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GAMMA GRAPHS OF SOME SPECIAL
CLASSES OF TREES

Anna Bień

Abstract. A set S ⊂ V is a dominating set of a graph G = (V,E) if every
vertex v ∈ V which does not belong to S has a neighbour in S. The domination
number γ(G) of the graph G is the minimum cardinality of a dominating set
in G. A dominating set S is a γ-set in G if |S| = γ(G).

Some graphs have exponentially many γ-sets, hence it is worth to ask a ques-
tion if a γ-set can be obtained by some transformations from another γ-set.
The study of gamma graphs is an answer to this reconfiguration problem. We
give a partial answer to the question which graphs are gamma graphs of trees.
In the second section gamma graphs γ.T of trees with diameter not greater
than five will be presented. It will be shown that hypercubes Qk are among
γ.T graphs. In the third section γ.T graphs of certain trees with three pendant
vertices will be analysed. Additionally, some observations on the diameter of
gamma graphs will be presented, in response to an open question, published
by Fricke et al., if diam(T (γ)) = O(n)?

1. Introduction

We say that S ⊂ V is a dominating set of a graph G = (V,E) if every
vertex v ∈ V which does not belong to S has a neighbour in S. The domination
number γ(G) of the graph G is the minimum cardinality of a dominating set in
G. A dominating set S is a γ-set in G if |S| = γ(G). We use standard notations
of graph theory, as in Diestel [1]. For a comprehensive introduction to the
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theory of domination in graphs we refer the reader to Haynes, Hedetniemi
and Slater [4].

A gamma graph γ.G of a graph G, defined by Lakshmanan and Vijayaku-
mar [5], is such a graph that S ⊂ V (G) is a vertex of γ.G if S is a γ-set of G,
and γ-sets S1 and S2 are adjacent iff there exist two vertices v, u of the graph
G such that S1 = S2 \ {u} ∪ {v}. Independently, in 2011, four authors initi-
ated the study of a similar class of graphs. The gamma graph G(γ) studied by
G.H. Fricke, S.M. Hedetniemi, S.T. Hedetniemi and K.R Hutson [2] is a γ.G
graph, whose vertices fulfill the following condition: if S1 = S2 \ {u} ∪ {v},
then u and v are adjacent in the graph G. Notice that every graph G(γ) is a
spanning subgraph of γ.G, i.e. has the same vertex set. This straightforward
observation is worth noting in the context of the research of Lakshmanan
and Vijayakumar on the connectivity of a γ.G graph. This means that every
sufficient condition for G(γ) is also valid for γ.G.

Other class of graphs whose vertices correspond to dominating sets was
introduced by Haas and Seyffarth in 2014 [3]. k-dominating graph Dk(G) is a
graph, whose vertices are dominating sets of the graph G such that |S| ≤ k.
Two dominating sets S1 and S2 are adjacent in Dk(G) iff there exist a vertex
v ∈ V (G) such that S1 = S2 ∪ {v}. These authors also studied the conditions
under which such graphs are connected. Their results include the following
connection between connectivity of k-dominating graphs and gamma graphs:
if Dγ+1(G) is connected, then γ.G is connected. Fricke et al. [2] proved that
gamma graphs of trees T (γ) are connected and asked which graphs are gamma
graphs of trees. We will give a partial answer to this question, but with respect
to the definition of Lakshmanan Vijayakumar. In the second section gamma
graphs γ.T of trees with diameter not greater than five will be presented.
It will be shown that every gamma graph γ.T of such trees is a hypercube
Qk, a hypercube without one vertex Q−k , or a cartesian product Qk�Q−l or
Q−k �Q

−
l . Vertices of Qk correspond to binary sequences of length k and edges

correspond to such pairs of sequences which differ in exactly one coordinate.
The set of vertices of a cartesian product G1�G2 of two graphs G1 and G2

is a set V (G1) × V (G2), and (v1, v2) is adjacent to (u1, u2) in G1�G2 iff v1
is adjacent to u1 in G1, v2 = u2 or v2 is adjacent to u2 in G2, v1 = u1. In
the third section γ.T graphs of certain trees with three pendant vertices will
be analysed. Also in response to an open question, if diam(T (γ)) = O(n)
(see [2]), some observations on the diameter of graphs presented in this paper
are noted.

