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THE BEHAVIOUR OF WEAK SOLUTIONS
OF BOUNDARY VALUE PROBLEMS
FOR LINEAR ELLIPTIC SECOND ORDER EQUATIONS
IN UNBOUNDED CONE-LIKE DOMAINS

DAMIAN WISNIEWSKI

Abstract. We investigate the behaviour of weak solutions of boundary value
problems (Dirichlet, Neumann, Robin and mixed) for linear elliptic divergence
second order equations in domains extending to infinity along a cone. We find
an exponent of the solution decreasing rate: we derive the estimate of the
weak solution modulus for our problems near the infinity under assumption
that leading coefficients of the equations do not satisfy the Dini-continuity
condition.

1. Introduction

Many problems of mathematical physics lead one to consider the solution
of boundary value problems for elliptic second order equations in unbounded
domains and to study the behaviour of the solution at infinity, for instance
stationary states, travelling waves, homogenization, boundary layer problems,
Saint-Venant’s principle and so on. Boundary value problems for linear elliptic
equations in unbounded domains have applications to mechanics of inhomo-
geneous media [4]. Some problems in unbounded domains found applications
in models in astrophysics (Eddington’s model), are used in the analytic the-
ory of polytropic ball model of stellar structures (Lane-Ritter-Emden theory)
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and have numerous applications in natural sciences, e.g. in scalar field theory,
in phase transition theory, in combustion theory, population dynamics [5],
pseudo-plastic fluids [2, 3] [6], and ecology models [7].

Let B1(O) be the unit ball in R™, n > 2 with center at the origin O
and G C R™\ B1(O) be an unbounded domain with the smooth boundary
0G. We assume that there exists R > 1 such that G = Gy U Ggr, where
Gy is a bounded domain in R", Gp = {z = (rw) € R"| r € (R, ),
weQc St Sn1is the unit sphere}.

el

Figure 1. An unbounded cone-like domain

We consider the following linear problem

2 (aV(2)ug, ) + b (2)ug, + c(z)u = f(z), z€G,

X4

X
(w) a@e + iy () u=s(o) e
lim wu(x) =0,
|z|—o00

here 2 = a¥(x) cos(7, xi)%, where 77 denotes the unit outward with respect
to G normal to G, y(w) is positive bounded piecewise smooth function on
02 such that y(w) > v > 0 and
() = 0, ifzeD,

A)=91, ifzeD,

D C 0G is the part of the boundary 0G, where the Dirichlet boundary condi-
tion is posed. Thus, if D = 0G then we have the Dirichlet problem, if D = ()
then a(z) = 1 and we have the Robin problem, if D C 0G then we have the
mixed problem.
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We introduce the following notations:
— (ryw),w = (w1,wa,...,wp—1) : spherical coordinates of z € R"

T1 = rcoswi,

To = T COS Ws SIN W1,

Tp_1 =T COSWy,_1SINWy_o...SI0W,

Ty =TSINW,_1SiNW,_2...8i0wW,

where r = |z|;

— C: a rotational cone {1 > rcos G };

— OC : the lateral surface of C : {z; = rcos 3 };

— Q: a domain on the unit sphere S"~! with smooth boundary 9 obtained
by the intersection of the cone C with the sphere S™~1;

— 90 =0Cn St

— Gt ={(r,w)|a<r<b we QNG : the layer in R™;

— Tt ={(r,w)|a<r<b wedQ}NIG : the lateral surface of layer G2;

— Gy =Gy; T,=Ty.

We use standard function spaces: C*(G) with the norm |u] x.G» the Lebesgue
space L,(G),p > 1, with the norm ||ul|, g, the Sobolev space W*P(G) with
the norm [Jul[, r;c. We define the weighted Sobolev spaces V¥, (G) for an
integer k > 0 and a real « as the closure of C§°(G) with the finite norm

k *
||u||Vp;fa(G) = (/G Z ra+p(|5_’“)|D5u|pdw> )

|8]1=0

Throughout the paper we consider weak solutions of problem [[] defined as
follows.

