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INEQUALITIES OF LIPSCHITZ TYPE FOR POWER SERIES
IN BANACH ALGEBRAS

SEVER S. DRAGOMIR

Abstract. Let f (z) = > 72 anz™ be a function defined by power series with
complex coefficients and convergent on the open disk D (0, R) C C, R > 0. For
any x,y € B, a Banach algebra, with ||z]| , ||y|]| < R we show among others that

1
If () = F @) < IIy—ch/O fo (1A =)z + ty|) dt

where fo (2) = 372 |an| 2™. Inequalities for the commutator such as

If (@) f (W) = F @) f @) < 2fa (M) fo (M) |ly — =,

if [|z]], |lyll £ M < R, as well as some inequalities of Hermite-Hadamard type
are also provided.

1. Introduction

Let B be an algebra. An algebra norm on B is a map ||-|| : B—[0, 00) such
that (B, ||-||) is a normed space, and, further:

[labll < [l {|]
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for any a,b € B. The normed algebra (B, ||-||) is a Banach algebra if ||| is a
complete norm.

We assume that the Banach algebra is wnital, this means that B has an
identity 1 and that ||1|| = 1.

Let B be a unital algebra. An element a € B is invertible if there exists
an element b € B with ab = ba = 1. The element b is unique; it is called
the inverse of a and written a~! or % The set of invertible elements of B is

denoted by Inv B. If a,b € Inv B then ab € Inv B and (ab) ™' = b~1a"L.
For a unital Banach algebra we also have:

(i) If a € B and lim,,_,o0 [|a™|*/™ < 1, then 1 — a € Inv B;
(ii) {a € B: ||1 —b]| <1} C Inv B;
(iii) Inv B is an open subset of B;
(iv) The map InvB > a — a~! € Inv B is continuous.

For simplicity, we denote z1, where z € C and 1 is the identity of B, by z.
The resolvent set of a € B is defined by

pla):={z€C: z—aecInvB};

the spectrum of a is o (a), the complement of p(a) in C, and the resolvent
function of a is R, : p(a) — Inv B,

R (2):=(z—a)"".
For each z,w € p(a) we have the identity
Ry (w) — Ry (2) = (2 — w) Ry (2) Ry (w) .

We also have that

o(a)c{zeC: |z|<|a|}.
The spectral radius of a is defined as

v(a) = sup{|z| : 2 € o ()}

If a,b are commuting elements in B, i.e. ab = ba, then
v(ab) <v(a)v(b) and v(a+0b) <wv(a)+v(b).

Let B be a unital Banach algebra and a € B. Then
(i) The resolvent set p(a) is open in C;
(ii) For any bounded linear functionals \ : B —C, the function A o R, is
analytic on p(a);



Inequalities of Lipschitz type for power series in Banach algebras 63

(iii) The spectrum o (a) is compact and nonempty in C;
(iv) For each n € N and r > v (a), we have

= [ ot

211 |&|=r
(v) We have

_ 1 n|l/n
v(@) = lim [la"]"".

Let f be an analytic functions on the open disk D (0, R) given by the power
series

f(z):= Zajzj, |z] < R.
7=0

If v(a) < R, then the series Y 7°aja’ converges in the Banach algebra B
because 77 [y |a?|| < oo, and we can define f (a) to be its sum. Clearly
f (a) is well defined and there are many examples of important functions on
a Banach algebra B that can be constructed in this way. For instance, the
exponential map on B denoted exp and defined as

o
1 .
expa = g f'aj for each a € B.
; ]
Jj=0

If B is not commutative, then many of the familiar properties of the expo-
nential function from the scalar case do not hold. The following key formula
is valid, however with the additional hypothesis of commutativity for a and b
from B

exp (a +b) = exp (a)exp (b) .

