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THE BEHAVIOUR OF WEAK SOLUTIONS
OF BOUNDARY VALUE PROBLEMS

FOR LINEAR ELLIPTIC SECOND ORDER EQUATIONS
IN UNBOUNDED CONE-LIKE DOMAINS

Damian Wiśniewski

Abstract. We investigate the behaviour of weak solutions of boundary value
problems (Dirichlet, Neumann, Robin and mixed) for linear elliptic divergence
second order equations in domains extending to infinity along a cone. We find
an exponent of the solution decreasing rate: we derive the estimate of the
weak solution modulus for our problems near the infinity under assumption
that leading coefficients of the equations do not satisfy the Dini-continuity
condition.

1. Introduction

Many problems of mathematical physics lead one to consider the solution
of boundary value problems for elliptic second order equations in unbounded
domains and to study the behaviour of the solution at infinity, for instance
stationary states, travelling waves, homogenization, boundary layer problems,
Saint-Venant’s principle and so on. Boundary value problems for linear elliptic
equations in unbounded domains have applications to mechanics of inhomo-
geneous media [4]. Some problems in unbounded domains found applications
in models in astrophysics (Eddington’s model), are used in the analytic the-
ory of polytropic ball model of stellar structures (Lane-Ritter-Emden theory)
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and have numerous applications in natural sciences, e.g. in scalar field theory,
in phase transition theory, in combustion theory, population dynamics [5],
pseudo-plastic fluids [2, 3, 6], and ecology models [7].

Let B1(O) be the unit ball in Rn, n ≥ 2 with center at the origin O
and G ⊂ Rn \B1(O) be an unbounded domain with the smooth boundary
∂G. We assume that there exists R � 1 such that G = G0 ∪ GR, where
G0 is a bounded domain in Rn, GR = {x = (r, ω) ∈ Rn| r ∈ (R,∞),
ω ∈ Ω ⊂ Sn−1, Sn−1 is the unit sphere}.

Figure 1. An unbounded cone-like domain

We consider the following linear problem

(L)


∂
∂xi

(
aij(x)uxj

)
+ bi(x)uxi + c(x)u = f(x), x ∈ G,

α(x)∂u∂ν + 1
|x|γ

(
x

|x|

)
u = g(x), x ∈ ∂G,

lim
|x|→∞

u(x) = 0,

here ∂
∂ν = aij(x) cos(~n, xi)

∂
∂xj

, where ~n denotes the unit outward with respect
to G normal to ∂G, γ(ω) is positive bounded piecewise smooth function on
∂Ω such that γ(ω) ≥ γ0 > 0 and

α(x) =

{
0, if x ∈ D,
1, if x 6∈ D,

D ⊆ ∂G is the part of the boundary ∂G, where the Dirichlet boundary condi-
tion is posed. Thus, if D = ∂G then we have the Dirichlet problem, if D = ∅
then α(x) = 1 and we have the Robin problem, if D ⊂ ∂G then we have the
mixed problem.



The behaviour of weak solutions of boundary value problems 205

We introduce the following notations:
− (r, ω), ω = (ω1, ω2, . . . , ωn−1) : spherical coordinates of x ∈ Rn

x1 = r cosω1,

x2 = r cosω2 sinω1,

...
xn−1 = r cosωn−1 sinωn−2 . . . sinω1,

xn = r sinωn−1 sinωn−2 . . . sinω1,

where r = |x|;
− C : a rotational cone {x1 > r cos ω0

2 };
− ∂C : the lateral surface of C : {x1 = r cos ω0

2 };
− Ω : a domain on the unit sphere Sn−1 with smooth boundary ∂Ω obtained

by the intersection of the cone C with the sphere Sn−1;
− ∂Ω = ∂C ∩ Sn−1;
− Gba = {(r, ω) | a < r < b; ω ∈ Ω} ∩G : the layer in Rn;
− Γba = {(r, ω) | a < r < b; ω ∈ ∂Ω} ∩ ∂G : the lateral surface of layer Gba;
− G% = G∞% ; Γ% = Γ∞% .

We use standard function spaces: Ck(G) with the norm |u|k,G, the Lebesgue
space Lp(G), p ≥ 1, with the norm ‖u‖p,G, the Sobolev space W k,p(G) with
the norm ‖u‖p,k;G. We define the weighted Sobolev spaces V kp,α(G) for an
integer k ≥ 0 and a real α as the closure of C∞0 (G) with the finite norm

‖u‖V kp,α(G) =

(∫
G

k∑
|β|=0

rα+p(|β|−k)|Dβu|pdx

) 1
p

.

