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EXISTENCE OF GENERALIZED, POSITIVE AND
PERIODIC SOLUTIONS FOR SOME DIFFERENTIAL

EQUATIONS OF ORDER II

Jan Ligęza

Abstract. We study the existence of positive periodic solutions of the equa-
tions

y′′(x)− P ′(x)y(x) + µQ′(x)f(x, y(x)) = 0,

y′′(x) + P ′(x)y(x) = µQ′(x)f(x, y(x)),

where µ > 0, P and Q are real nondecreasing functions, P ′ and Q′ are 1-
periodic distributions, f is a continuous function and 1-periodic in the first
variable. The Krasnosielski fixed point theorem on cone is used.

1. Introduction

Positive solutions of various boundary value problem for ordinary differen-
tial equations have been considered by several authors (see for instance [1], [4],
[15], [18], [19]). Many papers on the generalized ordinary differential equations
have appeared too (for instance [5], [8], [10], [11], [14], [16], [17]). The pa-
per deals with existence of positive periodic solutions of nonlinear differential
equations of the form:
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y′′(x)− P ′(x)y(x) + µQ′(x)f(x, y(x)) = 0,(1.1)

y′′(x) + P ′(x)y(x) = µQ′(x)f(x, y(x)),(1.2)

where µ > 0, P and Q are real, nondecreasing functions, P ′ and Q′ are
1-periodic distribution. The derivative is understood in the distributional
sense. The solutions of equations (1.1) and (1.2) are considered in the class
of all distributions for which the first derivatives (in the distribution sense)
are functions of locally of bounded variation on the interval (−∞,∞). This
class will be denoted by V 1. The class of all functions of locally of bounded
variation on the interval (−∞,∞) will be denoted by V . The product P ′y we
mean in the following way

P ′y =

( x∫

x0

y(s)dP (s)

)′
,

where the integral is understood in the sense of Riemann–Stieltjes, y ∈ C and
P ∈ V (C denotes the space of all continuous functions y : R→ R).

By a solution of equation (1.1) or (1.2) we mean every function y ∈ V 1,
which satisfies the equation (1.1) or (1.2) in the distributional sense.

2. Notation and lemmas

We denote I = [0, 1]× [0, 1] and I0 = (0, 1)× (0, 1).
By a delta sequence we mean a sequence of real, C∞(R), nonnegative,

scalar functions {δn(x)} satisfying:

(a)
∞∫
−∞

δn(x)dx = 1,

(b) δn(x) = 0 for |x| ≥ αn, where {αn} is a sequence of positive numbers
which αn → 0,

(c) δn(x) = δn(−x) for x ∈ R (see [3], p. 75).
We say that a distribution g in R is 1-periodic, if

g(x+ 1) = g(x) (see [17], p. 229).
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Now we assume two hypotheses:
Hypothesis H1. The functions P and Q have the following properties: P ∈
V,Q ∈ V, P ′ ≥ 0, Q′ ≥ 0, P ′ and Q′ are 1-periodic distributions.
Hypothesis H2. Assumptions H1 are fulfilled, P ′ 6= 0 and Q′ 6= 0.

Lemma 2.1. If hypothesis H1 is satisfied and {δn(x)} is a delta sequence,
then

lim
n→∞

(P ∗ δn)(x0) =
P (x+0 ) + P (x−0 )

2
= P ∗(x0),

where x0 ∈ (−∞,∞), P (x+0 ) (P (x−0 )) denotes the left-hand (the right-hand)
side limits of P at the point x0 (the asterisk ∗ denotes the convolution of
functions P and δn).

Proof. Let

g(x) = P (x+0 )H(x− x0) + P (x−0 )H(x0 − x)

and let

P (x) = (P (x)− g(x)) + g(x),

where

H(x− x0) =

{
1, if x ≥ x0,
0, if x < x0.

Then

Pn(x0) = ((P − g) ∗ δn)(x0) + gn(x0),

where

gn(x0) = (g ∗ δn)(x0).