In a general Banach algebra B it is difficult to determine the elements in the
range of the exponential map exp (B), i.e. the element which have a “log-
arithm”. However, it is easy to see that if a is an element in B such that
|1 —all <1, then a is in exp (B) . That follows from the fact that if we set

b:—z:ljl(l—a)n,

then the series converges absolutely and, as in the scalar case, substituting
this series into the series expansion for exp (b) yields exp (b) = a.
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In this paper we establish some upper bounds for the following quantities

1f () — f (@),
1f () f(y) = f () f ()],

Hf(‘”y) —/01f<<1—s>x+sy>ds

REne

and

/ fF((1=s)z+sy)ds

that can naturally be associated with the analytic functions f(z) := Z;io oz’
defined on the open disk D (0, R) and the elements x and y of the unital
Banach algebra B. Some applications for functions of interest such as the
exponential map on B are provided as well.

2. Lipschitz type inequalities

Now, by the help of power series f(z) =Y ;2" we can naturally con-
struct another power series which will have as coefficients the absolute values
of the coefficients of the original series, namely, fq(2z) := Y.~ || 2" It is
obvious that this new power series will have the same radius of convergence as
the original series. We also notice that if all coefficients «,, > 0, then f, = f.

The following result is valid.

THEOREM 1. Let f(2) =Y o0 an2™ be a function defined by power series

with complex coefficients and convergent on the open disk D (0, R) C C, R > 0.
For any x,y € B with ||z|,||y|| < R we have

1
(2.1) 1 () = f @) < ly »"UH/O fa (I =) 2 + tyl)) dt
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PROOF. We use the identity (see for instance [2, p. 254])

n—1
(2.2) a" =" =Y a" " (a-b)V

=0

that holds for any a,b € B and n > 1.

For z,y € B we consider the function ¢: [0,1] — B defined by ¢ (t) =
[(1—t)x+ty]". Forte (0,1) and € # 0 with t+¢ € (0,1) we have from ([2.2)
that

p(t+e)—p(t) =[1 -t =)z + ({E+e)y]" = [(1 =)z +ty]"

€ z_:[(l —t—e)x+ (t+e)y|" T (y —2)[(1 - t)x +ty).

Dividing with € # 0 and taking the limit over ¢ — 0 we have in the norm
topology of B that

(23) O =lm - [p(+e) - o)

= i (L=t a+ty" " (y—a) [(1— )z +ty) .
7=0

Integrating on [0, 1] we get from ([2.3)) that

[ e @a=3 [10-0atu =" g-ol0-to+ura
and since

/Ow’(t)dtst(l)—tp(O):y”—m"

then we get the following equality of interest
n—1 1 ) )
yr ot = Z/ (1=t +ty]" 7 (y—2) [(1— )2+ ty) dt
=070

for any x,y € Band n > 1.
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Taking the norm and utilizing the properties of Bochner integral for vector
valued functions (see for instance [I8] p. 21]) we have

04) Iy~ <Y / [(1—t>x+ty]"‘1—f<y—:c>[(1—t>x+ty]jdtH

n—1 1 ) )
S Sl A [ e VR (R E R
j=0"0
n—1 1 1 )
o Sl A P " [ (R PR
j=0 "0
1 n—1
—ully =l [ N1-0al
0

for any x,y € Band n > 1.
Now, for any m > 1, by making use of the inequality (2.2)) we have

m m m

n n n n
g any” — E anT g ap (y" —a™)
n=0 n=0 n=1

m
<Yl lly" — 2"
n=1

(2.5)

m 1 .
< ||y—x|2n|an|/0 11—ttty dt
=1

n
1 m n—1
:||y—x|/ S ol |1 =)z +ty] " dt
0 n=1

Moreover, since ||z||, ||y|| < R, then the series Y > a,y™, Yo", a,z™ and

[ee]

n—1
> nlanl I(1 =) e +ty]

n=1

are convergent and

Yoy = ), Y "= f(x)
n=0 n=0
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while

[ee]