DEFINITION 1.1. A function u(x) is said to be a weak solution of problem
(L) provided that u(x) € C°(G) N WH%(G), ‘ llim u(z) = 0 and satisfies the
Tr|—0o0

integral identity

) [ (a9 @ua e, = ¥ hnle) — claan()} ds + [ et
1
+ [ a1 - g0 b nteas =0

for all functions n(x) € C°(G) N W12(G) such that lim n(x) = 0.

|z|—o00
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We assume that the following conditions are fulfilled:
(a) the condition of uniform ellipticity

V€2 S a/ij (x)glgj S /j'é-g Vr € 67 v€ € Rn?

v,pp=const >0 and lim a¥(z) =6/,
|z]— o0

where 6g is the Kronecker symbol;
(b) a¥(z) € CO(G), bi(x) € Ly(G), p > n; for them inequalities

i laii(z) — 672 < A <|i|> e (g W(m)\?); . <|316|)

i,j=1

hold for z € G, where A(t), t > 0, is a monotonically increasing, non-
negative function, continuous at zero and lim A (%) =0;

T—00
(c) 0> c(x) € Ly/o(G) N La(G);
(d) f(z) € Lp2(G) N Lo(G);
(e) there exist numbers fi; >0, g1 >0, s > 0 such that

[f(@)] < fAilel ™72 g(@)] < gifa| ™7
In [8] we investigated the behaviour of weak solutions to the problem in
a neighborhood of infinity assuming that the function \A(t¢) is Dini-continuous

at zero in the meaning of the following definition.

DEFINITION 1.2. A function A(t) is called Dini continuous at zero if the

integral
d
/ A 4,
o t

is finite for some d > 0.

Our aim of this article is to derive the estimate of the weak solution mod-
ulus for our problem near the infinity under assumption that leading
coefficients of the equations do not satisfy the Dini-continuity condition.
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2. Preliminaries

Let 7 be the exterior normal to dC at points of 9€2. We consider the
eigenvalue problem for the Laplace-Beltrami operator on A, the unit sphere

{Awwﬂwzo, weQ,
(EVP)

a(w) L +y(w)p(w) =0, we I,

which consists of the determination of all values ¥ (eigenvalues) for which
(EVP) has weak solutions 9 (w) # 0 (eigenfunctions); here

0, ifw e 0p1,
a(w) =
1, ifwed\ dpl,

where 0p§2 C 0N is the part of the boundary 92 for which we consider the
Dirichlet boundary condition.

Now we formulate three theorems which are essentially used in further
consideration. All of them are proved in [8]. The first is the Hardy-Friedrichs-
Wirtinger type inequality that is adapted to our problem .

THEOREM 2.1. Letu € C*(GRr)NVy 5 o(GRr) andy(w) € CO(99), w € IN
be a positive bounded piecewise smooth function. Then

(2.1) rP=4lde < H(\_,n, B)

Gr
X {/GR 7“52]Vu\2dx+/FR TB?’a(x)v(w)uZ(a:)ds},
5 -1
O = (P51 o +n—2>} . Bzd-n,
(2.2) )\7:2—n— (n—2)2+49

2 )
where ¥ is the smallest positive eigenvalue of the eigenvalue problem (EVP)).

REMARK 2.2. The proof of the existence of the smallest positive eigenvalue
¥ and associated eigenfunction ¢(w) can be found in [I, §2.1].
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The second is a theorem about the local boundedness at the infinity of
weak solutions of problem (|L|).

THEOREM 2.3. Let u(x) be a weak solution of problem , assumptions
()-(d) be satisfied and g(x) € Lo (OG). Then the inequality

C

sup [u(z)| < Ge— 1)t {Qin/tHth,G§9+ 92(1%/1))Hpr/ZGEQ+ QHQHOO»FEE}

zeGgi

>n forn>3

e (1,2 d o> R.
> 2 forn:Z’% (1,2) and ¢

holds for anyt >0, p>n {

The last theorem concerns the Cauchy problem for differential inequality.