Evidently

lim
n→∞

((P − g) ∗ δn)(x0) = 0
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and

lim
n→∞

Pn(x0) = lim
n→∞

gn(x0) = lim
n→∞

0∫

−αn

P (x+0 )H(−t)δn(t)dt

+

αn∫

0

P (x−0 )H(t)δn(t)dt =
P (x+0 )

2
+
P (x−0 )

2
= P ∗(x0). �

Remark 2.2. Now we define the value of the distribution at the point in
the Łojasiewicz sense (see [13]). If G is a distribution defined on the interval
(x0 − α, x0 + α) ⊂ R and if the limit

lim
ε→0

G

[
1

|ε|ϕ
(
x− x0
ε

)]

exists, for each ϕ ∈ D, it is a constant distribution C (D denotes the space
of infinitely differentiable functions with compact support). The constant
distribution C is said to be the value of the distribution G at the point x0
and is denoted by G(x0) (see [13]). So

G(x0)[ϕ] = lim
ε→0

G

[
1

|ε|ϕ
(
x− x0
ε

)]
= C

∞∫

−∞

ϕ(x)dx.

Lemma 2.3. If g is an 1-periodic distribution and if G′ = g, then there
exists the value of the distribution G(x+ 1)−G(x) at the point zero (see [3],
p. 50).

Now we introduce the definite integral of a distribution g (defined on the
interval (a− ε, b+ ε), ε > 0). Namely, we put

b∫

a

g(x)dx = (G(x+ b)−G(x+ a))(0),

provided that the value of the distribution G(x + b) −G(x + a) at the point
0 exists and G′ = g (see [3], p. 47, [13]).
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Lemma 2.4. If P ∈ V and P ′ is 1-periodic distribution, then

1∫

0

P ′(x)dx = P (1+)− P (0+) = P (1−)− P (0−)

=
P (1+) + P (1−)

2
− P (0+) + P (0−)

2
= P ∗(1)− P ∗(0) = Pn(x+ 1)− Pn(x) = Pn(1)− Pn(0),

where

Pn = P ∗ δn.

Proof. Since

(P (x+ 1)− P (x))′ = P ′(x+ 1)− P ′(x) = 0,

therefore

P (x+ 1)− P (x) ≡ C (C denotes a constant distribution).

Hence

Pn(x+ 1)− Pn(x) = Pn(1)− Pn(0) = C

= P (1+)− P (0+) = P (1−)− P (0−)

and (by Lemma 2.1)

lim
n→∞

Pn(1)− Pn(0) = P ∗(1)− P ∗(0) = C =

1∫

0

P ′(x)dx. �

Lemma 2.5. Let hypothesis H2 be satisfied. Then the equation

(2.1) y′′(x)− P ′(x)y(x) = 0

has only the trivial 1-periodic solution of the class V 1.
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Proof. If y ∈ V 1 and y 6≡ 0 is an 1-periodic solution of equation (2.1),
then

y′′(x)y(x)− P ′(x)y2(x) = 0.

Hence

1∫

0

y(x)y′′(x)dx−
1∫

0

P ′(x)y2(x)dx = 0.

On the other hand

1∫

0

y(x)y′′(x)dx−
1∫

0

P ′(x)y2(x)dx

=

1∫

0

(y(x)y′(x))′ − y′2(x)dx−
1∫

0

P ′(x)y2(x)dx

= y∗(1)y′
∗
(1)− y∗(0)y′

∗
(0)−

1∫

0

y′
2
(x)dx−

1∫

0

P ′(x)y2(x)dx

= −
1∫

0

y′
2
(x)dx−

1∫

0

P ′(x)y2(x)dx = 0.

The last equality gives

y′(x) = 0

and

y(x) = C,

where C is a constant. If C 6= 0, then we obtain contradiction (by hypothesis
H2). �
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Now we give three hypothesis.
Hypothesis H3. Assumptions H2 are satisfied and

0 <

1∫

0

P ′(x)dx < 16.

Hypothesis H4. Assumptions H2 are fulfilled and

0 <

1∫

0

P ′(x)dx < 4.

Hypothesis H5. 1o The function f : R2 → R+
0 is continuous (R+

0 = [0,∞)).
2o f(x+ 1, v) = f(x, v) for all (x, v) ∈ R2.

Lemma 2.6. Let P ∈ V, Pn = P ∗ δn and

b∫

a

|P ′n(x)|dx < 4

b− a.

Then the problem

y′′(x) + P ′n(x)y(x) = 0, y(a) = 0, y(b) = 0

has only the trivial solution (see [7], p. 408, Corollary 5.1).