One of the simplest trees are paths. It was shown (see [2]) that P3k(γ) '
K1, P3k+2(γ) ' Pk+2 and P3k+1(γ) ' SG(k+ 1), where SG(k) denotes span-
ning subgraph of a cartesian product of two paths Pk�Pk such that

V (SG(k)) = {(i, j) : 1 ≤ i, j ≤ k, i+ j ≤ k + 2}
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Figure 1. γ.P10 ' SG+(4)

and

E(SG(k)) = {((i, j), (k, l)) : i = k, l = j + 1; k = i+ 1, j = l}.

Notice that γ.P3k ' P3k(γ). If s = 3k + 2, k ∈ N, then for every two γ-sets
S1, S2 which correspond to vertices of Ps(γ): if S1 = S2 − {u} ∪ {v}, then u
and v are adjacent in Ps. Hence γ.P3k+2 ' P3k+2(γ). γ.P3k+1 (see Figure 1)
can be obtained from P3k+1(γ) by adding k − 1 additional edges. Indeed, if
S = {g1, g2, . . . , gk+1} is a γ-set of a graph P3k+1 such that gi+1 − gi = 1 for
some i ≤ k, then distances between other consecutive elements of S equal 3.
If 1 < i < k, then S is adjacent in γ.P3k+1 to four sets: S \ {gi} ∪ {gi − 1},
S \{gi}∪{gi+1+1}, S \{gi}∪{gi−2}, S \{gi}∪{gi+2}. If i = 1 or i = k then
S is adjacent to three such sets. γ-sets of other form have the same degree in
both graphs P3k+1(γ) and γ.P3k+1. This means that γ.P3k+1 ' SG+(k + 1),
where SG+(k) denotes such graph that V (SG+(k)) = V (SG(k)) and

E(SG+(k)) = E(SG(k))∪ {((i, j)(i+ 1, j − 1)) : 2 ≤ i ≤ k− 1, i+ j = k+ 2}.

For purpose of this article we define a slide graph. Let Sl(n) denote such graph
that

V (Sl(n)) = V (SG+(n)) ∪ {(n+ 1, 1)}

and

E(Sl(n)) = E(SG+(n)) ∪ {((n, 1)(n+ 1, 1)), ((n, 2)(n+ 1, 1))}.
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2. Gamma graphs of trees with small diameter

One of the open problems in recent publications on gamma graphs was
the question if diam(T (γ)) = O(n). We consider a modified version of this
problem: is it true that diam(γ.T ) = O(n)? For trees with diameter not greater
than five the answer to this question is positive. Let T be a tree, d = diam(T ).
For d ∈ {0, 1} we have T ' Kd, γ.T ∼= Kd and diam(γ.T ) = d. If d = 2, then
T = K1,n, n > 1, γ.T ∼= K1 and diam(γ.T ) = 1 < d. Since the next lemma
can be easily shown by analysing the structure of the graph, we will skip the
proof and proceed to more complex cases.

Lemma 2.1. If T is a tree such that diam(T ) = 3 and T � P4, then
γ.T ∼= K1 or γ.T ∼= K2.

Lemma 2.2. If T is a tree such that diam(T ) = 4, then there exist n ∈ N,
such that γ.T ∼= Qn or γ.T ∼= Q−n .

Proof. Let S be an arbitrary γ-set of T . Note that T contains an induced
path P5. Let v0 be the vertex of this path which is not adjacent to pendant
vertices of this path. Note that d(v, v0) ≤ 2, for every vertex v ∈ V (T ). Hence
T can be obtained from a graph H, which is an independent sum of stars K1,n

and isolated vertices, by joining a vertex v0 to every component of H with
one such vertex of this component, which has the maximal degree.

