Annales Mathematicae Silesianae **29** (2015), 85–92 Prace Naukowe Uniwersytetu Śląskiego nr 3332, Katowice DOI: 10.1515/amsil-2015-0007

UNIVERSALLY KURATOWSKI–ULAM SPACES AND OPEN-OPEN GAMES

PIOTR KALEMBA, ANDRZEJ KUCHARSKI

Abstract. We examine the class of spaces in which the second player has a winning strategy in the open-open game. We show that this spaces are not universally Kuratowski–Ulam. We also show that the games G and G_7 introduced by P. Daniels, K. Kunen, H. Zhou [Fund. Math. **145** (1994), no. 3, 205–220] are not equivalent.

1. Introduction

First we shall recall some game introduced in [2] called G_2 . Let X be a topological space equipped with a topology \mathcal{T} and let $\mathcal{B} \subseteq \mathcal{T}$ be its base. The length of the game is ω . Two players I and II take turns playing. At the *n*-th move II chooses a family \mathcal{P}_n consisting of open non-empty subset of Xsuch that $\operatorname{cl} \bigcup \mathcal{P}_n = X$, then I picks a $V_n \in \mathcal{P}_n$. I wins iff $\operatorname{cl} \bigcup_{n \in \omega} V_n = X$. Otherwise player II wins. Denote by D_{cov} a collection of families \mathcal{F} consisting of open sets with $\operatorname{cl} \bigcup \mathcal{F} = X$. We say that $\sigma_{cov} : (\bigcup D_{cov})^{<\omega} \to D_{cov}$ is a winning strategy for player II in the game G_2 whenever, for any sequence U_0, U_1, \ldots consisting of non-empty open subsets with $U_0 \in \sigma_{cov}(\emptyset) = \mathcal{P}_0 \in$ D_{cov} and $U_n \in \sigma_{cov}(U_0, U_1, \ldots, U_{n-1}) = \mathcal{P}_n \in D_{cov}$, for all $n \in \omega$, there holds $\operatorname{cl} \bigcup_{n \in \omega} U_n \neq X$.

Received: 10.03.2015. Revised: 6.06.2015.

⁽²⁰¹⁰⁾ Mathematics Subject Classification: 54G20, 91A44, 54F99.

Key words and phrases: II-favorable space, uK-U space, tiny sequence.

Andrzej Kucharski thanks European Science Foundation for their support through the grant 3007 within the INFTY program.

In the paper [2] the authors introduced an open-open game. We say that G is an open-open game of length ω if two players take turns playing; a round consists of player I choosing a non-empty open set $U \subseteq X$ and player II choosing a non-empty open $V \subseteq U$; I wins if the union of II's open sets is dense in X, otherwise II wins. Suppose that there exists a function

$$s_{op} \colon \bigcup \{ \mathcal{T}^n : n \ge 0 \} \to \mathcal{T}$$

such that for each sequence V_0, V_1, \ldots consisting of non-empty elements of \mathcal{T} with $s_{op}(V_0) \subseteq V_0$ and $s_{op}(V_0, V_1, \ldots, V_n) \subseteq V_n$, for all $n \in \omega$, there holds $\operatorname{cl} \bigcup_{n \in \omega} V_n \neq X$. Then the function s_{op} is called a *winning strategy for II* player in the open-open game and we say that the space X is *II-favorable*.

It is known [2] that the open-open game G is equivalent to G_2 . We consider only games with the length equal to ω . In [2] the authors introduced a game G_7 which is played as follows: In the *n*-th inning II chooses \mathcal{O}_n , a family of open sets with $\bigcup \mathcal{O}_n$ dense in X. I responds with \mathcal{T}_n , a finite subfamily of \mathcal{O}_n ; I wins if $\bigcup_{n \in \omega} \mathcal{T}_n$ is dense subset of X; otherwise, II wins.

According to A. Szymański [13] a sequence $\{\mathcal{P}_n : n \in \omega\}$ of open families in X is a *tiny sequence* if

- (1) $\bigcup \mathcal{P}_n$ is dense in X for all $n \in \omega$
- (2) if \mathcal{F}_n is a finite subfamily of \mathcal{P}_n for each $n \in \omega$ then $\bigcup \{\bigcup \mathcal{F}_n : n \in \omega\}$ is not dense in X.