Lemma 2.7. Let hypothesis H3 be satisfied. Then the equation

y′′(x) + P ′(x)y(x) = 0

has only the trivial, 1-periodic solution of the class V 1 (see [11]).

Lemma 2.8. Let a, x0, x1 ∈ R. We assume that P ∈ V and

Pn(x) = (P ∗ δn)(x).

Then
(a) the problem

y′′(x) + P ′(x)y(x) = 0, y(a) = x0, y
′∗(a) = x1

has exactly one solution y of the class V 1 (see [10]),
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(b) y = lim
n→∞

yn (almost uniformly)

y′
∗
(a) = lim

n→∞
y′n(a),

where yn is the solution of the problem

y′′(x) + P ′n(x)y(x) = 0, yn(a) = x0, y
′
n(a) = x1 (see [10]),

(c) the sequences {yn(x)} and {y′n(x)} are locally equibounded on R,

(d) y(x) = y0+x1(x−x0)−
x∫
x0

(x−s)y(s)dP ∗(s) (see [2], p. 341–342, Theorem

11.2.1),

(e)
(
x∫
x0

y(s)dP ∗(s)

)′
=

(
x∫
x0

y(s)d
∼
P (s)

)′
,

where
∼
P ∈ V,

∼
P (s) =

∼
P
∗
(s) for every point of continuity of functions

∼
P and

∼
P
∗
and the derivative is understood in the distributional sense. (The last

equality follows from [16], p. 38, Lemma 4.23.)

Lemma 2.9. Suppose that all assumptions of Lemma 2.5 are fulfilled and
let P ′n(x) = (P ∗ δn)′(x). Then
(i) the problem

(2.3)n y′′(x)− P ′n(x)y(x) = 0, y(0) = y(1), y′(0) = y′(1)

has only the trivial 1-periodic solution for n ∈ N.
(ii) the Green function G1n(x, s) of problem (2.3)n is negative for all (x, s) ∈

I and n ∈ N,
(iii) there exist constants γ1 and M1 such that

0 < γ1 ≤ |G1n(x, s)| ≤M1 <∞

for n ∈ N and (x, s) ∈ I,
(iv) there exist constants d1 and M1 such that

d1|G1n(x, s)| ≥ |G1n(s, s)|

for n ∈ N and (x, s) ∈ I,
(
d1 ≥ M1

γ1

)
and

|G1n(s, s)| ≥M1|G1n(x, s)|

for n ∈ N and (x, s) ∈ I,
(
M1 ∈

(
0, γ1

M1

))
.
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Proof. The proof of property (i) follows from Lemma 2.5. Now we will
examine property (ii). Let

(2.4)n G1n(x, s) =

{
a1n(s)ϕ1n(x) + a2n(s)ψ1n(x), if 0 ≤ x ≤ s ≤ 1,

b1n(s)ϕ1n(x) + b2n(s)ψ1n(x), if 0 ≤ s ≤ x ≤ 1,

where ϕ1n, and ψ1n are solutions of the problems

(2.5)n ϕ′′1n(x) = P ′n(x)ϕ1n(x), ϕ1n(0) = 1, ϕ′1n(0) = 0,

(2.6)n ψ′′1n(x) = P ′n(x)ψ1n(x), ψ1n(0) = 0, ψ′1n(0) = 1,

and a1n, a2n, b1n, b2n satisfy the following system of equations

(2.7)n





a1n(s)ϕ1n(s)− b1n(s)ϕ1n(s) + a2n(s)ψ1n(s)− b2n(s)ψ1n(s) = 0,

−a1n(s)ϕ′1n(s) + b1n(s)ϕ′1n(s)− a2n(s)ψ′1n(s) + b2n(s)ψ′1n(s) = 1,

a1n(s)− b1n(s)ϕ1n(1)− b2n(s)ψ1n(1) = 0,

−b1n(s)ϕ′1n(1) + a2n(s)− b2n(s)ψ′1n(1) = 0.