If H has at least two isolated vertices, then v0 belongs to S, and every
vertex not dominated by v0 is pendant in T and is dominated by itself or
its neighbour. Hence, every element of S different from v0 is a vertex of a
component of H which is a star K1,n. Moreover, S contains exactly one vertex
from every star which has a maximal degree in this component. Two γ-sets S1

and S2 are adjacent iff S2 = S1−{v}∪{u}, where u and v are two vertices of
one component K1,1 of H. Hence γ.T ' Qk, where k is the number of K1,1s.

If H has one isolated vertex u, then v0 or u belongs to S. Neither v0 nor
u dominate any vertex v such that d(v0, v) = 2. Analogously to the previous
case we infer that S contains exactly one vertex of the maximal degree from
every component of H which is a star K1,n. Also in this case γ.T ' Qk, where
k − 1 is the number of K1,1 components of H.

If H has no isolated vertices, then |S| is equal to the number of all compo-
nents of H. Note that there is a bijection between the γ-sets from V (γ.T ) and
binary sequences of length k, where k is the number of all K1,1 components
of H. Let enumerate components K1,1 of H, and define a mapping such that
S 7→ (ai)

k
i=1, where ai = 1 whenever s ∈ S which lies in the i-th component

is a pendant vertex in T , otherwise ai = 0. If H contains at least one compo-
nent K1,n, where n > 1, then every γ-set contains the vertex of this star which
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Figure 2. diam(T ) = 5

dominates v0. If H is an independent sum of copies K1,1, then the set which
contains only pendant vertices and corresponds to the sequence (1, 1, 1, . . . , 1)
does not dominate v0. In this case γ.T ' Q−k . �

Since diam(Qk) = k, we draw the following conclusion from the lemma
above.

Corollary 2.3. If T is a tree with n vertices such that diam(T ) = 4,
then diam(γ.T ) ≤ n/2.

Lemma 2.4. If T is a tree such that diam(T ) = 5, then there exist n,m ∈ N
such that γ.T ∼= Qn or γ.T ∼= Qn�Q−m or γ.T ∼= Q−n�Q

−
m.

Proof. Let S be an arbitrary γ-set of T , and let v0, v1 be the vertices of an
induced P6 subpath of T , whose distance from the pendant vertices of the path
P6 is greater then one (see Figure 2). Let T0 and T1 denote two components
of the graph T −v0v1. Assume that T0 denotes the component which contains
v0. Note that d(v, v0) ≤ 2 for every vertex v ∈ V (T0), and d(v, v1) ≤ 2 for
every vertex v ∈ V (T1). This implies that both graphs T1 and T0 can be
constructed like the tree in the proof of the previous lemma. Let l be the the
number of stars Kn,1, in the graph H = T − {v0, v1}, where n > 1. Notice
that all l vertices whose degree in H is greater than 1 belong to S. Moreover,
S contains exactly one vertex of every K1,1 component of H. This means that
|S| ≥ l + k. We enumerate components K1,1 of H, and consider the mapping
S 7→ (aSi )ki=1 defined in the proof of the previous lemma. If aS = (0, 0, . . . , 0),
then v0 and v1 are dominated by vertices which are not isolated in H. It
implies that if H does not have isolated vertices, then γ(T ) = l + k.

Let aSi be the subsequence of aS corresponding to the components of H
which are connected to vi, for i ∈ {0, 1}. Assume that H has no isolated
vertices, and S contains at least one neighbour of v0, and one neighbour of v1.
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This means that aS is a binary sequence such that aS0, and aS1 have at
least one element which equals 0. In this case S is adjacent in γ.T to S′ if
aS