Throughout the paper we consider weak solutions of problem L defined as
follows.

Definition 1.1. A function u(x) is said to be a weak solution of problem
(L) provided that u(x) ∈ C0(G) ∩W 1,2(G), lim

|x|→∞
u(x) = 0 and satisfies the

integral identity

(II)
∫
G

{
aij(x)uxjηxi − bi(x)uxiη(x)− c(x)uη(x)

}
dx +

∫
G

f(x)η(x)dx

+

∫
∂G

α(x)

{
1

r
γ(ω)u(x)− g(x)

}
η(x)ds = 0

for all functions η(x) ∈ C0(G) ∩W 1,2(G) such that lim
|x|→∞

η(x) = 0.
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We assume that the following conditions are fulfilled:
(a) the condition of uniform ellipticity

νξ2 ≤ aij(x)ξiξj ≤ µξ2 ∀x ∈ G, ∀ξ ∈ Rn,

ν, µ = const > 0 and lim
|x|→∞

aij(x) = δji ,

where δji is the Kronecker symbol;
(b) aij(x) ∈ C0(G), bi(x) ∈ Lp(G), p > n; for them inequalities√√√√ n∑

i,j=1

|aij(x)− δji |2 ≤ A
(

1

|x|

)
, |x|

(
n∑
i=1

|bi(x)|2
) 1

2

≤ A
(

1

|x|

)

hold for x ∈ GR, where A(t), t ≥ 0, is a monotonically increasing, non-
negative function, continuous at zero and lim

r→∞
A
(

1
r

)
= 0;

(c) 0 ≥ c(x) ∈ Lp/2(G) ∩ L2(G);
(d) f(x) ∈ Lp/2(G) ∩ L2(G);
(e) there exist numbers f1 ≥ 0, g1 ≥ 0, s > 0 such that

|f(x)| ≤ f1|x|−s−2, |g(x)| ≤ g1|x|−s−1.

In [8] we investigated the behaviour of weak solutions to the problem (L) in
a neighborhood of infinity assuming that the function A(t) is Dini-continuous
at zero in the meaning of the following definition.

Definition 1.2. A function A(t) is called Dini continuous at zero if the
integral ∫ d

0

A(t)

t
dt

is finite for some d > 0.

Our aim of this article is to derive the estimate of the weak solution mod-
ulus for our problem (L) near the infinity under assumption that leading
coefficients of the equations do not satisfy the Dini-continuity condition.
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2. Preliminaries

Let ~ν be the exterior normal to ∂C at points of ∂Ω. We consider the
eigenvalue problem for the Laplace-Beltrami operator on ∆ω the unit sphere

(EVP)

{
4ωψ + ϑψ = 0, ω ∈ Ω,

α(ω) ∂ψ
∂−→ν + γ(ω)ψ(ω) = 0, ω ∈ ∂Ω,

which consists of the determination of all values ϑ (eigenvalues) for which
(EVP) has weak solutions ψ(ω) 6= 0 (eigenfunctions); here

α(ω) =

{
0, if ω ∈ ∂DΩ,

1, if ω ∈ ∂Ω \ ∂DΩ,

where ∂DΩ ⊆ ∂Ω is the part of the boundary ∂Ω for which we consider the
Dirichlet boundary condition.

Now we formulate three theorems which are essentially used in further
consideration. All of them are proved in [8]. The first is the Hardy-Friedrichs-
Wirtinger type inequality that is adapted to our problem (L).

Theorem 2.1. Let u ∈ C0(GR)∩V 1
2,β−2(GR) and γ(ω) ∈ C0(∂Ω), ω ∈ ∂Ω

be a positive bounded piecewise smooth function. Then∫
GR

rβ−4u2dx ≤ H(λ−, n, β)(2.1)

×
{∫

GR

rβ−2|∇u|2dx+

∫
ΓR

rβ−3α(x)γ(ω)u2(x)ds

}
,

H(λ−, n, β) =

[(
β + n− 4

2

)2

+ λ− (λ− + n− 2)

]−1

, β ≥ 4− n,

λ− =
2− n−

√
(n− 2)2 + 4ϑ

2
,(2.2)

where ϑ is the smallest positive eigenvalue of the eigenvalue problem (EVP).