Let

(2.8)n W o
1n =

∣∣∣∣
ϕ1n(0)− ϕ1n(1) ψ1n(0)− ψ1n(1)
ϕ′1n(0)− ϕ′1n(1) ψ′1n(0)− ψ′1n(1)

∣∣∣∣

and let

(2.9)n W1n =

∣∣∣∣∣∣∣

ϕ1n(s) −ϕ1n(s) ψ1n(s) −ψ1n(s)
−ϕ′1n(s) ϕ′1n(s) −ψ′1n(s) ψ′1n(s)

1 −ϕ1n(1) 0 −ψ1n(1)
0 −ϕ′1n(1) 1 −ψ′1n(1)

∣∣∣∣∣∣∣
.

Let us assume that

yn(x) = c1nϕ1n(x) + ψ1n(x)

is a solution of equation (2.3)n. Then, by (i) we have

(2.10)n W o
1n = 2− ϕ1n(1)− ψ′1n(1) 6= 0 for n ∈ N

and

(2.11)n W1n = W o
1n 6= 0.
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The relations (2.7)n–(2.11)n guarantee the existence of the Green functions
G1n(x, s) of problem (2.3)n. It is not difficult to prove that G1n(x, s) < 0 for
n ∈ N and (x, s) ∈ I (see [18]).

We now show (iii). First we prove that

(2.12) inf
n∈N
|W1n| = m > 0.

If m = 0 then there exists a subsequence {W1nν} such that

lim
ν→∞

W1nν = 0.

Without loss of a generality we can assume that

lim
n→∞

W1n = 0.

From Helly’s theorem (see [12], p. 29, Theorem 1.6.10) it follows that there ex-
ist subsequences {ϕ(i)

1nk} and {ψ
(i)
nk} of sequences {ϕ

(i)
1n} and {ψ

(i)
1n} convergent

to functions ϕ(i)
1 ∈ V and ψ(i)

1 ∈ V for i = 0, 1; respectively. Besides

lim
k→∞

ϕ1nk(x) = ϕ1(x), lim
k→∞

ψnk(x) = ψ1(x)

almost uniformly on (−∞,∞). Thus

(2.13) lim
k→∞

W o
1nk = lim

k→∞
(2− ϕ1nk(1)− ψ′1nk(1)) = 0 = W o

1

and

(2.14) ϕ′′1(x) = P ′(x)ϕ1(x), ϕ1(0) = 1, ϕ′
∗
1(0) = 0,

(2.15) ψ′′1(x) = P ′(x)ψ1(x), ψ1(0) = 0, ψ′
∗
1(0) = 1 (see [10]).

On the other hand the function

y = c1ϕ1 + c2ψ1 (c1, c2 denote constants)

is also a solution of the equation

(2.16) y′′(x) = P ′(x)y(x)

and

(2.17) y(0) = c1 = y(1) = c1ϕ1(1) + c2ψ1(1)
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and

(2.18) y′
∗
(0) = c2 = y′

∗
(1) = c1ϕ

′∗
1(1) + c2ψ

′∗
1(1).

By (2.16)–(2.18) we have
∣∣∣∣
1− ϕ1(1) −ψ1(1)
−ϕ′∗1(1) 1− ψ′∗1(1)

∣∣∣∣ = W o
1 = 0.

Hence, there exists a non trivial, 1-periodic solution of equation (2.16) (of the
class V 1), i.e. (2.12) holds.

Existence of a constant M1 follows from Lemma 2.8 and from (2.5)n–
(2.12). We will show that there exists a constant γ1 such that

(2.19) inf
n∈N

inf
(x,s)∈I

|G1n(x, s)| = γ1 > 0.

If γ1 = 0 then there exists a subsequence {G1nν(xν , sν)} of sequence {G1n(x, s)}
such that

lim
n→∞

inf
(x,s)∈I

G1nν(x, s) = lim
µ→∞

G1nν(xν , sν) = 0,

where (xν , sν) ∈ I.
Without loss of a generality we can assume that

(2.20) lim
n→∞

G1n(xn, sn) = 0 and lim
n→∞

G1n(x, s) = G1(x, s)

uniformly for (x, s) ∈ I and

lim
n→∞

ϕ1n(x) = ϕ1(x), lim
n→∞

ϕ′
∗
1n(x) = ϕ′

∗
1(x),(2.21)

lim
n→∞

ψ1n(x) = ψ1(x), lim
n→∞

ψ′
∗
1n(x) = ψ′

∗
1(x),(2.22)

lim
n→∞

a1nk(s) = a1(s), lim
n→∞

b1n(s) = b1(s),(2.23)

uniformly on [0, 1],

(2.24) lim
n→∞

a2n(s) = a2(s), lim
n→∞

b2n(s) = b2(s)

uniformly on [0, 1]. Then there exists a point (x0, s0) ∈ I such that

(2.25) G1(x0, s0) = 0.



