UNIVERSALLY KURATOWSKI-ULAM SPACES AND OPEN-OPEN GAMES

Piotr Kalemba, Andrzej Kucharski

Abstract

We examine the class of spaces in which the second player has a winning strategy in the open-open game. We show that this spaces are not universally Kuratowski-Ulam. We also show that the games G and G_{7} introduced by P. Daniels, K. Kunen, H. Zhou [Fund. Math. 145 (1994), no. 3, 205-220] are not equivalent.

1. Introduction

First we shall recall some game introduced in [2] called G_{2}. Let X be a topological space equipped with a topology \mathcal{T} and let $\mathcal{B} \subseteq \mathcal{T}$ be its base. The length of the game is ω. Two players I and II take turns playing. At the n-th move II chooses a family \mathcal{P}_{n} consisting of open non-empty subset of X such that $\mathrm{cl} \bigcup \mathcal{P}_{n}=X$, then I picks a $V_{n} \in \mathcal{P}_{n}$. I wins iff $\operatorname{cl} \bigcup_{n \in \omega} V_{n}=X$. Otherwise player II wins. Denote by $D_{\text {cov }}$ a collection of families \mathcal{F} consisting of open sets with $\operatorname{cl} \bigcup \mathcal{F}=X$. We say that $\sigma_{\text {cov }}:\left(\bigcup D_{\text {cov }}\right)^{<\omega} \rightarrow D_{\text {cov }}$ is a winning strategy for player $I I$ in the game G_{2} whenever, for any sequence U_{0}, U_{1}, \ldots consisting of non-empty open subsets with $U_{0} \in \sigma_{\operatorname{cov}}(\emptyset)=\mathcal{P}_{0} \in$ $D_{\text {cov }}$ and $U_{n} \in \sigma_{\text {cov }}\left(U_{0}, U_{1}, \ldots, U_{n-1}\right)=\mathcal{P}_{n} \in D_{\text {cov }}$, for all $n \in \omega$, there holds $\operatorname{cl} \bigcup_{n \in \omega} U_{n} \neq X$.

[^0]In the paper [2] the authors introduced an open-open game. We say that G is an open-open game of length ω if two players take turns playing; a round consists of player I choosing a non-empty open set $U \subseteq X$ and player II choosing a non-empty open $V \subseteq U$; I wins if the union of II's open sets is dense in X, otherwise II wins. Suppose that there exists a function

$$
s_{o p}: \bigcup\left\{\mathcal{T}^{n}: n \geq 0\right\} \rightarrow \mathcal{T}
$$

such that for each sequence V_{0}, V_{1}, \ldots consisting of non-empty elements of \mathcal{T} with $s_{o p}\left(V_{0}\right) \subseteq V_{0}$ and $s_{o p}\left(V_{0}, V_{1}, \ldots, V_{n}\right) \subseteq V_{n}$, for all $n \in \omega$, there holds $\operatorname{cl} \bigcup_{n \in \omega} V_{n} \neq X$. Then the function $s_{o p}$ is called a winning strategy for II player in the open-open game and we say that the space X is II-favorable.

It is known [2] that the open-open game G is equivalent to G_{2}. We consider only games with the length equal to ω. In [2] the authors introduced a game G_{7} which is played as follows: In the n-th inning II chooses \mathcal{O}_{n}, a family of open sets with $\bigcup \mathcal{O}_{n}$ dense in X. I responds with \mathcal{T}_{n}, a finite subfamily of \mathcal{O}_{n}; I wins if $\bigcup_{n \in \omega} \mathcal{T}_{n}$ is dense subset of X; otherwise, II wins.

According to A. Szymański [13] a sequence $\left\{\mathcal{P}_{n}: n \in \omega\right\}$ of open families in X is a tiny sequence if
(1) $\bigcup \mathcal{P}_{n}$ is dense in X for all $n \in \omega$
(2) if \mathcal{F}_{n} is a finite subfamily of \mathcal{P}_{n} for each $n \in \omega$ then $\bigcup\left\{\bigcup \mathcal{F}_{n}: n \in \omega\right\}$ is not dense in X.
We call a sequence $\left\{\mathcal{P}_{n}: n \in \omega\right\}$ of open families in X a 1-tiny sequence if
(1) $\cup \mathcal{P}_{n}$ is dense in X for all $n \in \omega$
(2) if F_{n} is a member of \mathcal{P}_{n} for each $n \in \omega$ then $\bigcup\left\{F_{n}: n \in \omega\right\}$ is not dense in X.
M. Scheepers used in the paper [12] negation of the existence of tiny sequence, and 1-tiny sequence - called these properties $S_{\text {fin }}(\mathcal{D}, \mathcal{D})$ and $S_{1}(\mathcal{D}, \mathcal{D})$ respectively. In this paper we refer to notions tiny sequence and 1-tiny sequence, because in some situations (Theorem 1.1 and 1.2) we can define them.

