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UNIVERSALLY KURATOWSKI–ULAM SPACES
AND OPEN-OPEN GAMES

Piotr Kalemba, Andrzej Kucharski

Abstract. We examine the class of spaces in which the second player has a
winning strategy in the open-open game. We show that this spaces are not uni-
versally Kuratowski–Ulam. We also show that the games G and G7 introduced
by P. Daniels, K. Kunen, H. Zhou [Fund. Math. 145 (1994), no. 3, 205–220]
are not equivalent.

1. Introduction

First we shall recall some game introduced in [2] called G2. Let X be
a topological space equipped with a topology T and let B ⊆ T be its base.
The length of the game is ω. Two players I and II take turns playing. At the
n-th move II chooses a family Pn consisting of open non-empty subset of X
such that cl

⋃
Pn = X, then I picks a Vn ∈ Pn. I wins iff cl

⋃
n∈ω Vn = X.

Otherwise player II wins. Denote by Dcov a collection of families F consisting
of open sets with cl

⋃
F = X. We say that σcov : (

⋃
Dcov)

<ω → Dcov is a
winning strategy for player II in the game G2 whenever, for any sequence
U0, U1, . . . consisting of non-empty open subsets with U0 ∈ σcov(∅) = P0 ∈
Dcov and Un ∈ σcov(U0, U1, . . . , Un−1) = Pn ∈ Dcov, for all n ∈ ω, there holds
cl
⋃
n∈ω Un 6= X.
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In the paper [2] the authors introduced an open-open game. We say that
G is an open-open game of length ω if two players take turns playing; a round
consists of player I choosing a non-empty open set U ⊆ X and player II
choosing a non-empty open V ⊆ U ; I wins if the union of II’s open sets is
dense in X, otherwise II wins. Suppose that there exists a function

sop :
⋃
{T n : n ≥ 0} → T

such that for each sequence V0, V1, . . . consisting of non-empty elements of
T with sop(V0) ⊆ V0 and sop(V0, V1, . . . , Vn) ⊆ Vn, for all n ∈ ω, there holds
cl
⋃
n∈ω Vn 6= X. Then the function sop is called a winning strategy for II

player in the open-open game and we say that the space X is II-favorable.
It is known [2] that the open-open game G is equivalent to G2. We consider

only games with the length equal to ω. In [2] the authors introduced a game
G7 which is played as follows: In the n-th inning II chooses On, a family of
open sets with

⋃
On dense in X. I responds with Tn, a finite subfamily of On;

I wins if
⋃
n∈ω Tn is dense subset of X; otherwise, II wins.

According to A. Szymański [13] a sequence {Pn : n ∈ ω} of open families
in X is a tiny sequence if
(1)

⋃
Pn is dense in X for all n ∈ ω

(2) if Fn is a finite subfamily of Pn for each n ∈ ω then
⋃
{
⋃
Fn : n ∈ ω} is

not dense in X.
We call a sequence {Pn : n ∈ ω} of open families in X a 1-tiny sequence if

(1)
⋃
Pn is dense in X for all n ∈ ω

(2) if Fn is a member of Pn for each n ∈ ω then
⋃
{Fn : n ∈ ω} is not dense

in X.
M. Scheepers used in the paper [12] negation of the existence of tiny se-

quence, and 1-tiny sequence - called these properties Sfin(D,D) and S1(D,D)
respectively. In this paper we refer to notions tiny sequence and 1-tiny se-
quence, because in some situations (Theorem 1.1 and 1.2) we can define them.

Recall another game G4 introduced in [2]. In the n-th inning player I
chooses finite open family An. Player II responds with a finite, open family
Bn with |Bn| = |An| and for each V ∈ An there exists W ∈ Bn such that
W ⊆ V . I wins if

⋃
n∈ω

⋃
Bn is dense subset of X; otherwise, II wins. One

can prove that the game G7 is equivalent to the game G4 in a way similar to
the proof of the equivalence between games G and G2.

From now on we consider only c.c.c. spaces.