S nlanl I -ty + iyl = £ (10— )+ tyl).

n=1

Therefore, by taking the limit over m — oo in the inequality (2.5) we deduce
the desired result (2.1)). O

REMARK 1. We observe that f! is monotonic nondecreasing and convex
on the interval [0, R) and since the function v (t) := ||(1 — t)  + ty|| is convex
on [0,1] we have that f. o is also convex on [0,1]. Utilising the Hermite—
Hadamard inequality for convex functions (see for instance [13| p. 2|) we have
the sequence of inequalities

26 150 - F @< ly=al [ F00-0w -+
! ()Y, ol + 22 Qo)
syl |12 (| =5]) + /

2
% ly = 2l (e (llll) + fo (lylD]
ly — 2l max {5 (<), fa (lylD} -

IN

IN

IN

We also have

@7 If )= f@)] < Hymll/o fo (L= 1)z +tyl) dt

<lly=sl [ f2(@ =0l + eyl

1 , (Ll Il f2 el + £ Qo)
3=l |2 (11500 o Lol el
< Lyl 172 (el + 74 Qo)
<y~ =l max (7, (). £, (oI}
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We observe that if ||y|| # ||z|| , then by the change of variable s = (1 — t) ||z||+
tly|| we have

1 llyll
a lyll = Il |||

_ Jallyl) = fa ()
lyll =1l

/0 £ = 1) ] + tly]) dt £ (s)ds

If [ly[| = |||, then

/0 (=) ] + ¢yl de = £ (ll2l) -

Utilising these observations we then get the following divided difference in-
equality for x # y

1S (y) = f ()l

1
ol s/o £ =)z +tyl) dt

{ LA Sl # el
fa kel iyl = o]

If ||z]], ||y|| < M < R, then from either of the inequalities (2.6 or (2.7]) we
have the Lipschitz type inequality

If () = f (@) < fo (M) |ly — =]

<

REMARK 2. We observe that the integral f01 2 (J[(1 = t) z + ty]|) dt, which
might be difficult to compute in various examples of Banach algebras, has got
the simpler bounds

i

fallylD=Fallzl)
By (%y) — { TyT=T=l if HyH # qua
fo (=) if [ly[| = (=]

It is natural then to ask which of these bounds is better?

2

By (z,y) -1 [ 5

93-2H/H> L Lo (ll=ll) + £ Cllyll)

and
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Let us consider the simple examples of powers, namely f(z) = 2™ with
m > 1. Then

—1 m—1 m—1
z+yl|™ x +
By (.g) — L yH N

2 2

and

m—1 m—2 m—1 .
By (2.1) { 1™+ Myl [l + - [l if lyll # ll=] ,
2 ) = m—1 .
m ||| if lyll = ll=| -

If we take y = ta with ||z|| = 1 and |t| # 1 then we get

‘1+tm1 1+|t|m_1]
2

and
By (t) = [t]™ " 4+ [t + 1.

If we take m = 4 and plot the difference
41> 14t
a() :—2<‘ L )—(|t|3+|t|2+t|+1)

2
on the interval [—8, 8], then we can conclude that some time the first bound
is better than the second, while other time the conclusion is the other way

around.
The plot for the function d is depicted in the Figure 2| below.

It is natural now to consider some examples of interest.
If we consider the exponential function exp (z) = 377 ) £2", then for any

x,y € B we have the inequalities

llexp (y) —exp ()| < ||y—iU||/O exp ([|(T =)z +tyl]) dt

L lexp (

<|ly—zl]|{ e Hy|||) exp(llzll) ;¢ lyll # |1z,

[—Il]]

||M||) exp(l\wll)JreXp(HyH)

exp ([[z]]) if [lyl] = [l=[l -
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20T

Figure 1. Variation of the difference d (t) for ¢t € [-8, §]