We call a sequence $\{\mathcal{P}_n : n \in \omega\}$ of open families in X a 1-tiny sequence if (1) $\bigcup \mathcal{P}_n$ is dense in X for all $n \in \omega$

(2) if F_n is a member of \mathcal{P}_n for each $n \in \omega$ then $\bigcup \{F_n : n \in \omega\}$ is not dense in X.

M. Scheepers used in the paper [12] negation of the existence of tiny sequence, and 1-tiny sequence - called these properties $S_{fin}(\mathcal{D}, \mathcal{D})$ and $S_1(\mathcal{D}, \mathcal{D})$ respectively. In this paper we refer to notions tiny sequence and 1-tiny sequence, because in some situations (Theorem 1.1 and 1.2) we can define them.

Recall another game G_4 introduced in [2]. In the *n*-th inning player I chooses finite open family \mathcal{A}_n . Player II responds with a finite, open family \mathcal{B}_n with $|\mathcal{B}_n| = |\mathcal{A}_n|$ and for each $V \in \mathcal{A}_n$ there exists $W \in \mathcal{B}_n$ such that $W \subseteq V$. I wins if $\bigcup_{n \in \omega} \bigcup \mathcal{B}_n$ is dense subset of X; otherwise, II wins. One can prove that the game G_7 is equivalent to the game G_4 in a way similar to the proof of the equivalence between games G and G_2 .

From now on we consider only c.c.c. spaces.

THEOREM 1.1 (M. Scheepers [12, Theorem 2]). II has a winning strategy in the game G_7 if and only if there exists a tiny sequence. THEOREM 1.2 (M. Scheepers [12, Theorem 14]). Player II has a winning strategy in the game G_2 if and only if there exists a 1-tiny sequence.

2. The main results

Recall that X is called a *II-favorable* space if player II a has winning strategy in the game G. If player I has a winning strategy in the game G then we say that the space is *I-favorable*.

The following theorem was proven by K. Kuratowski and S. Ulam, see [9]. In order to formulate it, let us recall that: a π -base is a family of open, nonempty sets such that any open set contains a set from this family, and the π -weight of a space is the smallest cardinality of a π -base in this space.

Let X and Y be topological spaces such that Y has countable π -weight. If $E \subseteq X \times Y$ is a nowhere dense set, then there is a meager set $P \subseteq X$ such that the section $E_x = \{y : (x, y) \in E\}$ is nowhere dense in Y for each point $x \in X \setminus P$.

A space Y is universally Kuratowski–Ulam (for short, uK-U space), whenever for a topological space X and a nowhere dense set $E \subseteq X \times Y$ the set

$$\{x \in X : \{y \in Y : (x, y) \in E\}$$
 is not nowhere dense in $Y\}$

is meager in X, see D. Fremlin [6] (compare [3]). In the paper [7] authors have shown that a compact I-favorable space is universally Kuratowski–Ulam and posed a question: Does there exist a compact universally Kuratowski– Ulam space which is not I-favorable? We will partially answer to this question, namely we will prove that a II-favorable space is not universally Kuratowski– Ulam space.

THEOREM 2.1. Let X be a dense in itself space with a π -base $\mathcal{B} = \bigcup_{n \in \omega} \mathcal{B}_n$, where \mathcal{B}_n is a maximal family of pairwise disjoint open sets for $n \in \omega$ and let Y be II-favorable c.c.c. space. Then the Kuratowski–Ulam theorem does not hold in $X \times Y$.

PROOF. By Theorem 1.2 there is a 1-tiny sequence $\{\mathcal{P}_n : n \in \omega\}$. Since the space Y satisfies c.c.c., we can assume that each \mathcal{P}_{n+1} is a countable, open, pairwise disjoint family. We can also assume that every \mathcal{P}_{n+1} is a refinement of \mathcal{P}_n , i.e. each member of \mathcal{P}_{n+1} is a subset of a member of \mathcal{P}_n . Let $\{V_{\sigma}^n : \sigma \in {}^n\mathbb{N}\}$ be an enumeration of the family \mathcal{P}_n such that for each $\tau \in {}^{n-1}\mathbb{N}$, $\{V_{\tau \frown k}^n : k \in \mathbb{N}\} = \mathcal{P}_n$.