70 Jan Ligęza

Without loss of a generality we can assume that (x0, s0) ∈ I0. Let

∼
y1(x) =

{
G1(x, s0), if x ∈ [s0, 1]

G1(x− 1, s0), if x ∈ [1, s0 + 1] (see [18]).

Then
∼
y1(x0) = 0 and

∼
y1(x) is a solution of the equation

∼
y1
′′
(x)− P ′(x)

∼
y1(x) = 0 for x ∈ (s0, s0 + 1)

i.e.

∼
y1
′′
(x)− (P (x)

∼
y1(x))

′
+ P (x)

∼
y1
′
(x) = 0.

Let

z1 =
∼
y1
′ − P ∼y1 .

Then we get the following system of equations




∼
y1
′
(x) = P (x)

∼
y1(x) + z1(x),

z1
′(x) = −P 2(x)

∼
y1(x)− P (x)z1(x) (see [14]).

If
∼
y1(x0) = 0 then

∼
y1
′
(x0) = z1(x0). So

∼
y1
′
is a continuous function at the

point x0. The inequality G1(x, s) ≤ 0 (for all (x, s) ∈ I) implies
∼
y1
′
(x0) = 0.

By the uniqueness of the solution of the Cauchy problem (Lemma 2.8) we get

∼
y1(x) = 0 for x ∈ (s0, s0 + 1).

Let y1n(x) be a solution of the problem



y1n
′′(x)− Pn′(x)y1n(x) = 0,

y1n(x0) =
∼
y1n(x0), y1n

′(x0) =
∼
y1n
′
(x0),

where

∼
y1n(x) =

{
G1n(x, s0), if x ∈ [s0, 1],

G1n(x− 1, s0), if x ∈ [1, s0 + 1].
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Let

z1n(x) = y′1n(x)− Pn(x)y1n(x).

Then

lim
n→∞

z1n(x0) = lim
n→∞

y1n(x0) = 0.

Consequently,

lim
n→∞

z1n(x) = 0 = lim
n→∞

y1n(x) = lim
n→∞

y′1n(x) for x ∈ (−∞,∞).

This gives

lim
n→∞

(y1n
′(s0)− y1n′(s0 + 1)) = 0 = lim

n→∞
[b1n(s0)ϕ1n

′(s0)

+ b2n(s0)ψ1n
′(s0)− a1n(s0)ϕ1n

′(s0)− a2n(s0)ψ1n
′(s0)] = 1,

which is impossible. Thus (iii) holds. The property (iv) is evident. �

Lemma 2.10. If P ′ satisfies H4 and Pn′(x) = (P ∗ δn)′(x), then
(j) the problem

(2.26)n y′′(x) + Pn
′(x)y(x) = 0, y(0) = y(1), y′(0) = y′(1)

has only the trivial 1-periodic solution for n ∈ N;
(jj) the Green function G2n(x, s) of problem (2.26)n is positive for all (x, s) ∈

I and n ∈ N;
(jjj) there exist constants γ2 and M2 such that

0 < γ2 ≤ G2n(x, s) ≤M2 <∞

for n ∈ N and (x, s) ∈ I;
(jv) there exist constants d2 and M2 such that

d2G2n(x, s) ≥ G2n(s, s) for n ∈ N

and (x, s) ∈ I,
(
d2 ≥ M2

γ2

)
and

G2n(s, s) ≥M2G2n(x, s) for n ∈ N,

(x, s) ∈ I,
(
M2 ∈

(
0, M2

γ2

))
.
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Proof. The proof of property (j) follows from Lemma 2.7 and [9]. The
proof of property (jj) is similar to that of property (ii). Let