THEOREM 2.4. Suppose that U(p) is a monotonically decreasing, nonneg-
ative differentiable function defined on [R,0), R > 1, satisfying

(cP) { v+ Plotle) = Qo) <0, o= &

U(R) S UOa

where P(p),Q(0) are nonnegative continuous functions defined on [R, c0) and
Uy is a constant. Then

(2.3) Ulo) < Uy exp ( /R QP(U)dJ) + /R " Q) exp < /t gP(o)da) dt.

3. Main results

THEOREM 3.1. Let u(z) be a weak solution of problem (L)), A_ be as in
and assumptions @f be satisfied with A(t), which is a continuous at
zero function, but not Dini continuous at zero. Then for all € > 0 there are
R > 1 and a constant C. depending only on n, s, \_,wqg, R such that for all
o> R

/ (P>~ Vul® + 7 "u?) da +/ Ty (w)u’ (z)ale)ds
G, Lo

1 0=+ fors> —A_
<C |\ ulke+ 2+ —g? —
<o (llor 242t { Ca et
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PROOF. As in the proof of Theorem 4.3 in [§] we obtain the differential
inequality (CP)) with

Plg) = 72% . [1 —c1(n, ) ((5—!—.4 (%))} |
1+ e(A)A (1)

[

6 >0,

_ ra(fede)-otet
C@=- 1+c2(A_)A<§) S0

1
Uy = const - {/ (w® +r*"f?) da + / r3_”92a(x)ds} ,
G Y0 Joc

U(g):/ rzn\Vu|2d33+/F Ty (W) (x)a(r)ds,

GQ o

where cg, c1, co are positive constants. Since

2 Cg.A (%) +5
= 1=
Lt oA (D)

for all 6 > 0, we have

e 01 _ 1y _
—/ P(a)da§2)\_/ Lmadly) =0,

R R o

e A(L
:2)\(1—6)111@—2)\03/ Als) 4y
R R g

The mean value theorem for integrals yields

¢A(;) 1), @
/R UdO—SA(R) IHE

Choosing R > 1 such that 2¢5.A (%) < J, we obtain

exp (— /RQ P(O’)dO’) < (1'9%)2)\(136) d > 0.
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Along similar lines

exp < /t@ P(a)da) < (5)2/\(1_26) , 0>0.

Now we can estimate

/R "0 exp (- /t QP(J)da) dt

< — =
<20 (e ta) [ () a
—2s-20_(1-36) _ p-2s—2x_(1-39)

—25 —2X\_ (1 —36)

{ 0% for s < —A_, § # %Sii‘,
<c¢s

QZ)‘*(l_%‘s) for s > —A_.

Next, from (12.3)) we deduce

- (2 22 (1-35) 0% for s < —A_,
< =
(0) < o (R) tes QQ’\—(I_%‘S) for s > —A_,
—2s
0 for s < —=A_,
<C for all ¢ > 0.
< a{ Pt for s> AL or all &

Thus, in virtue of (2.1)) for 8 = 4 — n, Theorem is proved. O

We can now correct Theorem in the case s = —A_, if A (%) ~ ﬁ

THEOREM 3.2. Let u(z) be a weak solution of problem (L)), A_ be as in
2.2) and assumptions (a))-(e) be satisfied with A(:) ~ = . Then there exist
R > 1 and constants C > 0, ¢ > 0 depending only on n, A_,wqg, R such that
forall o > R

/ (P>~ Vul® + 7~ "u?) da +/ Ty (w)u’ (z)ale)ds
G, Lo

1 ¢
<c (|u||§,a Iy %g%> 0P InZ*e
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PRrOOF. In the case s = —\_ we can estimate

pg < 200 225 A (3)
= 0 0

1
Qo) < cg <f12 + v9?) i
0

Choosing now 6 = 0(p) = —2/\_17111@, we can conclude from assumption of

theorem, that A (%) ~ 0(p). We can estimate as follows

[ o <o, ( [ i [ A<>+6<>d>

2X\_ )
<In (ﬁ) — 2/\_07/ do
R r olno

=In (%)2)\_ —2)\_c7In(In ),

which implies that

exp (— /:P(a)da> < (%)QL (In )°.