′0 = aS0, and aS
′1 6= (1, 1 . . . , 1) and differs from aS1 only at one coordinate,

or symmetrically if aS
′1 = aS1, and aS

′0 6= (1, 1 . . . , 1) and differs from aS0

only at one coordinate. In this case γ.T ' Q−n�Q−m, n+m = k.
Let H have at least one isolated vertex v. Assume that v ∈ V (T0). If there

are no pendant vertices adjacent to v1, then |S| = k + l + 1. If there are
more than two pendant vertices adjacent to v0, then v0 ∈ S dominates v1.
Furthermore, it is possible that aS is any binary sequence of length k, hence
γ.T ' Qn. If v is the only pendant vertex adjacent to v0, then γ.T ' Qn or
γ.T ' Qn�Q−m. γ.T ' Qn under the condition that v1 is adjacent to a vertex
u of T1 with degree greater than 2. In this case u belongs to every γ-set of T .
In the other case γ.T ' Qn�Q−m, because S contains exactly one vertex from
every K1,1 component of H and one vertex from the set {v, v0}, and aS0 can
be any binary sequence of an appropriate length, but aS1∗ak+1 6= (1, 1, . . . , 1),
where ak+1 = 1 iff v ∈ S.

If also v1 is adjacent to a pendant vertex, then |S| = k+ l+ 2. Analogous
reasoning lets us deduce that γ.T ' Qn. �

Note that if γ.T ' Q−n�Qm or γ.T ' Q−n�Q−m, then m+ n ≤ |V |/2. This
proves the following fact.

Corollary 2.5. If T is a tree with n vertices such that diam(T ) = 5,
then diam(γ.T ) ≤ n/2.

3. Gamma graphs of caterpillars with one leg

In this section we consider certain trees with three pendant vertices. These
trees can be obtained from a path by joining a new vertex to such vertex v
of this path which is not pendant. We will use the following notation. Let
a caterpillar with one leg Catsn be a graph defined in the following way:
V (Catsn) = V (Pn) ∪ {0}, and E(Catsn) = E(Pn) ∪ {(0, s)}. For a caterpil-
lar with one leg G = Catsn let G− denote the graph Catsn−{0, s}, and let
G−− = G− − {s− 1, s+ 1}. Further we partition the class of caterpillars with
one leg into the following six classes:

C!! = {Cats3k : s ≡ 2(mod 3), 1 < s < 3k, k ∈ N},

C!0 = {Cats3k+2 : s 6≡ 0(mod 3), 1 < s < 3k + 2, k ∈ N},

C!2 = {Cats3k+1 : s 6≡ 1(mod 3), 1 < s < 3k + 1, k ∈ N},
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C00 = {Cats3k+1 : s ≡ 1(mod 3), 1 < s < 3k + 1, k ∈ N},

C02 = {Cats3k : s 6≡ 2(mod 3), 1 < s < 3k, k ∈ N},

C22 = {Cats3k+2 : s ≡ 0(mod 3), 1 < s < 3k + 2, k ∈ N}.

Note that G− is a sum of two independent paths and that indices !, 0 and
2 indicate how many vertices belong to each component of G−: the index !
corresponds to a component with 3t+1 vertices, 0 corresponds to a component
with 3t vertices, and 2 corresponds to a component with 3t + 2 vertices. We
use the index ! instead of 1 to stress that the component corresponding to this
index can be omitted in finding γ.G.

Corollary 3.1. If v ∈ G is a pendant vertex adjacent to a cutvertex c of
G− v and there exists a γ-set S such that v ∈ S, then the subgraph H of γ.G
induced by γ-sets containing v is a graph H ' H1�H2� . . .�Hk, where Hi

for i ∈ {1, . . . , k} are gamma graphs of components of G− {v, c}.

Proof. It suffices to prove that if S is a γ-set of G such that v ∈ S, then
S = {v} ∪ S1 ∪ S2 ∪ · · · ∪ Sk, where Si is a vertex of Hi, i ∈ {1, 2, . . . , k}.
Note that c /∈ S, otherwise S \ {v} ⊂ S would be a dominating set such that
|S| < γ(G). Since G − {v, c} is not connected and c /∈ S, then S contains
a γ-set Si of every component of G − {v, c}. On the other hand every set S
such that S = {v} ∪ S1 ∪ S2 ∪ · · · ∪ Sk, where S1, S2 . . . Sk are gamma sets of
components of G− {v, c} dominates G. �

Further we will use this corollary for caterpillars with one leg. Below we
explicitly formulate the special case which is essential in proofs of final theo-
rems.