We can assume that \mathcal{B}_{n+1} is a refinement of \mathcal{B}_n and $|\{V \in \mathcal{B}_{n+1} : V \subseteq U\}| \geq \omega$ for each $U \in \mathcal{B}_n$. For each $n \in \mathbb{N}$ fix a function $f_n : \mathcal{B}_n \to {}^n\mathbb{N}$ such that for a fixed $U \in \mathcal{B}_n$ we have

(2.1)
$$\{f_{n+1}(V): V \in \mathcal{B}_{n+1} \text{ and } V \subseteq U\} = f_n(U) \cap \mathbb{N}.$$

Therefore, there holds the condition:

(2.2) if
$$V \subset U$$
 then $f_{n+1}(V) \supset f_n(U)$ for every $V \in \mathcal{B}_{n+1}$ and $U \in \mathcal{B}_n$.

Consider an open set

$$F = \bigcup \left\{ \bigcup \{ U \times V_{f_n(U)}^n : U \in \mathcal{B}_n \} : n \in \mathbb{N} \right\}.$$

We shall show that F is dense and $F_x = \{y \in Y : (x, y) \in F\}$ is not dense for each $x \in X$. If $x \in X \setminus \bigcap \{\bigcup \mathcal{B}_n : n \in \mathbb{N}\}$ then it is easy to see that E_x is not dense. If $x \in \bigcap \{\bigcup \mathcal{B}_n : n \in \mathbb{N}\}$ then by condition (2.2) there is $\sigma \in \mathbb{N}\mathbb{N}$ such that for each $n \in \mathbb{N}$ there exists $U_n \in \mathcal{B}_n$ with $f_n(U_n) = \sigma | n$ and $x \in \bigcap \{U_n : n \in \mathbb{N}\}$, hence $F_x = \bigcup \{V_{\sigma|n}^n : n \in \mathbb{N}\}$. Since $V_{\sigma|n}^n \in \mathcal{P}_n$ for each $n \in \mathbb{N}$ and $\{\mathcal{P}_n : n \in \omega\}$ is a 1-tiny sequence the set $\bigcup \{V_{\sigma|n}^n : n \in \mathbb{N}\}$ is not dense.

Now we show that F is a dense set. Let $U \times W$ be any open set. Since \mathcal{B} is a π -base there are $n \in \mathbb{N}$ and $U_0 \in \mathcal{B}_n$ such that $U_0 \subseteq U$. Let $\sigma = f_n(U_0)$, since $\{V_{\sigma \frown k}^{n+1} : k \in \mathbb{N}\}$ is a dense family, we get that $W \cap V_{\sigma \frown k}^{n+1} \neq \emptyset$ for some $k \in \mathbb{N}$. By (1), we may take $U_1 \subseteq U_0$ such that $U_1 \in \mathcal{B}_{n+1}$ and $f_{n+1}(U_1) = \sigma \frown k$. Thus $U_1 \times V_{f_{n+1}(U_1)}^{n+1} \cap U \times W \neq \emptyset$.

Since \mathbb{R} with natural topology satisfies assumption of the above theorem and every universally Kuratowski–Ulam space is c.c.c. space, we get the following theorem.

THEOREM 2.2. A II-favorable space is not universally Kuratowski–Ulam space.

Following [10, pp. 86–91] recall category measure space. If X is a topological space with finite measure μ defined on the σ -algebra S of sets having the Baire property, and if $\mu(E) = 0$ if and only if E is of a meager set, then (X, S, μ) is called a *category measure space*. An example of a regular Baire space which is a category measure space, is an open interval (0, 1) with Lebesgue measure μ_l and density topology \mathcal{T}_d , see [10]. For density topology and measurable set $A \subseteq (0, 1)$ the following conditions are equivalent: (1) $\mu_l(A) = 0$,

(2) A is closed and nowhere dense.