Remark 2.2. The proof of the existence of the smallest positive eigenvalue
ϑ and associated eigenfunction ψ(ω) can be found in [1, §2.1].
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The second is a theorem about the local boundedness at the infinity of
weak solutions of problem (L).

Theorem 2.3. Let u(x) be a weak solution of problem (L), assumptions
(a)–(d) be satisfied and g(x) ∈ L∞(∂G). Then the inequality

sup
x∈G2%

%κ

|u(x)| ≤ C̃

(κ − 1)ñ/t

{
%−n/t‖u‖t,G2%

%
+ %2(1−n/p)‖f‖p/2,G2%

%
+ %‖g‖∞,Γ2%

%

}

holds for any t > 0, p > ñ

{
≥ n for n ≥ 3

> 2 for n = 2
, κ ∈ (1, 2) and % > R.

The last theorem concerns the Cauchy problem for differential inequality.

Theorem 2.4. Suppose that U(%) is a monotonically decreasing, nonneg-
ative differentiable function defined on [R,∞), R� 1, satisfying

(CP)

{
U ′(%) + P (%)U(%)−Q(%) ≤ 0, % > R,

U(R) ≤ U0,

where P (%), Q(%) are nonnegative continuous functions defined on [R,∞) and
U0 is a constant. Then

(2.3) U(%) ≤ U0 exp

(
−
∫ %

R

P (σ)dσ

)
+

∫ %

R

Q(t) exp

(
−
∫ %

t

P (σ)dσ

)
dt.

3. Main results

Theorem 3.1. Let u(x) be a weak solution of problem (L), λ− be as in
(2.2) and assumptions (a)–(e) be satisfied with A(t), which is a continuous at
zero function, but not Dini continuous at zero. Then for all ε > 0 there are
R � 1 and a constant Cε depending only on n, s, λ−, ω0, R such that for all
% > R∫

G%

(
r2−n|∇u|2 + r−nu2

)
dx+

∫
Γ%

r1−nγ(ω)u2(x)α(x)ds

≤ Cε
(
‖u‖22,G + f2

1 +
1

γ0
g2

1

){
%2λ−+ε for s ≥ −λ−,
%−2s for 0 < s < −λ−.



The behaviour of weak solutions of boundary value problems 209

Proof. As in the proof of Theorem 4.3 in [8] we obtain the differential
inequality (CP) with

P (%) = −
2λ−
% ·

[
1− c1(n, λ−)

(
δ +A

(
1
%

))]
1 + c2(λ−)A

(
1
%

) , δ > 0,

Q(%) = −
λ−
s c0

(
f2

1 + 1
γ0
g2

1

)
· δ−1%−2s−1

1 + c2(λ−)A
(

1
%

) , δ > 0,

U0 = const ·
{∫

G

(
u2 + r4−nf2

)
dx+

1

γ0

∫
∂G

r3−ng2α(x)ds

}
,

U(%) =

∫
G%

r2−n|∇u|2dx+

∫
Γ%

r1−nγ(ω)u2(x)α(x)ds,

where c0, c1, c2 are positive constants. Since

−P (σ) =
2λ−
σ
·

[
1−

c3A
(

1
σ

)
+ δ

1 + c2A
(

1
σ

)] ≤ 2λ−
σ

(
1− c3A

(
1

σ

)
− δ
)

for all δ > 0, we have

−
∫ %

R

P (σ)dσ ≤ 2λ−

∫ %

R

1− c3A
(

1
σ

)
− δ

σ
dσ

= 2λ−(1− δ) ln
%

R
− 2λ−c3

∫ %

R

A
(

1
σ

)
σ

dσ.

The mean value theorem for integrals yields∫ %

R

A
(

1
σ

)
σ

dσ ≤ A
(

1

R

)
ln
%

R
.

Choosing R� 1 such that 2c3A
(

1
R

)
< δ, we obtain

exp

(
−
∫ %

R

P (σ)dσ

)
≤
( %
R

)2λ−(1− 3
2 δ)

, δ > 0.
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Along similar lines

exp

(
−
∫ %

t

P (σ)dσ

)
≤
(%
t

)2λ−(1− 3
2 δ)

, δ > 0.