Lemma 3.2. Let H be a subgraph of G = γ.Catst induced by all γ-sets of G
which contain 0. Then H = H1�H2, where vertices of H1 and H2 correspond
to dominating sets of components of G−.

A similar observation can be made for a subgraph H of G = γ.Catst
induced by all γ-sets of G which contain s. Notice that H = H1�H2, where
vertices of H1 and H2 correspond to subsets of components of G− which
dominate components of G−−. These observations will be helpful in describing
the structure of γ.Catst .

Theorem 3.3. Let G = γ.Catst , and let H be a subgraph of G induced by
all γ-sets of G which contain 0.

If G ∈ C00, then H ' K1,
if G ∈ C02, then H ' Pn,
if G ∈ C22, then H ' Pn�Pm.
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It suffices to apply Lemma 3.2 to the appropriate caterpillar with one leg.
The graph H is a product of γ.G graphs of two paths.

Lemma 3.4. If G ∈ C!0 ∪C!2 ∪C!!, then the vertex 0 does not belong to any
γ-set of G.

Proof. If G = Cats3k+i ∈ C!0∪C!2∪C!!, then P3t+1 is a component of G−.
Suppose that S is a γ-set such that 0 ∈ S. Notice that s /∈ S because S is
minimal. It means that |S| = 1+(t+1)+(k− t) = k+2. On the other hand if
S′ is a gamma set such that 0 /∈ S′, then s ∈ S′. No vertex of the graph G−−
is dominated by s, and domination numbers of its components are Γ(P3t) = t,
and Γ(P3(k−t−1)+i) ≤ k− t, hence |S′| ≤ 1+ t+k− t = k+1. Since |S′| < |S|,
then any gamma set of Cats3k+i cannot contain the vertex 0. �

Notice that if S is a gamma set of Catst and 0 ∈ S, then S \ {0} ∪ {s} is
also a γ-set. Therefore if Hs is a subgraph of G induced by all γ-sets of G
which contain s and H0 is a subgraph of G induced by all γ-sets of G which
contain 0, then H0 is isomorfic to an induced subgraph of Hs. This proves the
following proposition.

Proposition 3.5. If G = Catst , Hs is a subgraph of γ.G induced by all
γ-sets of G which contain s and H0 is a subgraph of γ.G induced by all γ-sets
of G which contain 0, then V (γ.G) = V (Hs) ∪ V (H0) and

E(γ.G) = E(Hs) ∪ E(H0) ∪ {(S, S \ {0} ∪ {s}) : S ∈ V (H0)}.

Notice that for Catst ∈ C!0 ∪ C!2 ∪ C!! the graph H0 is empty. In this case
γ.Catst ' Hs. In order to complete the description of γ.Catst graphs it suffices
to prove the following theorem.

Theorem 3.6. Let G = γ.Catst . If H is a subgraph of G induced by all
γ-sets of G which contain s, then there exist n,m ∈ N that:

if G ∈ C00, then H ' Pn�Pm,
if G ∈ C02, then H ' Pn�Sl(n),
if G ∈ C22, then H ' Sl(n)�Sl(m),
if G ∈ C!0, then H ' Pn,
if G ∈ C!2, then H ' Sl(n),
if G ∈ C!!, then H ' K1.

Proof. Let S be a γ-set of G. If G ∈ C!0∪C!2∪C!!, then P3n+1 is a compo-
nent of G−. We can assume that n > 1, and then P3n is one of the components
of G−−. Additionally, n vertices of S which dominate this component belong
to its γ-set. Otherwise one of the pendant vertices of P3n would be dominated
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by a vertex of G− −G−−, but the vertices of P3n−1 cannot be dominated by
a set of n− 1 vertices. In this case S = Γ∪ {s} ∪Γ′, where Γ is the only γ-set
of P3n, and Γ′ ⊂ V (G− − P3n+1) dominates vertices of the other component
of G−−.