Recall another game G_{4} introduced in 2]. In the n-th inning player I chooses finite open family \mathcal{A}_{n}. Player II responds with a finite, open family \mathcal{B}_{n} with $\left|\mathcal{B}_{n}\right|=\left|\mathcal{A}_{n}\right|$ and for each $V \in \mathcal{A}_{n}$ there exists $W \in \mathcal{B}_{n}$ such that $W \subseteq V$. I wins if $\bigcup_{n \in \omega} \bigcup \mathcal{B}_{n}$ is dense subset of X; otherwise, II wins. One can prove that the game G_{7} is equivalent to the game G_{4} in a way similar to the proof of the equivalence between games G and G_{2}.

From now on we consider only c.c.c. spaces.

Theorem 1.1 (M. Scheepers [12, Theorem 2]). II has a winning strategy in the game G_{7} if and only if there exists a tiny sequence.

Theorem 1.2 (M. Scheepers [12, Theorem 14]). Player II has a winning strategy in the game G_{2} if and only if there exists a 1-tiny sequence.

2. The main results

Recall that X is called a II-favorable space if player II a has winning strategy in the game G. If player I has a winning strategy in the game G then we say that the space is I-favorable.

The following theorem was proven by K. Kuratowski and S. Ulam, see [9]. In order to formulate it, let us recall that: a π-base is a family of open, nonempty sets such that any open set contains a set from this family, and the π-weight of a space is the smallest cardinality of a π-base in this space.

Let X and Y be topological spaces such that Y has countable π-weight. If $E \subseteq X \times Y$ is a nowhere dense set, then there is a meager set $P \subseteq X$ such that the section $E_{x}=\{y:(x, y) \in E\}$ is nowhere dense in Y for each point $x \in X \backslash P$.

A space Y is universally Kuratowski-Ulam (for short, uK-U space), whenever for a topological space X and a nowhere dense set $E \subseteq X \times Y$ the set

$$
\{x \in X:\{y \in Y:(x, y) \in E\} \text { is not nowhere dense in } Y\}
$$

is meager in X, see D. Fremlin [6] (compare [3]). In the paper [7] authors have shown that a compact I-favorable space is universally Kuratowski-Ulam and posed a question: Does there exist a compact universally KuratowskiUlam space which is not I-favorable? We will partially answer to this question, namely we will prove that a II-favorable space is not universally KuratowskiUlam space.

Theorem 2.1. Let X be a dense in itself space with a π-base $\mathcal{B}=\bigcup_{n \in \omega} \mathcal{B}_{n}$, where \mathcal{B}_{n} is a maximal family of pairwise disjoint open sets for $n \in \omega$ and let Y be II-favorable c.c.c. space. Then the Kuratowski-Ulam theorem does not hold in $X \times Y$.

Proof. By Theorem 1.2 there is a 1-tiny sequence $\left\{\mathcal{P}_{n}: n \in \omega\right\}$. Since the space Y satisfies c.c.c., we can assume that each \mathcal{P}_{n+1} is a countable, open, pairwise disjoint family. We can also assume that every \mathcal{P}_{n+1} is a refinement of \mathcal{P}_{n}, i.e. each member of \mathcal{P}_{n+1} is a subset of a member of \mathcal{P}_{n}. Let $\left\{V_{\sigma}^{n}\right.$: $\left.\sigma \in{ }^{n} \mathbb{N}\right\}$ be an enumeration of the family \mathcal{P}_{n} such that for each $\tau \in{ }^{n-1} \mathbb{N}$, $\left\{V_{\tau \sim k}^{n}: k \in \mathbb{N}\right\}=\mathcal{P}_{n}$.