(2.27)n G2n(x, s) =

{
a1n(s)ϕ2n(x) + a2n(s)ψ2n(x), if 0 ≤ x ≤ s ≤ 1,

b1n(s)ϕ2n(x) + b2n(s)ψ2n(x), if 0 ≤ s ≤ x ≤ 1,

where ϕ2n and ψ2n are solutions of the problems

(2.28)n ϕ2n
′′(x) + Pn

′(x)ϕ2n(x) = 0, ϕ2n(0) = 1, ϕ2n
′(0) = 0,

(2.29)n ψ2n
′′(x) + Pn

′(x)ψ2n(x) = 0, ψ2n(0) = 0, ψ2n
′(0) = 1,

and a1n, a2n, b1n, b2n satisfy the system of equations

(2.30)n





a1n(s)ϕ2n(s)− b1n(s)ϕ2n(s) + a2n(s)ψ2n(s)− b2n(s)ψ2n(s) = 0,

−a1n(s)ϕ2n
′(s) + b1n(s)ϕ2n

′(s)− a2n(s)ψ2n
′(s) + b2n(s)ψ2n

′(s) = 1,

−a1n(s)− b1n(s)ϕ2n(1)− b2n(s)ψ2n(1) = 0,

−b1n(s)ϕ2n
′(1) + a2n(s)− b2n(s)ψ2n

′(1) = 0.

Let us put

(2.31)n W 0
2n =

∣∣∣∣
ϕ2n(0)− ϕ2n(1) ψ2n(0)− ψ2n(1)
ϕ′2n(0)− ϕ′2n(1) ψ′2n(0)− ψ′2n(1)

∣∣∣∣

and

(2.32)n W2n =

∣∣∣∣∣∣∣

ϕ2n(s) −ϕ2n(s) ψ2n(s) −ψ2n(s)
−ϕ2n(s) ϕ2n

′(s) −ψ2n
′(s) ψ2n

′(s)
1 ϕ2n

′(1) 0 ψ2n(1)
0 −ϕ2n

′(1) 1 ψ2n
′(1)

∣∣∣∣∣∣∣
.

Then

(2.33)n W ◦2n = 2− ϕ2n(1)− ψ2n
′(1) = W2n 6= 0

for n ∈ N.
The relations (2.30)n–(2.33)n imply the existence of the Green function

G2n(x, s) of problem (2.26)n for n ∈ N. It is not difficult to prove that
G2n(x, s) > 0 for n ∈ N and (x, s) ∈ I (see [18]). The proof of (jjj) is similar
to that of (iii). The property (jv) is evident. �
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3. Positive periodic solution

In this section we present results on the existence of positive, 1-periodic
solutions of equations (1.1) and (1.2). Existence in this paper will be estab-
lished using Krasnosielski fixed point theorem in a cone which we state here
for the convenience of the reader. First, we shall give definition of a cone (see
[6], p. 1–2).

A nonempty subset K of a real Banach space E is called a cone if K is
closed, convex and
1o αx ∈ K for all x ∈ K and α ≥ 0,
2o x,−x ∈ K implies x = 0.

Theorem 3.1 ([6], p. 94, Theorem 2.3.4). Let E = (E, ‖ · ‖) be a Banach
space and let K ⊂ E be a cone in E. Assume that Ω1 and Ω2 are bounded
and open subsets of E with 0 ∈ Ω1 and Ω1 ⊂ Ω2 and let A : K ∩ (Ω2|Ω1)→ K
be continuous and completely continuous. In addition suppose either

‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω1 and ‖Au‖ ≥ ‖u‖

for u ∈ K ∩ ∂Ω2 or

‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω1 and ‖Au‖ ≤ ‖u‖

for u ∈ K ∩ ∂Ω2 hold.
Then A has a fixed point in K ∩ (Ω2 \ Ω1).

Theorem 3.2. Let hypotheses H2 and H5 be satisfied. Suppose that there
exists a continuous nondecreasing function

ψ : [0,∞)→ [0,∞) such that ψ(u) > 0 for u > 0

and

(3.1) |f(x, v)| ≤ ψ(v) for (x, v) ∈ (−∞,∞)× [0,∞)

and there exists r > 0 such that

(3.2) r ≥ ψ(r) · µm1,
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where

m1 ≥ sup
n∈N

sup
x∈[0,1]

1∫

0

Qn
′(s)|G1n(x, s)|ds,(3.3)

Qn
′(x) = (Q ∗ δn)′(x) and G1n(x, s)

is the Green function defined by (2.4)n. Assume, additionally that

(3.4) f(x, v) ≥ τ(x)g(v) for x ∈ R and v ∈ R+
0 ,

where τ : (−∞,∞)→ [0,∞) is continuous, 1-periodic and g : [0,∞)→ [0,∞)
is continuous, nondecreasing and

g(u) > 0 for u > 0.