Now, if we consider the functions (1 —2)"" = 33°° 2" and (1+2)"" =
Yoo o (=1)" 2™, then for any z,y € B with ||z||, |ly|| < 1 we have the inequal-
ities

1ty —(1£a) | < Iy—:lfll/0 (L= [I(L = t) & + ty|) " dt

[(1 ||z P 4 Qslz i

1
3

Sly =l 3 @ =Nyl @ —ll=)™" i llyll # Il
(L=l i Jyll = [l

3. Inequalities for Commutators

By the use of Lipschitz type inequalities obtained before we can establish
some upper bounds for the commutator

f(@)g(y) —g(y) f ()
where z,y € B with ||z|, |ly|]| < R.

THEOREM 2. Let f(2) = > 2 qanz™ and g (2) = > ooy Bnz" be two func-
tions defined by power series with complex coefficients and convergent on the
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open disk D (0,R) C C, R > 0. For any z,y € B with ||z, |y|| < R we have
B f @)y —g)f@)
1
< ly —=| [min{fa(|fﬂ||),fa(|y||)}/o 9o (11 =) + tyl) dt

+min{ga(lxll),ga(lly|)}/0 fé(ll(l—t)ertyH)dt}

fa (l2)) + fa
2

+ga(||$||);‘ga(”y”)/o fé(|(1—t)w+ty||)dt}

<ly—a| [ () | dtia=a i

ProoOF. Let n,m € N. Then we have

xnym _ ynmm — xnym L L ynxm
Utilising the properties of the norm, we have
[z"y™ =y ™| < 2" (™ — 2™+ [[(z" = y") 2™ |
< =" [Hly™ — ™[ + l=" — " [ l="™]

< el™ lly™ = 2™ + =™ 2" — y™ |l

for any n,m € N.
We also have

which gives
lz"y™ =y ™| < yll™ ly™ = 2™ + yl™ [l2" = y" ||

for any n,m € N.
Therefore

l="y™ —y"a™ || < min{[lz]", lyl["} ly™ — 2

+ min {[|2[|™, [ly[™} ly" — 2"

"l

for any n, m € N.
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For any k > 1 we then have

k k k

" Z Bmy™ — Z any" Z Bmxm‘
m=0 n=0 m=0

k k

Z U (2"y™ — " 2™)

(3.2)

n=0

m=
k
> lanl Bl la™y™ = y"a™|

0m=0

k
< Z Jevn [ min {[l]™, 91"} D 1Bl ly™ — 2™
n=0 m=0
k k
37 Bl min (2™ [y} 3 o ly™ — 2"
n=0 m=0

k k k
< min {Z Jen] 2™l HyH"} D Bl ly™ = 2™l
m=0

k k k
+ min {Z Bl 121I™ ) 1Bl HyHm} > ol lly™ — 2"l
n=0 n=0 m=0

for any z,y € B with ||z||, ||| < R.

From ([2.5) we have
k k
(3:3) D Bmlly™ = 2™ =D Bml ly™ — 2™
m=0 m=1

1 k m—1
<lly—all [ S mignl =02+ 0]
0 m=1

and

k 1 k n—1
(34) D lanllly" —a"| < ||y—56||/O donlBalll(t =ty e +ty|  dt
m=0 n=1

for any x,y € B with ||z||, |ly|| < R.
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From — we have
k k k
z" Z Bmym - Z anyn Z Bmxm
k
{mm{z ol ], Z|an|||y||"} / Z Bl (L — )z + |
1 n—1
+min{z Bl 3 wmmyum} / S nlBall(1 - o + to] dt}
n=0 n=0 n=1

for any x,y € B with ||z||,||y|| < R and k > 1.

Since all the series whose partial sums are involved in are convergent,
then by letting m — oo in we deduce the first inequality in (3.1)).