We can assume that \mathcal{B}_{n+1} is a refinement of \mathcal{B}_{n} and $\mid\left\{V \in \mathcal{B}_{n+1}: V \subseteq\right.$ $U\} \mid \geq \omega$ for each $U \in \mathcal{B}_{n}$. For each $n \in \mathbb{N}$ fix a function $f_{n}: \mathcal{B}_{n} \rightarrow{ }^{n} \mathbb{N}$ such that for a fixed $U \in \mathcal{B}_{n}$ we have

$$
\begin{equation*}
\left\{f_{n+1}(V): V \in \mathcal{B}_{n+1} \text { and } V \subseteq U\right\}=f_{n}(U) \frown \mathbb{N} . \tag{2.1}
\end{equation*}
$$

Therefore, there holds the condition:
(2.2) \quad if $V \subset U$ then $f_{n+1}(V) \supset f_{n}(U)$ for every $V \in \mathcal{B}_{n+1}$ and $U \in \mathcal{B}_{n}$.

Consider an open set

$$
F=\bigcup\left\{\bigcup\left\{U \times V_{f_{n}(U)}^{n}: U \in \mathcal{B}_{n}\right\}: n \in \mathbb{N}\right\}
$$

We shall show that F is dense and $F_{x}=\{y \in Y:(x, y) \in F\}$ is not dense for each $x \in X$. If $x \in X \backslash \bigcap\left\{\bigcup \mathcal{B}_{n}: n \in \mathbb{N}\right\}$ then it is easy to see that E_{x} is not dense. If $x \in \bigcap\left\{\cup \mathcal{B}_{n}: n \in \mathbb{N}\right\}$ then by condition (2.2) there is $\sigma \in \mathbb{N}_{\mathbb{N}}$ such that for each $n \in \mathbb{N}$ there exists $U_{n} \in \mathcal{B}_{n}$ with $f_{n}\left(U_{n}\right)=\sigma \mid n$ and $x \in \bigcap\left\{U_{n}: n \in \mathbb{N}\right\}$, hence $F_{x}=\bigcup\left\{V_{\sigma \mid n}^{n}: n \in \mathbb{N}\right\}$. Since $V_{\sigma \mid n}^{n} \in \mathcal{P}_{n}$ for each $n \in \mathbb{N}$ and $\left\{\mathcal{P}_{n}: n \in \omega\right\}$ is a 1-tiny sequence the set $\bigcup\left\{V_{\sigma \mid n}^{n}: n \in \mathbb{N}\right\}$ is not dense.

Now we show that F is a dense set. Let $U \times W$ be any open set. Since \mathcal{B} is a π-base there are $n \in \mathbb{N}$ and $U_{0} \in \mathcal{B}_{n}$ such that $U_{0} \subseteq U$. Let $\sigma=f_{n}\left(U_{0}\right)$, since $\left\{V_{\sigma \sim k}^{n+1}: k \in \mathbb{N}\right\}$ is a dense family, we get that $W \cap V_{\sigma \frown k}^{n+1} \neq \emptyset$ for some $k \in \mathbb{N}$. By (1), we may take $U_{1} \subseteq U_{0}$ such that $U_{1} \in \mathcal{B}_{n+1}$ and $f_{n+1}\left(U_{1}\right)=\sigma \sim k$. Thus $U_{1} \times V_{f_{n+1}\left(U_{1}\right)}^{n+1} \cap U \times W \neq \emptyset$.

Since \mathbb{R} with natural topology satisfies assumption of the above theorem and every universally Kuratowski-Ulam space is c.c.c. space, we get the following theorem.

Theorem 2.2. A II-favorable space is not universally Kuratowski-Ulam space.

Following [10, pp. 86-91] recall category measure space. If X is a topological space with finite measure μ defined on the σ-algebra S of sets having the Baire property, and if $\mu(E)=0$ if and only if E is of a meager set, then (X, S, μ) is called a category measure space. An example of a regular Baire space which is a category measure space, is an open interval $(0,1)$ with Lebesgue measure μ_{l} and density topology \mathcal{T}_{d}, see [10]. For density topology and measurable set $A \subseteq(0,1)$ the following conditions are equivalent:
(1) $\mu_{l}(A)=0$,
(2) A is closed and nowhere dense.