Suppose that there exists R > 0 such that R > r and

(3.5) R ≤ µ
1∫

0

τ(s)Qn
′(s)

∣∣∣∣G1n

(
1

2
, s

)∣∣∣∣ g
(
M1R

d1

)
ds

for n ∈ N, where d1 and M1 are defined by relation (iv).
Then (1.1) has a positive, 1-periodic solution of the class V 1.

Proof. To show (1.1) has a positive 1-periodic solution we will look at

(3.6)n y(x) = −µ
1∫

0

G1n(x, s)Qn
′(s)f(s, y(s))ds.

We will show that there exists a solution yn to (3.6)n for n ∈ N with

yn(x) ≥ M1R

d1
for x ∈ [0, 1].

Let E = (P1(R), ‖ · ‖), where P1(R) denotes the space of all continuous,
real, 1-periodic functions y on R with the norm

‖y‖ = max
x∈[0,1]

|y(x)|.
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Let

K1 = {u ∈ P1(R) : min
x∈[0,1]

d1u(x) ≥M1|u‖},

where d1 and M1 are defined by (iv). Obviously K1 is a cone on E. Let

(3.7) Ω1 = {u ∈ P1(R) : ‖u‖ < r}

and

(3.8) Ω2 = {u ∈ P1(R) : ‖u‖ < R}.

Now let A1n : K1 ∩ (Ω2 \ Ω1) → P1(R) be defined by (A1n)(ϕ) = ynϕ, where
ϕ ∈ P1(R) and ynϕ is the unique 1-periodic solution of the equation

(3.9)n y′′(x)− Pn′(x)y(x) = −µQn′(x)f(x, ϕ(x)),

where

Pn
′(x) = (P ∗ δn)′(x), Qn

′(x) = (Q ∗ δn)′(x).

First we show A1n : K1 ∩ (Ω2 \Ω1)→ K1 for n ∈ N. If ϕ ∈ K1 ∩ (Ω2 \Ω1)
and x ∈ [0, 1], then we have

(3.10)n (A1n(ϕ)(x) = −µ
1∫

0

G1n(x, s)Qn
′(s)f(s, ϕ(s))ds.

We have

d1(A1n)(ϕ)(x) ≥ µd1
1∫

0

−G1n(x, s)Qn
′(s)f(s, ϕ(s))ds

≥ µd1
x∫

0

|G1n(x, s)|Qn′(s)f(s, ϕ(s))ds

+ µd1

1∫

x

|G1n(x, s)|Qn′(s)f(s, ϕ(s))ds.
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The property (iv) implies

d1(A1n)(ϕ)(x) ≥ µ
1∫

0

|G1n(s, s)|Qn′(s)f(s, ϕ(s))ds

≥ µM1

1∫

0

|G(x, s)|Qn′(s)f(s, ϕ(s))ds ≥M1‖A1nϕ‖,

where x ∈ [0, 1]. Hence

(3.11) d1(A1nϕ)(x) ≥M1‖A1n(ϕ)‖.

Consequently A1nϕ ∈ K1 for n ∈ N. So

A1n : K1 ∩ (Ω2 \ Ω1)→ K1

for n ∈ N.
We now show

(3.12) ‖A1n(ϕ)‖ ≤ ‖ϕ‖ for ϕ ∈ K1 ∩ ∂Ω1

and n ∈ N. To see this let ϕ ∈ K1 ∩ ∂Ω1. Then ‖ϕ‖ = r and

ϕ(x) ≥ M1r

d1
for x ∈ R.

From (3.2)–(3.3) we have

(A1nϕ)(x) ≤ µψ(r)m1 ≤ r ≤ ‖ϕ‖.