The second inequality is obvious. O

(3.5) <|ly — =l

REMARK 3. If g = f in , then we have the following sequence of
inequalities

B6)  Nf @) fy)—fy)f)l

< 2Hy—fﬂllmin{fa(llwﬂ),fa(IIyII)}/O fo (=) +tyl) dt
< |ly — |fmin {fo (I2]) , fa (lylD}

» M( x;wH) n f;(llwll);fé(llyﬂ)]

< [ly — @l min {fa (2]}, fa (lyID} [fz (l2l) + fo (lyID]
< 2|y — | min {fa (z]1), fa (lylD} max {f5 (llz]) . fo (lylD}

and

B f @) f )= fwf @l
S2Hy—xllmin{fa(\lfc|),fa(llyl\)}/o fa (I =)z + tyl) dt

S2IIy—ﬂfIImin{fa(||-’JCI)7fa(||y||)}/0 fo (U =0) [zl + tllyll) dt
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< ly — 2/ min {fo ([lz]l), fa (lyl)}
" [f; (HxH + Hy\|> L Lo (i) + fa (lyll)

2 2
< |ly — 2l min {fa (2]}, fa (lyID} [z (l2l) + fo (lyID]

< 2ly — flmin {£; (lz]1) , £ (I} max {fo (), £2 (D}

for any z,y € B with ||z||, |ly|| < R.
Since

fa (l211) + fa (lyl)

min { fa ([lz]]), fa ([lyl)} < 2

and
1 fallyl)=fa(llzl) ;¢ I
s yll # =l
| =0l + eyl de = { IR
0 Ja () if ||yl = [l
then by the second inequality in (3.7)) we have for z # y that

CPRHCHOR DRG]

< 2min{fa (lz]) , fa (HyH)}/O fo (L= t) @+ tyl)) dt

2 22 .
{ DO iyl # Dol
2/ (1) £i () iyl = 2]

<

If |||, ly]l < M < R, then we can state the simpler inequality

I1f (@) f () = f () f @) <2fa (M) fo (M) |ly — 2|

Now, if for instance we use the first part of the inequality (3.6) for the
exponential function, then we get

lexp () exp (y) — exp (y) exp (z)

< 2|y — @ min {exp ([|]]) ,exp(!y\l)}/o exp ([[(1 — ) = + tyl|) dt

< [ly — /| min {exp ([|z[]) , exp ([ly[|)}

« [exp (H iy H) L e (ll]) +exp<uyu>]

2
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while from the first part of (3.8) we have
lexp (z) exp (y) — exp (y) exp (z)||
1
< 2|ly — @[/ min {exp ([|z[]) , exp (|y\|)}/ exp ([|(1 — 1) = + tyl|) dt
0

exp(2|ly|]) —exp(2||z])
< |ly -2 { Tyl=T=I if [yl # [|l=|l,
2exp (2 |z]]) if flyll ==l

for any =,y € B.

4. Applications for Hermite-Hadamard type inequalities

The following result is well known in the Theory of Inequalities as the
Hermite-Hadamard inequality

(557 252 [ w0510

for any convex function f: [a,b] — R. For numerous results related to this
inequality, see the monograph [13].

The distance between the middle and the left term for Lipschitzian func-
tions with the constant L > 0 has been estimated in [4] to be

o o (50

while the distance between the right term and the middle term satisfies the
inequality [16]

b
42) ‘f(a);f(b)_bia/ Iy

(4.1)

< %L(b—a)

<-L(b—a).

| =

For related results see [1], [5]-[12], [14]-[17], [19]-|23] and the references therein.
In the following, under the conditions of Theorem [1} we use inequality (2.6)
in the following form

(4.3) 1 () = f (@)l < % lly =l [fa lll) + £2 (lylD)]
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for any z,y € B with ||z||,|ly|| < R, to derive some simple refinements of
the Hermite-Hadamard type inequalities (4.1) and (4.2]) for power series of
elements in a unital Banach algebra.