Now we can estimate∫ %

R

Q(t) exp

(
−
∫ %

t

P (σ)dσ

)
dt

≤ −λ−c0
sδ

(
f2

1 +
1

γ0
g2

1

)∫ %

R

t−2s−1
(%
t

)2λ−(1− 3
2 δ)

dt

= c4%
2λ−(1− 3

2 δ) %
−2s−2λ−(1− 3

2 δ) −R−2s−2λ−(1− 3
2 δ)

−2s− 2λ−
(
1− 3

2δ
)

≤ c5

{
%−2s for s < −λ−, δ 6= 2

3
s+λ−
λ−

,

%2λ−(1− 3
2 δ) for s ≥ −λ−.

Next, from (2.3) we deduce

U(%) ≤ U0

( %
R

)2λ−(1− 3
2 δ)

+ c5

{
%−2s for s < −λ−,

%2λ−(1− 3
2 δ) for s ≥ −λ−,

≤ Cε
{
%−2s for s < −λ−,
%2λ−+ε for s ≥ −λ−,

for all ε > 0.

Thus, in virtue of (2.1) for β = 4− n, Theorem 3.1 is proved. �

We can now correct Theorem 3.1 in the case s = −λ−, if A
(

1
r

)
∼ 1

ln r .

Theorem 3.2. Let u(x) be a weak solution of problem (L), λ− be as in
(2.2) and assumptions (a)-(e) be satisfied with A(1

r ) ∼ 1
ln r . Then there exist

R � 1 and constants C > 0, c > 0 depending only on n, λ−, ω0, R such that
for all % > R∫

G%

(
r2−n|∇u|2 + r−nu2

)
dx+

∫
Γ%

r1−nγ(ω)u2(x)α(x)ds

≤ C
(
‖u‖22,G + f2

1 +
1

γ0
g2

1

)
%2λ− ln2+c %.
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Proof. In the case s = −λ− we can estimate

−P (%) ≤ 2λ−(1− δ)
%

−
2λ−c3A

(
1
%

)
%

,

Q(%) ≤ c6
(
f2

1 +
1

γ0
g2

1

)
%2λ−−1δ−1.

Choosing now δ = δ(%) = − 1
2λ− ln % , we can conclude from assumption of

theorem, that A
(

1
%

)
∼ δ(%). We can estimate as follows

−
∫ %

R

P (σ)dσ ≤ 2λ−

(∫ %

R

1

σ
dσ −

∫ %

R

c3A
(

1
σ

)
+ δ(σ)

σ
dσ

)

≤ ln
( %
R

)2λ−
− 2λ−c7

∫ %

R

dσ

σ lnσ

= ln
( %
R

)2λ−
− 2λ−c7 ln(ln %),

which implies that

exp

(
−
∫ %

R

P (σ)dσ

)
≤
( %
R

)2λ−
(ln %)c.

In this way we have

exp

(
−
∫ %

t

P (σ)dσ

)
≤
(%
t

)2λ−
(ln %)c.

We also have∫ %

R

Q(t) exp

(
−
∫ %

t

P (σ)dσ

)
dt ≤ c8

∫ %

R

δ−1t2λ−−1
(%
t

)2λ−
(ln %)cdt

= −2λ−c8(ln %)c%2λ−

∫ %

R

ln t

t
dt

= −λ−c8(ln %)c%2λ−(ln t)2
∣∣∣t=%
t=R

≤ −λ−c8(ln %)c+2%2λ− .
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Now, using (2.3) yields

U(%) ≤ U0

( %
R

)2λ−
(ln %)c − λ−c8%2λ−(ln %)c+2 ≤ C%2λ−(ln %)c+2.

Regarding to (2.1) for β = 4−n, we obtain the statement of our theorem. �

Now we are able to prove the following theorems.

Theorem 3.3. Let u(x) be a weak solution of problem (L), λ− be as in
(2.2) and assumptions (a)–(e) be satisfied with A(t), which is a continuous at
zero function, but not Dini continuous at zero. Then for all ε > 0 there are
R� 1 and a constant Cε > 0 such that for all x ∈ GR

(3.1) |u(x)| ≤ Cε
(
‖u‖2,G + f1 +

1
√
γ0
g1

){ |x|λ−+ε, if s ≥ −λ−,
|x|−s, if 0 < s < −λ−.

Proof. We define the function

ψ(%) =

{
%λ−+ε, if s ≥ −λ−,
%−s, if 0 < s < −λ−.

