g(y) for y ∈ S and so, in
view of (4.7), g satisfies equation (1.3). Hence, from (4.1) it follows that h
satisfies (1.4). �

We conclude the paper with a result which states that in the class of non-
constant functions mapping a 2-divisible Abelian group into a field of charac-
teristic different from 2, the exponential Cauchy equation and the d’Alembert
equation are strongly alien to each other.

Corollary 4.3. Let (S,+) be an Abelian group with S = 2S. Assume
that a pair of functions (g, h), where g, h : S → K, satisfies equation

(4.8) g(x+ y) + h(x+ y) + h(x− y) = g(x)g(y) + 2h(x)h(y) for x, y ∈ S.

Then one of the following two alternatives holds:
(i) there exist c, d ∈ K with c(1− c) = 2d(d− 1) such that g = c and h = d;
(ii) g satisfies (1.3) and h satisfies equation

(4.9) h(x+ y) + h(x− y) = 2h(x)h(y) for x, y ∈ S.

Proof. First, consider the case where g is nonconstant. Suppose that
g(s) = g(−s) for s ∈ S. Then, applying Lemma 4.1 we obtain that g(x+ y) =
g(x− y) for x, y ∈ S. Thus g(2x) = g(0) for x ∈ S. Since 2S = S, this means
that g = g(0), which yields a contradiction. Therefore, there is an s0 ∈ S with
g(s0) 6= g(−s0). So, applying Theorem 4.2, we obtain (ii).

Now, assume that g is constant, say g = c for some c ∈ K. If c ∈ {0, 1}
then g satisfies (1.3), which implies that h solves (4.9). Consequently, (ii)
holds. So, suppose that c 6∈ {0, 1}. Then, letting α := c2 − c, we have α 6= 0.
Furthermore, taking into account (4.8), we obtain

(4.10) h(x+ y) + h(x− y) = 2h(x)h(y) + α for x, y ∈ S.

Thus, for every x, y, z ∈ S, we have

h(x+ y + z) + h(x− y − z) + h(x+ y − z) + h(x− y + z)

= 2h(x)h(y + z) + 2h(x)h(y − z) + 2α = 4h(x)h(y)h(z) + 2αh(x) + 2α.
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Making use of (4.10) again, for every x, y, z ∈ S, we obtain also

h(x+ y + z) + h(x+ y − z) + h(x− y + z) + h(x− y − z)

= 2h(x+ y)h(z) + 2h(x− y)h(z) + 2α = 4h(x)h(y)h(z) + 2αh(z) + 2α.

From these equalities we derive that αh(x) = αh(z) for x, z ∈ S. Since α 6= 0,
this means that h is constant, say h = d. Therefore, taking into account (4.8),
we get c(1− c) = 2d(d− 1), and so (i) is valid. �
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