THEOREM 3. Let f (z) = > " janz" be a function defined by power series
with complex coefficients and convergent on the open disk D (0, R) C C, R > 0.
For any x,y € B with ||z|,||y|| < R we have

r+y

(4.4) Hf( ; >—/01f((1—s)m+sy)ds

1 1, (llz+y !
sho—al |12 (|=52)) + [

=l |12 (|Z52]) + 50 bl + 22l
< < lly =l 152 Q) + £ )]

s — —

2

IN

ﬂma—@x+wm@}

IN

3y —allmax (72 () 2 (I}

PROOF. From the inequality (4.3) we have
z+y
I (55Y) - ra- 94|

R

for any z,y € B with ||z],]|y|| < R and s € [0,1]. Integrating on [0, 1] we
have

‘&(x;y>—éiﬂﬂ—@x+%n®

sAlf<$+y>—f«1—$w+st%

2
< Lo [ (12N < [
= W= gla {2 )

and the first inequality in (4.4) is proved.

a:;%/“) + £ (11— 8)z + sy

<

1
2

5= 5| Fa I = )+ syl ds
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Since the function g (s) := f. (|[(1 — s)x + sy||) is convex on [0,1], then
we have

ws) 1

g/o s—l‘[(l—S)f (el + £ (gl ds

—fé(lrvll)/ol
/01 8—;‘(1—S)d8=/01

then by (4.5) we have
1
/

and the second inequality in (4.4) is proved.
The last part is obvious. ([l

fa (11 = s) 2 + syll) ds

1 1 1
8—‘(1—8)ds+fé(lly||)/ s — sds.
2 . 2

Since

1
d:—
sas g

573

8_7

(I—s)z+syl)ds < 2 [f (1) + fa (v D]

REMARK 4. If z,y € B with ||z||, |ly]| < M < R, then by the inequality
(4.4) we have

Hf(””;y) —/Olf<<1—s>w+sy>ds

The trapezoidal version is as follows:

< 15 () ly = 2.

THEOREM 4. Let f (z) = > 07 janz" be a function defined by power series
with complex coefficients and convergent on the open disk D (0, R) C C, R > 0.
For any x,y € B with ||z|, ||ly|| < R we have

(4.6) Hf(:c)—;f(y) —/Olf((l—s)x—i—sy)ds

Iy — {f; ([ + f2 (lyl)

2

+/Ols[f; (H(l—s)x—i—s

e (e roas) o
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i” H[ fa (ll) + fa (lyl) +;f;< fﬁé?f”)]

3
< é ly =l [fa (lll) + £2 (lylD] < % ly = 2l max {5 (<), fa (lylD} -

PROOF. From the inequality (4.3) we have

(4.7) Hf(w) —f <(1 —s)T Sx;y) H

slly = | 2l + 12

<

(1—8)x+sx;yH>]

1 =

and

(15) Hf(y)—f(s”’;yﬂl—s)y)ﬂ

soly = {72+ 12 (|

SO

for any z,y € B with ||z||,[|y|| < R and s € [0,1]. Utilising the triangle

inequality, (4.7) and (4.8)) we have
+y +
)+ (e

HW —% [f <(1—s)x+sx
<5lr@-r(a-aesti)
1Hf(y)— < ;rer(l—S)y)H

< Zslly ol [f (el + £ (\@—S)“Sx;yuﬂ

S )

+gslly =2l {72 o + 2 (|

for any z,y € B with ||z||, |ly]| < R and s € [0,1].
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Integrating on [0, 1] we have

as) L0

—;/01 [f ((1—s)x+sx;y>+f<sx;y+(1—s)y>]ds

< [ L

2

_% [f<(1—s)x+s$;y> +f<sx;y+(1—s)y>]

72 (lal) + £2
o :

ds

<

oy
3 Yy

+/Ols[f;<‘(1—s)m+sx;yH>+f;<

By the convexity of the functions & (s) := f (||(1 — s) z + S%H) and k (s) :=
1l (Hs% + (1 —s)y||) on the interval [0,1] we have