Theorem 1.1 (M. Scheepers [12, Theorem 2]). II has a winning strategy
in the game G7 if and only if there exists a tiny sequence.
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Theorem 1.2 (M. Scheepers [12, Theorem 14]). Player II has a winning
strategy in the game G2 if and only if there exists a 1-tiny sequence.

2. The main results

Recall that X is called a II-favorable space if player II a has winning
strategy in the game G. If player I has a winning strategy in the game G then
we say that the space is I-favorable.

The following theorem was proven by K. Kuratowski and S. Ulam, see [9].
In order to formulate it, let us recall that: a π-base is a family of open,
nonempty sets such that any open set contains a set from this family, and
the π-weight of a space is the smallest cardinality of a π-base in this space.

Let X and Y be topological spaces such that Y has countable π-weight. If
E ⊆ X × Y is a nowhere dense set, then there is a meager set P ⊆ X such
that the section Ex = {y : (x, y) ∈ E} is nowhere dense in Y for each point
x ∈ X \ P .

A space Y is universally Kuratowski–Ulam (for short, uK-U space), when-
ever for a topological space X and a nowhere dense set E ⊆ X × Y the set

{x ∈ X : {y ∈ Y : (x, y) ∈ E} is not nowhere dense in Y }

is meager in X, see D. Fremlin [6] (compare [3]). In the paper [7] authors
have shown that a compact I-favorable space is universally Kuratowski–Ulam
and posed a question: Does there exist a compact universally Kuratowski–
Ulam space which is not I-favorable? We will partially answer to this question,
namely we will prove that a II-favorable space is not universally Kuratowski–
Ulam space.

Theorem 2.1. Let X be a dense in itself space with a π-base B =
⋃
n∈ω Bn,

where Bn is a maximal family of pairwise disjoint open sets for n ∈ ω and let
Y be II-favorable c.c.c. space. Then the Kuratowski–Ulam theorem does not
hold in X × Y .

Proof. By Theorem 1.2 there is a 1-tiny sequence {Pn : n ∈ ω}. Since the
space Y satisfies c.c.c., we can assume that each Pn+1 is a countable, open,
pairwise disjoint family. We can also assume that every Pn+1 is a refinement
of Pn, i.e. each member of Pn+1 is a subset of a member of Pn. Let {V nσ :
σ ∈ nN} be an enumeration of the family Pn such that for each τ ∈ n−1N,
{V nτ_k : k ∈ N} = Pn.
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We can assume that Bn+1 is a refinement of Bn and |{V ∈ Bn+1 : V ⊆
U}| ≥ ω for each U ∈ Bn. For each n ∈ N fix a function fn : Bn → nN such
that for a fixed U ∈ Bn we have

(2.1) {fn+1(V ) : V ∈ Bn+1 and V ⊆ U} = fn(U)_N.

Therefore, there holds the condition:

(2.2) if V ⊂ U then fn+1(V ) ⊃ fn(U) for every V ∈ Bn+1 and U ∈ Bn.

Consider an open set

F =
⋃{⋃

{U × V nfn(U) : U ∈ Bn} : n ∈ N
}
.

We shall show that F is dense and Fx = {y ∈ Y : (x, y) ∈ F} is not dense
for each x ∈ X. If x ∈ X \

⋂
{
⋃
Bn : n ∈ N} then it is easy to see that

Ex is not dense. If x ∈
⋂
{
⋃
Bn : n ∈ N} then by condition (2.2) there is

σ ∈ NN such that for each n ∈ N there exists Un ∈ Bn with fn(Un) = σ|n and
x ∈

⋂
{Un : n ∈ N}, hence Fx =

⋃
{V nσ|n : n ∈ N}. Since V nσ|n ∈ Pn for each

n ∈ N and {Pn : n ∈ ω} is a 1-tiny sequence the set
⋃
{V nσ|n : n ∈ N} is not

dense.
Now we show that F is a dense set. Let U×W be any open set. Since B is a

π-base there are n ∈ N and U0 ∈ Bn such that U0 ⊆ U . Let σ = fn(U0), since
{V n+1

σ_k : k ∈ N} is a dense family, we get that W ∩ V n+1
σ_k 6= ∅ for some k ∈ N.