In the space $((0, 1), \mathcal{T}_d)$ there is a 1-tiny sequence but there is no tiny sequence. Indeed, define a 1-tiny sequence in the following way: let $\mathcal{P}_n = \{U : U \in \mathcal{T}_d \text{ and } \mu_l(U) \leq \frac{1}{3^n}\}$. If $\{U_n : n \in \mathbb{N}\}$ is a family chosen by player I then $\mu_l(\bigcup\{U_n : n \in \mathbb{N}\}) \leq \frac{1}{2}$. Therefore $\{U_n : n \in \mathbb{N}\}$ is not a dense family. Now assume that there exists a tiny sequence $\{\mathcal{P}_n : n \in \mathbb{N}\}$. In each stage we choose a finite subfamily $\mathcal{R}_n \subset \mathcal{P}_n$ such that $\mu_l(\bigcup\{\bigcup\mathcal{R}_i : i \leq n\}) \geq 1 - \frac{1}{n}$, hence we get a dense family $\bigcup\{\mathcal{R}_n : n \in \mathbb{N}\}$.

The authors of the paper [2] posed a question (Question 4.3): Does a player have a winning strategy in the game G if and only if the same player has a winning strategy in the game G_7 . The author of paper [12] showed that if $cov(\mathcal{M}) < \mathfrak{d}$ the answer is NO. We show that games G and G_7 are not equivalent.

COROLLARY 2.3. The game G is not equivalent to the game G_7 .

PROOF. By Theorem 1.2 a winning strategy of II player in the game G is equivalent to the existence of a 1-tiny sequence and by Theorem 1.1 the existence of a winning strategy of player II in the game G_7 is equivalent to the existence of a tiny sequence. Since in the space $((0,1), \mathcal{T}_d)$ there is a 1-tiny sequence but there is no tiny sequences we get that games G and G_7 are not equivalent.

Since the game G_7 is equivalent to the game G_4 , we get the following:

COROLLARY 2.4. The game G is not equivalent to the game G_4 .

3. Some remarks

It is known that on the ω_1 with discrete topology II player has a winning strategy in the game G_7 , but one can pose a question:

Is it possible to construct a tiny sequence $\{\mathcal{P}_n : n \in \omega\}$ on a discrete space of the size ω_1 with $|\mathcal{P}_n| = \omega$ for all $n \in \omega$?

The following Remark 3.1 gives us the answer - it is possible if and only if the dominating number is equal ω_1 . This is reformulation of well know results about critical cardinal number, see W. Just, A.W. Miller, M. Scheepers and P.J. Szeptycki [5]; D. Fremlin, A.W. Miller [4] and B. Tsaban [14].

Recall that $f \leq^* g$ denotes that for almost all $n \in \omega$ holds $f(n) \leq g(n)$, where f, g are functions defined on natural numbers. A family $\mathcal{R} \subseteq {}^{\omega}\omega$ is a dominating family if for each $f \in {}^{\omega}\omega$ there is $g \in \mathcal{R}$ such that $f \leq g$. The dominating number \mathfrak{d} is the smallest cardinality of a dominating family:

$$\mathfrak{d} = \min\{|\mathcal{R}| : \mathcal{R} \text{ is dominating }\}.$$

REMARK 3.1. The smallest cardinality κ such that there exists a tiny sequence $\{\mathcal{P}_n : n \in \omega\}$ on the discrete space of the size κ with $|\mathcal{P}_n| = \omega$ for all $n \in \omega$ is equal to \mathfrak{d} .

PROOF. Let X be any discrete space for which there exists a tiny sequence $\{\mathcal{P}_n : n \in \omega\}$. We can assume that every \mathcal{P}_n is a partition of X into countably many blocks $\{X_0^n, X_1^n, \ldots\}$, so we may define for each $x \in X$ a function $f_x : \omega \to \omega$ in the following way: $f_x(n) = k$ whenever $x \in X_k^n$. Take an arbitrary function $f : \omega \to \omega$, and any $x \in X \setminus \bigcup \{\bigcup \{X_k^n : k \leq f(n)\} : n < \omega\}$, then f is dominated by the function f_x . It shows that $\{f_x : x \in X\}$ is a dominating family, hence $|X| \geq \mathfrak{d}$.