13 f (1—s)x+5m;y + fu s%jt(l—s)y ds
0
< [s[a-omen +on ([£52])] o
w [ s () + -2 0um] as

=f;(||w||>/018(1—s)ds+2fé< "”?H)/d
=)
D]

r+y
2

S

sy as=

+f;<||y|>/0 S(1—s)ds

2 el -+ £2 o]+ 352

_ 1
6
Therefore

TR P ] [ AL E2 AT P
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Now, using the change of variable t = 2s we have

1

2/01 <<1—t> g )dt 01/2f((1—s)x+sy)ds

and by the change of variable ¢t = 1 — v we have

1 1
;/0f<tx;y+(1—t)x>dt:;/of((l—v)x;y—&—vy>dv.

Moreover, if we make the change of variable v = 2s — 1 we also have

;/:f((l—v)m y—i—vy)dv: 1;2f((1—s)x+sy)ds.
Therefore
;/01 {f((l—s)x+sx+ )+f< +(1—8)y)]

1/2

-/ f((l—s)x+sy)dt+/1/2f((1—8)x+8y)d8

—/0 F((1=s)x+ sy)dt.

Utilising (4.9) and (4.10) we deduce the first two inequalities in (4.6]). The
rest is obvious. 0

REMARK 5. If z,y € B with ||z||, ||y|| < M < R, then by the inequality

(4.6) we have

Hf(x)+f

/f(l—s>x+sy>ds < D)y el

REMARK 6. Some vector norm inequalities for power series of operators
in Hilbert spaces that are similar to the results from Theorems [3] and [ above
may be found in [3, Corollary 3|.
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For any x,y € B we have the following sequence of midpoint inequalities
for the exponential function

(@.11) |lexp (T) —/Olexp((l—s)x—FSjy) ds
<5 lv=al oo (| =52 [ -3 exp (11~ )0 + syl |
< gl =l [oxw (| “52) + 5 oww (el + exo (1)
< < ly =l fexp (1) + exp (o)

< Ly = 2l max fexp (lz]) , exp (1)} -

We also have the trapezoid type inequalities

exp (x) + exp
2

®) —/0 exp (1 — 5) 7 + sy) ds

Iy — 2l [eXp (l=[) ;r exp ([lyll)

+/018 [exp (H(l—s)x—i—sx—;y‘D —|—exp< sx;ry +(1—s)y”>] ds]

1 exp (al) +exp(lyl) , 1, (||lz+3
< = _ - Zz
< il | : e (|15

< 5 lly =l fexp (el + exp (ly)

< i Iy — 2] max {exp ([|z[]) , exp (ly[})} -

It is known that if z and y are commuting, i.e. xy = yx, then the expo-
nential function satisfies the property

exp (z) exp (y) = exp (y) exp (¥) = exp (z +y) .

Also, if z is invertible and a,b € R with a < b then

b
/ exp (tz) dt = ! [exp (bx) — exp (az)] .
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Moreover, if  and y are commuting and y — x is invertible, then

/0 exp ((1 —s)z + sy)ds :/0 exp (s (y —x))exp (z)ds

_ ( | ' exp (s 4y - x))ds) exp (2)

=(y—a)" " [exp(y — ) — I]exp (x)

" lexp (y) — exp (2)] .

=(y—a)

In this case the first term in (4.11) may be replaced by

2

exp (T30 ) = (=) oxp 1) - ex (o)

while the first term in (4.12)), by

exp (z) + exp (y)
2

—(y—2)" ! [exp (y) — exp («)] H :

The interested reader may apply the above inequalities to other impor-
tant functions such as (1 —2)~' = 3% 2" and (142)"" = 3200, (=1)" 2"
defined on D (0, 1) . However, the details are omitted.

Acknowledgement. The author would like to thank the anonymous ref-
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of this paper.
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