In the space $\left((0,1), \mathcal{T}_{d}\right)$ there is a 1 -tiny sequence but there is no tiny sequence. Indeed, define a 1 -tiny sequence in the following way: let $\mathcal{P}_{n}=\{U: U \in$ \mathcal{T}_{d} and $\left.\mu_{l}(U) \leq \frac{1}{3^{n}}\right\}$. If $\left\{U_{n}: n \in \mathbb{N}\right\}$ is a family chosen by player I then $\mu_{l}\left(\bigcup\left\{U_{n}: n \in \mathbb{N}\right\}\right) \leq \frac{1}{2}$. Therefore $\left\{U_{n}: n \in \mathbb{N}\right\}$ is not a dense family. Now assume that there exists a tiny sequence $\left\{\mathcal{P}_{n}: n \in \mathbb{N}\right\}$. In each stage we choose a finite subfamily $\mathcal{R}_{n} \subset \mathcal{P}_{n}$ such that $\mu_{l}\left(\bigcup\left\{\bigcup \mathcal{R}_{i}: i \leq n\right\}\right) \geq 1-\frac{1}{n}$, hence we get a dense family $\bigcup\left\{\mathcal{R}_{n}: n \in \mathbb{N}\right\}$.

The authors of the paper [2] posed a question (Question 4.3): Does a player have a winning strategy in the game G if and only if the same player has a winning strategy in the game G_{7}. The author of paper [12] showed that if $\operatorname{cov}(\mathcal{M})<\mathfrak{d}$ the answer is NO. We show that games G and G_{7} are not equivalent.

Corollary 2.3. The game G is not equivalent to the game G_{7}.
Proof. By Theorem 1.2 a winning strategy of II player in the game G is equivalent to the existence of a 1 -tiny sequence and by Theorem 1.1 the existence of a winning strategy of player II in the game G_{7} is equivalent to the existence of a tiny sequence. Since in the space $\left((0,1), \mathcal{T}_{d}\right)$ there is a 1 -tiny sequence but there is no tiny sequences we get that games G and G_{7} are not equivalent.

Since the game G_{7} is equivalent to the game G_{4}, we get the following:
Corollary 2.4. The game G is not equivalent to the game G_{4}.

3. Some remarks

It is known that on the ω_{1} with discrete topology II player has a winning strategy in the game G_{7}, but one can pose a question:

Is it possible to construct a tiny sequence $\left\{\mathcal{P}_{n}: n \in \omega\right\}$ on a discrete space of the size ω_{1} with $\left|\mathcal{P}_{n}\right|=\omega$ for all $n \in \omega$?

The following Remark 3.1 gives us the answer - it is possible if and only if the dominating number is equal ω_{1}. This is reformulation of well know results about critical cardinal number, see W. Just, A.W. Miller, M. Scheepers and P.J. Szeptycki [5]; D. Fremlin, A.W. Miller [4] and B. Tsaban [14].

Recall that $f \leq^{*} g$ denotes that for almost all $n \in \omega$ holds $f(n) \leq g(n)$, where f, g are functions defined on natural numbers. A family $\mathcal{R} \subseteq{ }^{\omega} \omega$ is
a dominating family if for each $f \in{ }^{\omega} \omega$ there is $g \in \mathcal{R}$ such that $f \leq^{*} g$. The dominating number \mathfrak{d} is the smallest cardinality of a dominating family:

$$
\mathfrak{d}=\min \{|\mathcal{R}|: \mathcal{R} \text { is dominating }\}
$$

Remark 3.1. The smallest cardinality κ such that there exists a tiny sequence $\left\{\mathcal{P}_{n}: n \in \omega\right\}$ on the discrete space of the size κ with $\left|\mathcal{P}_{n}\right|=\omega$ for all $n \in \omega$ is equal to \mathfrak{d}.

Proof. Let X be any discrete space for which there exists a tiny sequence $\left\{\mathcal{P}_{n}: n \in \omega\right\}$. We can assume that every \mathcal{P}_{n} is a partition of X into countably many blocks $\left\{X_{0}^{n}, X_{1}^{n}, \ldots\right\}$, so we may define for each $x \in X$ a function $f_{x}: \omega \rightarrow \omega$ in the following way: $f_{x}(n)=k$ whenever $x \in X_{k}^{n}$. Take an arbitrary function $f: \omega \rightarrow \omega$, and any $x \in X \backslash \bigcup\left\{\bigcup\left\{X_{k}^{n}: k \leq f(n)\right\}: n<\omega\right\}$, then f is dominated by the function f_{x}. It shows that $\left\{f_{x}: x \in X\right\}$ is a dominating family, hence $|X| \geq \mathfrak{d}$.