In this way we have

exp <— /tgp(a)da> < <§>2A, (In )°.

We also have

QQ(t) exp | — QP(U)dU dt < cg gé—lt”‘f—l (Q)Q’\_ (In 0)°dt
R t R t

21nt

= —2)\_68(1119)6@2’\‘/ " dt

R
A =

= —A_cg(In)0**~ (In t)Q‘
t=R

< *)\768(]11 Q)c+2g2)\_ )



212 Damian Wisniewski

Now, using (2.3) yields
0\~ c 2X_ c+2 2X_ c+2
Ul <Uo(g) (no)—A-cso™ (Ing)™™ < Co™ (lng)™™.
Regarding to (2.1]) for 8 = 4 —n, we obtain the statement of our theorem. O

Now we are able to prove the following theorems.

THEOREM 3.3. Let u(z) be a weak solution of problem (L)), A_ be as in
and assumptions (a))-(e) be satisfied with A(t), which is a continuous at
zero function, but not Dini continuous at zero. Then for all € > 0 there are
R > 1 and a constant Ce > 0 such that for all x € Gg

(3.1) |u(z)| <C <| lo.c + f1 + 1 ) P, ifs > A,
. u(x i L
= 2,G 1 \/%91 ‘$|_s’ S0 <5< r.

Proor. We define the function

w( ) Q)\7+Ev if s Z _)‘—7
o= 0%, fo<s<—=A_.

By Theorem [2.3] devoted to the local bound of the weak solution modulus, we
have

(3:2) sup fu(@)| < € {o 2 ully 2o + NS a2 + 09l acrze |
GSQ

2@

where 2n > p > n > 2. Now by Theorem [3.1] we have

20
Go

1/2
(3.3) 0 "2 |ull, G2 < on/? (/ r”uQ(x)da:>

<c. <IIUI2,G+f1+ (o).

)

Further, by assumptions (ED we obtain

1
2(1—n/p) =
(34) PPl e + ollgl e pze < co (fwﬁogl)w(e).
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It follows from . ) that

sup Ju(z)| < C. {I\U\Iz o+ it ,ygl} (o).

20
xEGB/zg

Putting now |x| = gg we finally obtain the desired estimate. O

THEOREM 3.4. Let u(z) be a weak solution of problem (L)), A_ be as in
2-2) and assumptions (a)-(e) be satisfied with A(L) ~ . Then there exist
R > 1 and constants Cy > 0, ¢ > 0 depending only onn, A_, f1, 91, %0, V, 4, t, D,

1 é |bi(:c)|2||Lp/2(G) such that for all x € G

1
u(e)] < Co <||U||2,G Ny Wogl) (& (In fe )<+,

PROOF. One needs to repeat the proof of Theorem taking

¥(0) = 0 (In o)

and apply Theorem ([l

REMARK 3.5. Now we can compare the obtained results (3.1]) with those
ones of [8]. More precisely, if the function .A(t) from assumption (b)) is Dini-
continuous at zero, then we get from [8] that

|z|*-, if s >—-A_,

1
(3.5) Ju(z)| < Co <”uH2G’ + f1+ \/%gl> |z|A - In|z|, ifs=—-A_,

|| ~*, if0<s<—A_.

First of all, the results coincide only when 0 < s < —A. We can easily see that,

near the infinity, for s > —A_ (taking into account the fact that B} lim lzf =0
——+00

for all € > 0) the weak solution modulus are estimated by bigger term in ((3.1]).
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4. Example

Suppose that n = 2. Let

Gr= {(r,w)] r> R; —% <w< %; wo € (O,W)}

and

rt = {(r,w)] r>R, w= :t%

We can easily observe that the function u(r,w) = r*-¢(w), A\ < 0 is a

solution of the problem
Au=0, xé€Gg,

:O’

+
FR

(Odi % + %’yiu)

if A2 is the least positive eigenvalue of the problem
P+ N =0, we (=%, %),

(fary' +y+9) ‘w =0,

=4 %0
_12

and 9(w) is a regular eigenfunction associated with A2 . Precisely A_ < 0 is
defined via the transcendent equation