If G ∈ C!0∪C00∪C02, then P3n is a component of G−, and then P3(n−1)+2 is
one of the components of G−−. Similarly, like in the previous case, n vertices of
S which dominate this component belong to its γ-set. Hence S = Γ∪{s}∪Γ′,
where Γ is a γ-set of P3(n−1)+2, and Γ′ ⊂ V (G−−P3n+1) dominates the other
component of G−−. In other words, Γ corresponds to a vertex of the graph
γ.P3(n−1)+2 ' Pn−1+2.

If G ∈ C!2 ∪ C02 ∪ C22, then P3n+2 is a component of G− and P3n+1 is one
of the components of G−−. We can assume that V (P3n+2) = {1, 2, . . . , 3n+2}
and 3n+ 3 = s. In this case n+ 1 vertices of S which dominate P3n+1 either
belong to its γ-set or 3n + 2 is one of these vertices and n other vertices
dominate the path P3n, to which they belong. Assume that the second case is
true and notice that the n vertices which dominate P3n is the unique γ-set S0

of this path, where S0 = {3i+ 2 : 0 ≤ i < n}. Hence S = Γ ∪ {s} ∪ Γ′, where
Γ is a γ-set of P3n+1 or Γ = S0 ∪ {3n+ 2}, and Γ′ ⊂ G− − P3n+2 dominates
the other component of G−−. S0 ∪{3n+ 1} and S0 ∪{3n} are the only γ-sets
of P3n+1 which have only one element different from the set S0 ∪ {3n + 2}.
This proves that subsets of γ-sets of G which dominate the component P3n+1

correspond to vertices of the graph obtained from SG+(n) by adding one new
vertex and two edges. This graph is isomorfic to Sl(n).

If G ∈ C!0∪C!!∪C!2, then one component of the graph G− is a path P3t+1. If
additionally t = 0, then G−− has only one component P3(k−1)+i, i ∈ {0, 1, 2}.

IfG−− has exactly two componentsG1 andG2, then every γ-set ofG which
contains s is a set {s} ∪ Γ1 ∪ Γ2, where Γ1 dominates G1 and Γ2 dominates
G2. Two such gamma sets {s} ∪ Γ1 ∪ Γ2 and {s} ∪ Γ′1 ∪ Γ′2 are adjacent iff
Γ1 = Γ′1 and Γ2 has only one element different from Γ′2, or Γ1 has exactly one
element different from Γ′1 and Γ2 = Γ′2. Hence γ.G ∼= H1�H2, where H1 and
H2 are isomorfic to a path, slide or a graph K1. �

We finish with observations on the size of diameter of γ.Catst . Let H0 and
Hs be induced subgraphs of γ.Catst defined as in Proposition 3.5. It is obvious
that diam(H0) < diam(Hs). Since every vertex of H0 is adjacent in γ.Catst to
some vertex ofHs, we immediately conclude that diam(γ.Catst ) ≤ diam(Hs)+
1. Furthermore it is easy to show that diam(Sl(n)) = n, diam(G1�G2) =
diam(G1)+diam(G2). The proof of the theorem shows that the ratio between
|V (Hs)| and |V (Catst )| is the biggest when Catst ∈ C00. In this case Hs is
a product of two paths and for every γ-set S = Γ1 ∪ {s} ∪ Γ2 ∈ V (Hs) the
sets Γ1 and Γ2 correspond to some vertices of γ.P3k+2 ' Pk+2 and γ.P3l+2 '
Pl+2, where |V (Catst )| = (3k + 2) + (3l + 2) + 3 + 1 = 3(k + l) + 8. Then
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|V (G1)| + |V (G2)| = l + k + 4 and hence diam(Hs) = (n + 4)/3. Therefore,
the following proposition holds.

Proposition 3.7. If G = Catst is a caterpillar with one leg then

diam(γ.G) ≤ (t+ 5)/3 + 1.
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