Now, let $\mathcal{F} \subset \omega^{\omega}$ be a dominating family of the cardinality \mathfrak{d}. Without loss of generality assume that for each function $f: \omega \rightarrow \omega$ there is $g \in \mathcal{F}$ such that $f(n)<g(n)$ for all $n<\omega$. We treat \mathcal{F} as a discrete topological space. For $n, k \in \omega$ put $A_{k}^{n}=\{f \in \mathcal{F}: f(n) \leq k\}$ and set $\mathcal{P}_{n}=\left\{A_{k}^{n}: k<\omega\right\}$. Of course, each family \mathcal{P}_{n} is increasing and has the union equal to \mathcal{F}. From each \mathcal{P}_{n} take some single $A_{f(n)}^{n}$ where $f: \omega \rightarrow \omega$. If $\bigcup\left\{A_{f(n)}^{n}: n<\omega\right\}$ was equal to \mathcal{F}, then it would contain such a function g that $g(n)>f(n)$ for all $n \in \omega$, but it is not the case. Therefore $\left\{\mathcal{P}_{n}: n \in \omega\right\}$ is a tiny sequence.

Recall a definition of a Baire number $\operatorname{cov}(\mathcal{M})$ for the ideal \mathcal{M} of meager subsets of real line \mathbb{R} :

$$
\operatorname{cov}(\mathcal{M})=\min \{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{M} \text { and } \bigcup \mathcal{A}=\mathbb{R}\} .
$$

T. Bartoszyński [1 proved that $\operatorname{cov}(\mathcal{M})$ is the cardinality of the smallest family $\mathcal{F} \subseteq{ }^{\omega} \omega$ such that

$$
\forall\left(g \in{ }^{\omega} \omega\right) \exists(f \in \mathcal{F}) \forall(n \in \omega) f(n) \neq g(n) .
$$

We get another well known characterization of such families by a 1 -tiny sequence.

Remark 3.2. The smallest cardinality κ such that there exists a 1 -tiny sequence $\left\{\mathcal{P}_{n}: n \in \omega\right\}$ on the discrete space of the size κ with $\left|\mathcal{P}_{n}\right|=\omega$ for all $n \in \omega$ is equal to $\operatorname{cov}(\mathcal{M})$.

We give the proof for the sake of completeness. We shall prove that the smallest cardinality of a family $\mathcal{F} \subseteq{ }^{\omega} \omega$ such that

$$
\begin{equation*}
\forall\left(g \in{ }^{\omega} \omega\right) \exists(f \in \mathcal{F}) \forall(n \in \omega) f(n) \neq g(n) \tag{*}
\end{equation*}
$$

is equal to the smallest cardinality κ such that there exists a 1 -tiny sequence $\left\{\mathcal{P}_{n}: n \in \omega\right\}$ on the discrete space κ with $\left|\mathcal{P}_{n}\right|=\omega$ for all $n \in \omega$.

Proof. Let $\mathcal{F}=\left\{f_{\alpha}: \alpha<\kappa\right\} \subseteq{ }^{\omega} \omega$ be a family with the property $(*)$. Define $A_{n}^{i}=\{f \in \mathcal{F}: f(i)=n\}$ for every $i, n \in \omega$. Let $\mathcal{P}_{i}=\left\{A_{n}^{i}: n \in \omega\right\}$ for $i \in \omega$. We will show that $\left\{\mathcal{P}_{i}: i \in \omega\right\}$ is a 1-tiny sequence. Assume that we have chosen $A_{n_{i}}^{i} \in \mathcal{P}_{i}$ for each $i \in \omega$. Define a function $g(i)=n_{i}$ for $i \in \omega$. Since \mathcal{F} satisfies $(*)$ there is $f \in \mathcal{F}$ such that $f(i) \neq g(i)$ for each $i \in \omega$. Therefore we get $f \in \mathcal{F} \backslash \bigcup\left\{A_{n_{i}}^{i}: i \in \omega\right\}$.

Let $\left\{\mathcal{P}_{n}: n \in \omega\right\}$ be a 1-tiny sequence with $\left|\mathcal{P}_{n}\right|=\omega$ and $\bigcup \mathcal{P}_{n}=\kappa$ for each $n \in \omega$. We can assume that each \mathcal{P}_{n} consists of pairwise disjoint subsets of κ. Let $\left\{A_{k}^{n}: k \in \omega\right\}$ be a enumeration of \mathcal{P}_{n}. We define a function $f_{x} \in{ }^{\omega} \omega$ for each $x \in \kappa$ in the following way: $f_{x}(i)=n$, where $x \in A_{n}^{i}$ for each $i \in \omega$. The family $\left\{f_{x}: x \in \kappa\right\}$ satisfies $(*)$. Indeed, let $g \in{ }^{\omega} \omega$ be any function. Since $\left\{\mathcal{P}_{n}: n \in \omega\right\}$ is a 1-tiny sequence, choose $x \in \kappa \backslash \bigcup\left\{A_{g(i)}^{i}: i \in \omega\right\}$. Finally, observe that $f_{x}(i) \neq g(i)$ for every $i \in \omega$.