By Theorem 2.3 devoted to the local bound of the weak solution modulus, we
have

(3.2) sup
G2%

3
2
%

|u(x)| ≤ C̃
{
%−n/2‖u‖2,G2%

%
+ %2(1−n/p)‖f‖p/2,G2%

%
+ %‖g‖∞,Γ2%

%

}
,

where 2n ≥ p > n ≥ 2. Now by Theorem 3.1 we have

%−n/2‖u‖2,G2%
%
≤ 2n/2

(∫
G2%
%

r−nu2(x)dx

)1/2

(3.3)

≤ Cε
(
‖u‖2,G + f1 +

1
√
γ0
g1

)
ψ(%).

Further, by assumptions (e) we obtain

(3.4) %2(1−n/p)‖f‖p/2,G2%
%

+ %‖g‖∞,Γ2%
%
≤ c9

(
f1 +

1
√
γ0
g1

)
ψ(%).
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It follows from (3.2)–(3.4) that

sup
x∈G2%

3/2%

|u(x)| ≤ Cε
{
‖u‖2,G + f1 +

1

γ0
g1

}
ψ(%).

Putting now |x| = 7
4% we finally obtain the desired estimate. �

Theorem 3.4. Let u(x) be a weak solution of problem (L), λ− be as in
(2.2) and assumptions (a)–(e) be satisfied with A(1

r ) ∼ 1
ln r . Then there exist

R� 1 and constants C0 > 0, c > 0 depending only on n, λ−, f1, g1, γ0, ν, µ, t, p,∥∥ n∑
i=1

|bi(x)|2
∥∥
Lp/2(G)

such that for all x ∈ GR

|u(x)| ≤ C0

(
‖u‖2,G + f1 +

1
√
γ0
g1

)
|x|λ−(ln |x|)c+1.

Proof. One needs to repeat the proof of Theorem 3.3 taking

ψ(%) = %λ−(ln %)c+1

and apply Theorem 3.2. �

Remark 3.5. Now we can compare the obtained results (3.1) with those
ones of [8]. More precisely, if the function A(t) from assumption (b) is Dini-
continuous at zero, then we get from [8] that

(3.5) |u(x)| ≤ C0

(
‖u‖2,G + f1 +

1
√
γ0
g1

)
|x|λ− , if s > −λ−,

|x|λ− ln |x|, if s = −λ−,
|x|−s, if 0 < s < −λ−.

First of all, the results coincide only when 0 < s < −λ. We can easily see that,
near the infinity, for s ≥ −λ− (taking into account the fact that lim

k→+∞
ln k
kε = 0

for all ε > 0) the weak solution modulus are estimated by bigger term in (3.1).
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4. Example

Suppose that n = 2. Let

GR =
{

(r, ω)| r > R; −ω0

2
< ω <

ω0

2
; ω0 ∈ (0, π)

}
and

Γ±R =
{

(r, ω)| r > R, ω = ±ω0

2

}
.

We put

γ(ω)
∣∣∣
ω=±ω0

2

= γ± = const ≥ 0 and α(x)
∣∣
Γ±
R

= α± ∈ {0, 1}.

We can easily observe that the function u(r, ω) = rλ−ψ(ω), λ− < 0 is a
solution of the problem

∆u = 0, x ∈ GR,(
α±

∂u
∂n + 1

rγ±u
)∣∣∣

Γ±
R

= 0,

if λ2
− is the least positive eigenvalue of the problem

ψ′′ + λ2
−ψ = 0, ω ∈ (−ω0

2 ,
ω0

2 ),

(±α±ψ′ + γ±ψ)
∣∣∣
ω=±ω0

2

= 0,

and ψ(ω) is a regular eigenfunction associated with λ2
−. Precisely λ− < 0 is

defined via the transcendent equation

tan(ω0λ−) =
λ−(α+γ− + α−γ+)

λ2
−α+α− − γ+γ−

,(4.1)

while eigenfunction

(4.2) ψ(ω) = λ−α+ cos
[
λ−

(
ω − ω0

2

)]
− γ+ sin

[
λ−

(
ω − ω0

2

)]
.
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Example. We consider the following problem
∂
∂xi

(
aij(x)uxj

)
+ bi(x)uxi = 0, x ∈ GR,(

α±
∂u
∂n + 1

rγ±u
)∣∣∣

Γ±
R

= 0, γ± > 0,

in the domain GR, where

a11(x) = 1− 2

1 + λ−
· x2

2

r2 ln 1
r

, a22(x) = 1− 2

1 + λ−
· x2

1

r2 ln 1
r

,

a12(x) = a21(x) =
2

1 + λ−
· x1x2

r2 ln 1
r

, λ− < −1,

lim
|x|→∞

aij(x) = δji , (i, j = 1, 2),

b1 = −1

r
A
(

1

r

)
cosω, b2 = −1

r
A
(

1

r

)
sinω.