By (1), we may take U1 ⊆ U0 such that U1 ∈ Bn+1 and fn+1(U1) = σ_k.
Thus U1 × V n+1

fn+1(U1)
∩ U ×W 6= ∅. �

Since R with natural topology satisfies assumption of the above theorem
and every universally Kuratowski–Ulam space is c.c.c. space, we get the fol-
lowing theorem.

Theorem 2.2. A II-favorable space is not universally Kuratowski–Ulam
space.

Following [10, pp. 86–91] recall category measure space. If X is a topo-
logical space with finite measure µ defined on the σ-algebra S of sets having
the Baire property, and if µ(E) = 0 if and only if E is of a meager set,
then (X,S, µ) is called a category measure space. An example of a regular
Baire space which is a category measure space, is an open interval (0, 1) with
Lebesgue measure µl and density topology Td, see [10]. For density topology
and measurable set A ⊆ (0, 1) the following conditions are equivalent:
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(1) µl(A) = 0,
(2) A is closed and nowhere dense.
In the space ((0, 1), Td) there is a 1-tiny sequence but there is no tiny sequence.
Indeed, define a 1-tiny sequence in the following way: let Pn = {U : U ∈
Td and µl(U) ≤ 1

3n }. If {Un : n ∈ N} is a family chosen by player I then
µl(

⋃
{Un : n ∈ N}) ≤ 1

2 . Therefore {Un : n ∈ N} is not a dense family. Now
assume that there exists a tiny sequence {Pn : n ∈ N}. In each stage we choose
a finite subfamily Rn ⊂ Pn such that µl(

⋃
{
⋃
Ri : i ≤ n}) ≥ 1− 1

n , hence we
get a dense family

⋃
{Rn : n ∈ N}.

The authors of the paper [2] posed a question (Question 4.3): Does a
player have a winning strategy in the game G if and only if the same player
has a winning strategy in the game G7. The author of paper [12] showed that
if cov(M) < d the answer is NO. We show that games G and G7 are not
equivalent.

Corollary 2.3. The game G is not equivalent to the game G7.

Proof. By Theorem 1.2 a winning strategy of II player in the game G
is equivalent to the existence of a 1-tiny sequence and by Theorem 1.1 the
existence of a winning strategy of player II in the game G7 is equivalent to
the existence of a tiny sequence. Since in the space ((0, 1), Td) there is a 1-tiny
sequence but there is no tiny sequences we get that games G and G7 are not
equivalent. �

Since the game G7 is equivalent to the game G4, we get the following:

Corollary 2.4. The game G is not equivalent to the game G4.

3. Some remarks

It is known that on the ω1 with discrete topology II player has a winning
strategy in the game G7, but one can pose a question:

Is it possible to construct a tiny sequence {Pn : n ∈ ω} on a discrete space
of the size ω1 with |Pn| = ω for all n ∈ ω ?

The following Remark 3.1 gives us the answer - it is possible if and only if
the dominating number is equal ω1. This is reformulation of well know results
about critical cardinal number, see W. Just, A.W. Miller, M. Scheepers and
P.J. Szeptycki [5]; D. Fremlin, A.W. Miller [4] and B. Tsaban [14].

Recall that f ≤∗ g denotes that for almost all n ∈ ω holds f(n) ≤ g(n),
where f, g are functions defined on natural numbers. A family R ⊆ ωω is
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a dominating family if for each f ∈ ωω there is g ∈ R such that f ≤∗ g. The
dominating number d is the smallest cardinality of a dominating family:

d = min{|R| : R is dominating }.

Remark 3.1. The smallest cardinality κ such that there exists a tiny
sequence {Pn : n ∈ ω} on the discrete space of the size κ with |Pn| = ω for all
n ∈ ω is equal to d.

Proof. Let X be any discrete space for which there exists a tiny sequence
{Pn : n ∈ ω}. We can assume that every Pn is a partition of X into countably
many blocks {Xn

0 , X
n
1 , . . .}, so we may define for each x ∈ X a function

fx : ω → ω in the following way: fx(n) = k whenever x ∈ Xn
k . Take an

arbitrary function f : ω → ω, and any x ∈ X \
⋃
{
⋃
{Xn

k : k ≤ f(n)} : n < ω},
then f is dominated by the function fx. It shows that {fx : x ∈ X} is a
dominating family, hence |X| ≥ d.