We shall recall definition of the bounding number

$$
\left.\mathfrak{b}=\min \left\{|\mathcal{F}|: \mathcal{F} \subseteq{ }^{\omega} \omega \text { and } \forall\left(g \in{ }^{\omega} \omega\right) \exists(f \in \mathcal{F}) \neg\left(f \leq^{*} g\right)\right)\right\}
$$

We say that a sequence $\left\{\mathcal{P}_{n}: n \in \omega\right\}$ of open families in X is a \mathfrak{b}-tiny sequence if
(1) $\bigcup \mathcal{P}_{n}$ is dense in X for all $n \in \omega$;
(2) if \mathcal{F}_{n} is a finite subfamily of \mathcal{P}_{n} for each $n \in \omega$, then there exists strictly increasing sequence $\left\{n_{i}: i \in \omega\right\}$ such that

$$
\bigcup\left\{\bigcup \mathcal{F}_{n_{i}}: i \in \omega\right\}
$$

is not dense in X.
We get the next reformulation of the bounding number.
REmark 3.3. The smallest cardinality κ such that there exists a \mathfrak{b}-tiny sequence $\left\{\mathcal{P}_{n}: n \in \omega\right\}$ on the discrete space of the size κ with $\left|\mathcal{P}_{n}\right|=\omega$ for all $n \in \omega$ is equal to \mathfrak{b}.

Acknowledgement. The authors are indebted to the Referee for very careful reading of the paper and valuable comments.

References

[1] Bartoszyński T., Combinatorial aspects of measure and category, Fund. Math. 127 (1987), no. 3, 225-239.
[2] Daniels P., Kunen K., Zhou H., On the open-open game, Fund. Math. 145 (1994), no. 3, 205-220.
[3] Fremlin D., Natkaniec T., Recław I., Universally Kuratowski-Ulam spaces, Fund. Math. 165 (2000), no. 3, 239-247.
[4] Fremlin D., Miller A.W., On some properties of Hurewicz, Menger and Rothberger, Fund. Math. 129 (1988), 17-33.
[5] Just W., Miller A.W., Scheepers M., Szeptycki P.J., The combinatorics of open covers (II), Topology Appl. 73 (1996), 241-266.
[6] Fremlin D., Universally Kuratowski-Ulam spaces, a note from: http://www.essex.ac. uk/maths/staff/fremlin/preprints.htm
[7] Kucharski A., Plewik S., Game approach to universally Kuratowski-Ulam spaces, Topology Appl. 154 (2007), no. 2, 421-427.
[8] Kucharski A., Plewik S., Inverse systems and I-favorable spaces, Topology Appl. 156 (2008), no. 1, 110-116.
[9] Kuratowski K., Ulam S., Quelques propriétés topologiques du produit combinatoire, Fund. Math. 19 (1932), 247-251.
[10] Oxtoby J., Measure and category, Springer-Verlag, New York, 1971.
[11] Pawlikowski J., Undetermined sets of point-open games, Fund. Math. 144 (1994), 279285.
[12] Scheepers M., Combinatorics of open covers (V): Pixley-Roy spaces of sets of reals, and ω-covers., Topology Appl. 102 (2000), no. 1, 13-31.
[13] Szymański A., Some applications of tiny sequences, in: Proceedings of the 11th winter school on abstract analysis (Železna Rudá, 1983), Rend. Circ. Mat. Palermo (2) 1984, Suppl. no. 3, pp. 321-328.
[14] Tsaban B., Strong γ-sets and other singular spases, Topology Appl. 153 (2005), 620639.

Institute of Mathematics
University of Silesia
Bankowa 14
40-007 Katowice
Poland
e-mail: piotr.kalemba@us.edu.pl
e-mail: akuchar@math.us.edu.pl

[^0]: Received: 10.03.2015. Revised: 6.06.2015.
 (2010) Mathematics Subject Classification: 54G20, 91A44, 54F99.

 Key words and phrases: II-favorable space, uK-U space, tiny sequence.
 Andrzej Kucharski thanks European Science Foundation for their support through the grant 3007 within the INFTY program.