Now, let $\mathcal{F} \subset \omega^{\omega}$ be a dominating family of the cardinality \mathfrak{d} . Without loss of generality assume that for each function $f: \omega \to \omega$ there is $g \in \mathcal{F}$ such that f(n) < g(n) for all $n < \omega$. We treat \mathcal{F} as a discrete topological space. For $n, k \in \omega$ put $A_k^n = \{f \in \mathcal{F}: f(n) \leq k\}$ and set $\mathcal{P}_n = \{A_k^n: k < \omega\}$. Of course, each family \mathcal{P}_n is increasing and has the union equal to \mathcal{F} . From each \mathcal{P}_n take some single $A_{f(n)}^n$ where $f: \omega \to \omega$. If $\bigcup \{A_{f(n)}^n: n < \omega\}$ was equal to \mathcal{F} , then it would contain such a function g that g(n) > f(n) for all $n \in \omega$, but it is not the case. Therefore $\{\mathcal{P}_n: n \in \omega\}$ is a tiny sequence.

Recall a definition of a Baire number $cov(\mathcal{M})$ for the ideal \mathcal{M} of meager subsets of real line \mathbb{R} :

$$\operatorname{cov}(\mathcal{M}) = \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{M} \text{ and } \bigcup \mathcal{A} = \mathbb{R}\}.$$

T. Bartoszyński [1] proved that $cov(\mathcal{M})$ is the cardinality of the smallest family $\mathcal{F} \subseteq {}^{\omega}\omega$ such that

$$\forall (g \in {}^{\omega}\omega) \; \exists (f \in \mathcal{F}) \; \forall (n \in \omega) \; f(n) \neq g(n).$$

We get another well known characterization of such families by a 1-tiny sequence.

REMARK 3.2. The smallest cardinality κ such that there exists a 1-tiny sequence $\{\mathcal{P}_n : n \in \omega\}$ on the discrete space of the size κ with $|\mathcal{P}_n| = \omega$ for all $n \in \omega$ is equal to $\operatorname{cov}(\mathcal{M})$.

We give the proof for the sake of completeness. We shall prove that the smallest cardinality of a family $\mathcal{F} \subseteq {}^{\omega}\omega$ such that

(*)
$$\forall (g \in {}^{\omega}\omega) \exists (f \in \mathcal{F}) \forall (n \in \omega) f(n) \neq g(n)$$

is equal to the smallest cardinality κ such that there exists a 1-tiny sequence $\{\mathcal{P}_n : n \in \omega\}$ on the discrete space κ with $|\mathcal{P}_n| = \omega$ for all $n \in \omega$.

PROOF. Let $\mathcal{F} = \{f_{\alpha} : \alpha < \kappa\} \subseteq {}^{\omega}\omega$ be a family with the property (*). Define $A_n^i = \{f \in \mathcal{F} : f(i) = n\}$ for every $i, n \in \omega$. Let $\mathcal{P}_i = \{A_n^i : n \in \omega\}$ for $i \in \omega$. We will show that $\{\mathcal{P}_i : i \in \omega\}$ is a 1-tiny sequence. Assume that we have chosen $A_{n_i}^i \in \mathcal{P}_i$ for each $i \in \omega$. Define a function $g(i) = n_i$ for $i \in \omega$. Since \mathcal{F} satisfies (*) there is $f \in \mathcal{F}$ such that $f(i) \neq g(i)$ for each $i \in \omega$. Therefore we get $f \in \mathcal{F} \setminus \bigcup \{A_{n_i}^i : i \in \omega\}$.

Let $\{\mathcal{P}_n : n \in \omega\}$ be a 1-tiny sequence with $|\mathcal{P}_n| = \omega$ and $\bigcup \mathcal{P}_n = \kappa$ for each $n \in \omega$. We can assume that each \mathcal{P}_n consists of pairwise disjoint subsets of κ . Let $\{A_k^n : k \in \omega\}$ be a enumeration of \mathcal{P}_n . We define a function $f_x \in {}^{\omega}\omega$ for each $x \in \kappa$ in the following way: $f_x(i) = n$, where $x \in A_n^i$ for each $i \in \omega$. The family $\{f_x : x \in \kappa\}$ satisfies (*). Indeed, let $g \in {}^{\omega}\omega$ be any function. Since $\{\mathcal{P}_n : n \in \omega\}$ is a 1-tiny sequence, choose $x \in \kappa \setminus \bigcup \{A_{g(i)}^i : i \in \omega\}$. Finally, observe that $f_x(i) \neq g(i)$ for every $i \in \omega$.