Now, let F ⊂ ωω be a dominating family of the cardinality d. Without
loss of generality assume that for each function f : ω → ω there is g ∈ F such
that f(n) < g(n) for all n < ω. We treat F as a discrete topological space.
For n, k ∈ ω put Ank = {f ∈ F : f(n) ≤ k} and set Pn = {Ank : k < ω}. Of
course, each family Pn is increasing and has the union equal to F . From each
Pn take some single Anf(n) where f : ω → ω. If

⋃
{Anf(n) : n < ω} was equal to

F , then it would contain such a function g that g(n) > f(n) for all n ∈ ω,
but it is not the case. Therefore {Pn : n ∈ ω} is a tiny sequence. �

Recall a definition of a Baire number cov(M) for the idealM of meager
subsets of real line R:

cov(M) = min{|A| : A ⊆M and
⋃
A = R}.

T. Bartoszyński [1] proved that cov(M) is the cardinality of the smallest
family F ⊆ ωω such that

∀(g ∈ ωω) ∃(f ∈ F) ∀(n ∈ ω) f(n) 6= g(n).

We get another well known characterization of such families by a 1-tiny se-
quence.

Remark 3.2. The smallest cardinality κ such that there exists a 1-tiny
sequence {Pn : n ∈ ω} on the discrete space of the size κ with |Pn| = ω for all
n ∈ ω is equal to cov(M).
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We give the proof for the sake of completeness. We shall prove that the
smallest cardinality of a family F ⊆ ωω such that

(∗) ∀(g ∈ ωω) ∃(f ∈ F) ∀(n ∈ ω) f(n) 6= g(n)

is equal to the smallest cardinality κ such that there exists a 1-tiny sequence
{Pn : n ∈ ω} on the discrete space κ with |Pn| = ω for all n ∈ ω.

Proof. Let F = {fα : α < κ} ⊆ ωω be a family with the property (∗).
Define Ain = {f ∈ F : f(i) = n} for every i, n ∈ ω. Let Pi = {Ain : n ∈ ω} for
i ∈ ω. We will show that {Pi : i ∈ ω} is a 1-tiny sequence. Assume that we
have chosen Aini

∈ Pi for each i ∈ ω. Define a function g(i) = ni for i ∈ ω.
Since F satisfies (∗) there is f ∈ F such that f(i) 6= g(i) for each i ∈ ω.
Therefore we get f ∈ F \

⋃
{Aini

: i ∈ ω}.
Let {Pn : n ∈ ω} be a 1-tiny sequence with |Pn| = ω and

⋃
Pn = κ for

each n ∈ ω. We can assume that each Pn consists of pairwise disjoint subsets
of κ. Let {Ank : k ∈ ω} be a enumeration of Pn. We define a function fx ∈ ωω
for each x ∈ κ in the following way: fx(i) = n, where x ∈ Ain for each i ∈ ω.
The family {fx : x ∈ κ} satisfies (∗). Indeed, let g ∈ ωω be any function. Since
{Pn : n ∈ ω} is a 1-tiny sequence, choose x ∈ κ \

⋃
{Aig(i) : i ∈ ω}. Finally,

observe that fx(i) 6= g(i) for every i ∈ ω. �

We shall recall definition of the bounding number

b = min {|F| : F ⊆ ωω and ∀(g ∈ ωω) ∃(f ∈ F) ¬(f ≤∗ g))} .

We say that a sequence {Pn : n ∈ ω} of open families in X is a b-tiny
sequence if
(1)

⋃
Pn is dense in X for all n ∈ ω;

(2) if Fn is a finite subfamily of Pn for each n ∈ ω, then there exists strictly
increasing sequence {ni : i ∈ ω} such that⋃{⋃

Fni : i ∈ ω
}

is not dense in X.
We get the next reformulation of the bounding number.

Remark 3.3. The smallest cardinality κ such that there exists a b-tiny
sequence {Pn : n ∈ ω} on the discrete space of the size κ with |Pn| = ω for
all n ∈ ω is equal to b.
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