A—(aypy- +avy)
Najao —ypy-

(4.1) tan(woA_) =

while eigenfunction

(4.2) P(w) = A_avy cos [/\_ (w - %)] — ¥4 sin [/\_ (w - @)] .
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ExaMpPLE. We consider the following problem

% (aij (x)uﬂcj) + bl<x>u:c,b = O, T € GR;

<Od:|:% + %7:‘:“’) L+ = 07 Y+ > 07
FR
in the domain G, where
2 x2 2 x?
11 2 22 1
=1- . —1— L
o (2) 1+ A 7’2111%7 (@) 14+ A_ TQIH%’
a'?(z) = a**(2) = 2 % A< —1
1+A_ r2lnl’ 7 ’

lim a¥(z) =6, (i,j=1,2),

|z|— o0

1 1 1 1
pl=—2-A () cosw, b*=-—-A <) sin w.
r r r r

Let us check that the function

A_—1 1
(4.3) u(r,w) = = In*= () P(w)
r
with A_ < —1 and v (w) defined by (4.1)—(4.2) is a solution of our problem.
Firstly, we prove that % (aij (x)ugc]) + b (x)uy, = 0. Indeed, differentiating

we get % (a(z)ug,) = %ﬂ;gm)u% + 0 (2)ug . Setting F(r) = 25

and calculating derivatives in the polar coordinates, in virtue of

31|

0 gcosw—gsmw i_ismw_’_icosw
O0x, Or ow r Oxy Or ow 1’
we have
o 11 1 1
a@xim) = —§F'(r) sin w sin 2w + ;F(r) sin w sin 2w,
da'? 1
a () = —F'(r) coswsin 2w — — F(r) sinw cos 2w,
8x1 r
da?t(z) 1

1
oy —F'(r) sinwsin 2w + ;F(r) oS w €os 2w,
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da??(x)
0302

1 1
= —§F’(7’) cos wsin 2w + — F(r) cos w sin 2w.
r

Therefore, by

0? , 07 _ sin2w 0? sinfw 92 sinw 0 sin2w 9
0?2 T Yoz r o Ordw 2 Ow? o or r? Ow’
iQ_ . 9 872+sin2w 0?2 cos?2w 0?2 cos2w2_sin2w2
Ox3 Y2 r  Orow r2 Qw2 r Or r2 Ow’
0? B 0? 1 i1 9 072 cos2w O?
071012 _amgaxl 2 Oor? r  Orow
_ Lsin2w 0? _ 1sin2w & cos2w 9
2 r2 Ow?2 2 r Or r2  Ow
and
du 4 [, 1\ 1 A1
ar <lnr> {)\_ lnr )\_—l—l] (),
—A_—-3
0%u N o, 1\ -1 o1 2\_ 1 2
= Dr*="(1n- _ Z -
oz = (-~ 1r <nr> [ rA+1 oo V)
1 A_+1
g—z = (ln r> P (W),
2 1 ;,
ng = - <1n r) P (w),
we obtain
& da' (z) . ,
Z < 9. Uz —|—aly(g;)uxm) + ' (x)uy,
i,j=1 ¢
0%u 1 9%u  Ou

=52 [1 — F(r)] 25,2 + 5 + c(x)u(x)

_ a2 (lnl)*‘?“ [mi_AQ }(w"( )+ A2 4(w)) = 0.

r

Boundary conditions follow immediately from the formula %Z

— 4 10u
+ T Ow
FR R
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For R > exp < 4 ) the condition of uniform ellipticity is fulfilled with

A1
constants p=1and v =1+ m, a¥(x) are continuous at the infinity,
but A(L) = )_2“ In~* (1) ~ 1, ie. the function A(r) does not satisfy

the Dini condition at zero. We can easily see that the solution (4.3)) satisfy
_ 2
lu(r,w)| < C-|z|*-(In |9c|)1 A~+1 which coincide with result of Theorem
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