Let us check that the function

(4.3) u(r, ω) = rλ− ln
λ−−1

λ−+1

(
1

r

)
· ψ(ω)

with λ− < −1 and ψ(ω) defined by (4.1)–(4.2) is a solution of our problem.
Firstly, we prove that ∂

∂xi

(
aij(x)uxj

)
+ bi(x)uxi = 0. Indeed, differentiating

we get ∂
∂xi

(
aij(x)uxj

)
= ∂aij(x)

∂xi
uxj + aij(x)uxjxi . Setting F (r) = 2

λ−+1
1

ln 1
r

and calculating derivatives in the polar coordinates, in virtue of

∂

∂x1
=

∂

∂r
cosω − ∂

∂ω

sinω

r
,

∂

∂x2
=

∂

∂r
sinω +

∂

∂ω

cosω

r
,

we have

∂a11(x)

∂x1
= −1

2
F ′(r) sinω sin 2ω +

1

r
F (r) sinω sin 2ω,

∂a12(x)

∂x1
=

1

2
F ′(r) cosω sin 2ω − 1

r
F (r) sinω cos 2ω,

∂a21(x)

∂x2
=

1

2
F ′(r) sinω sin 2ω +

1

r
F (r) cosω cos 2ω,
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∂a22(x)

∂x2
= −1

2
F ′(r) cosω sin 2ω +

1

r
F (r) cosω sin 2ω.

Therefore, by

∂2

∂x2
1

= cos2 ω
∂2

∂r2
− sin 2ω

r

∂2

∂r∂ω
+

sin2 ω

r2

∂2

∂ω2
+

sin2 ω

r

∂

∂r
+

sin 2ω

r2

∂

∂ω
,

∂2

∂x2
2

= sin2 ω
∂2

∂r2
+

sin 2ω

r

∂2

∂r∂ω
+

cos2 ω

r2

∂2

∂ω2
+

cos2 ω

r

∂

∂r
− sin 2ω

r2

∂

∂ω
,

∂2

∂x1∂x2
=

∂2

∂x2∂x1
=

1

2
sin 2ω

∂2

∂r2
+

cos 2ω

r

∂2

∂r∂ω

− 1

2

sin 2ω

r2

∂2

∂ω2
− 1

2

sin 2ω

r

∂

∂r
+

cos 2ω

r2

∂

∂ω

and

∂u

∂r
= rλ−−1

(
ln

1

r

)− 2
λ−+1

[
λ− ln

1

r
− λ− − 1

λ− + 1

]
ψ(ω),

∂2u

∂r2
= (λ− − 1)rλ−−2

(
ln

1

r

)−λ−−3

λ−+1
[
λ− ln2 1

r
− 2λ− − 1

λ− + 1
ln

1

r
− 2

(λ− + 1)2

]
ψ(ω),

∂u

∂ω
= rλ−

(
ln

1

r

)λ−−1

λ−+1

ψ′(ω),

∂2u

∂ω2
= rλ−

(
ln

1

r

)λ−−1

λ−+1

ψ′′(ω),

we obtain

2∑
i,j=1

(
∂aij(x)

∂xi
uxj + aij(x)uxjxi

)
+ bi(x)uxi

=
∂2u

∂r2
+
[
1− F (r)

] 1

r2

∂2u

∂ω2
+
∂u

∂r
+ c(x)u(x)

= rλ−−2

(
ln

1

r

) −2
λ−+1

[
ln

1

r
− 2

λ− + 1

] (
ψ′′(ω) + λ2

−ψ(ω)
)

= 0.

Boundary conditions follow immediately from the formula ∂u
∂n

∣∣∣
Γ±
R

= ±1
r
∂u
∂ω

∣∣∣
Γ±
R

.
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For R > exp
(

4
−λ−−1

)
the condition of uniform ellipticity is fulfilled with

constants µ = 1 and ν = 1 + 4
(λ−+1) lnR , a

ij(x) are continuous at the infinity,
but A

(
1
r

)
= 2

λ−+1 ln−1
(

1
r

)
∼ 1

ln r , i.e. the function A(r) does not satisfy
the Dini condition at zero. We can easily see that the solution (4.3) satisfy
|u(r, ω)| ≤ C · |x|λ−(ln |x|)1− 2

λ−+1 , which coincide with result of Theorem 3.4.
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