We shall recall definition of the bounding number

$$\mathfrak{b} = \min \left\{ |\mathcal{F}| : \mathcal{F} \subseteq {}^{\omega}\omega \text{ and } \forall (g \in {}^{\omega}\omega) \; \exists (f \in \mathcal{F}) \; \neg (f \leq {}^{*}g)) \right\}.$$

We say that a sequence $\{\mathcal{P}_n : n \in \omega\}$ of open families in X is a \mathfrak{b} -tiny sequence if

- (1) $\bigcup \mathcal{P}_n$ is dense in X for all $n \in \omega$;
- (2) if \mathcal{F}_n is a finite subfamily of \mathcal{P}_n for each $n \in \omega$, then there exists strictly increasing sequence $\{n_i : i \in \omega\}$ such that

$$\bigcup \left\{ \bigcup \mathcal{F}_{n_i} : i \in \omega \right\}$$

is not dense in X.

We get the next reformulation of the bounding number.

REMARK 3.3. The smallest cardinality κ such that there exists a b-tiny sequence $\{\mathcal{P}_n : n \in \omega\}$ on the discrete space of the size κ with $|\mathcal{P}_n| = \omega$ for all $n \in \omega$ is equal to \mathfrak{b} .

Acknowledgement. The authors are indebted to the Referee for very careful reading of the paper and valuable comments.

References

- Bartoszyński T., Combinatorial aspects of measure and category, Fund. Math. 127 (1987), no. 3, 225–239.
- [2] Daniels P., Kunen K., Zhou H., On the open-open game, Fund. Math. 145 (1994), no. 3, 205–220.
- [3] Fremlin D., Natkaniec T., Recław I., Universally Kuratowski-Ulam spaces, Fund. Math. 165 (2000), no. 3, 239-247.
- [4] Fremlin D., Miller A.W., On some properties of Hurewicz, Menger and Rothberger, Fund. Math. 129 (1988), 17–33.
- [5] Just W., Miller A.W., Scheepers M., Szeptycki P.J., The combinatorics of open covers (II), Topology Appl. 73 (1996), 241–266.
- [6] Fremlin D., *Universally Kuratowski–Ulam spaces*, a note from: http://www.essex.ac. uk/maths/staff/fremlin/preprints.htm
- [7] Kucharski A., Plewik S., Game approach to universally Kuratowski-Ulam spaces, Topology Appl. 154 (2007), no. 2, 421–427.
- [8] Kucharski A., Plewik S., Inverse systems and I-favorable spaces, Topology Appl. 156 (2008), no. 1, 110–116.
- [9] Kuratowski K., Ulam S., Quelques propriétés topologiques du produit combinatoire, Fund. Math. 19 (1932), 247–251.
- [10] Oxtoby J., Measure and category, Springer-Verlag, New York, 1971.
- [11] Pawlikowski J., Undetermined sets of point-open games, Fund. Math. 144 (1994), 279– 285.
- [12] Scheepers M., Combinatorics of open covers (V): Pixley-Roy spaces of sets of reals, and ω-covers., Topology Appl. 102 (2000), no. 1, 13–31.
- [13] Szymański A., Some applications of tiny sequences, in: Proceedings of the 11th winter school on abstract analysis (Železna Rudá, 1983), Rend. Circ. Mat. Palermo (2) 1984, Suppl. no. 3, pp. 321–328.
- [14] Tsaban B., Strong γ -sets and other singular spases, Topology Appl. **153** (2005), 620–639.

INSTITUTE OF MATHEMATICS UNIVERSITY OF SILESIA BANKOWA 14 40-007 KATOWICE POLAND e-mail: piotr.kalemba@us.edu.pl e-mail: akuchar@math.us.edu.pl