So (3.12) holds.
Next we show

(3.13) ‖A1nϕ‖ ≥ ‖ϕ‖ for ϕ ∈ K1 ∩ ∂Ω2

and n ∈ N. To see it let ϕ ∈ K1 ∩ ∂Ω2. Then ‖ϕ‖ = R and

d1ϕ(x) ≥ RM1 for x ∈ R.
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The relations (3.4)–(3.5) yield

‖A1n(ϕ)‖ ≥ A1n(ϕ)

(
1

2

)
≥ µ

1∫

0

∣∣∣∣G1n

(
1

2
, s

)∣∣∣∣Qn
′(s)f(s, ϕ(s))ds

≥ µ
1∫

0

τ(s)G1n

(
1

2
, s

)
Qn
′(s)g

(
RM1

d1

)
ds ≥ R

for n ∈ N. Hence we have (3.13).
Next we show A1n is continuous and completely continuous. The continu-

ity of A1n follows from the continuity of G1n, Q
′
n and f . Let Ω ⊂ P!(R) be

bounded i.e. ‖u‖ ≤ R1 for each u ∈ Ω. Then if ϕ ∈ Ω we have

(A1nϕ)′(x) = −µ
x∫

0

[b1n(s)ϕ′1n(x) + b2n(s)ψ′1n(x)]Q′n(s)f(s, ϕ(s))]ds

− µ
1∫

x

[a1n(s)ϕ′1n(x) + a2n(s)ψ′1n(x)]Q′n(x)f(s, ϕ(s))]ds,

so (by Lemmas 2.8–2.9)

(3.14) |A1nϕ)′(x)| ≤ µψ(R1)K0(Q∗(1)−Q∗(0)) <∞,

where n ∈ N and

K0 = sup
n∈N

sup
x∈[0,1]

[|ϕ′1n(x)|+ |ψ′1n(x)|]·

sup
n∈N

sup
s∈[0,1]

[|a1n(s)|+ |a2n(s)|+ |b1n(s)|+ |b2n(s)|] <∞.

The boundedness of A1n(Ω) is immediate from (3.10)n and Lemmas 2.8–2.9,
whereas A1n(Ω) is equicontinuous on [0, 1], because of (3.14). Consequently
the Arzela theorem implies A1n is completely continuous. This together with
Theorem 3.1 implies A1n has a fixed point yn ∈ K1 ∩ (Ω2 \ Ω1), i.e.

(3.15) r ≤ ‖yn‖ ≤ R and yn(x) ≥ M1r

d1

for n ∈ N and x ∈ (−∞,∞).
Now we will prove that there exists a subsequence {ynk} of the sequence

{yn} uniformly convergent to an 1-periodic function y. The relations (3.15)
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imply that the sequence {yn} is equibounded. By (3.14) we conclude that {yn}
is a family of equicontinuous functions on the interval [0, 1]. From the Arzela
theorem it follows that there exists a subsequence {ynk} of {yn} uniformly
convergent to a 1-periodic continuous function y. By (3.15) we get

(3.16) r ≤ ‖y‖ ≤ R and y(x) ≥ M1r

d1
.

We will prove y ∈ V 1. In fact, by

(3.17) ynk
′′(x)− Pnk′(x)ynk(x) = −µQnk′(x)f(x, ynk(x))

and

(3.18) ynk
′′(x)−

( x∫

0

ynk(s)dPnk(s)

)′
= −µ

( x∫

0

f(s, ynk(s))dQk(s)

)′

and Helly’s theorem (see [12], p. 29, Theorem 1.6.10), we have

lim
k→∞

x∫

0

ynk(s)dPnk(s)ds =

x∫

0

y(s)dP ∗(s)

and

lim
k→∞

x∫

0

f(s, ynk(s))dQnk(s) =

x∫

0

f(s, y(s))dQ∗(s),

so

lim
k→∞

ynk
′′(x) = y′′(x) =

( x∫

0

y(s)dP ∗(s)

)′
− µ

( x∫

0

f(s, y(s))dQ∗(s)

)′

= P ′(x)y(x)− µQ′(x)f(x, y(x))

and y ∈ V 1. This completes the proof of Theorem 3.2. �
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Theorem 3.3. Let hypotheses H2, H4 and H5 be satisfied. Suppose that a
function f has properties (3.1), (3.4) and there exists r > 0 such that

(3.19) r ≥ ψ(r)µm2,

where

m2 ≥ sup
n∈N

sup
x∈[0,1]

1∫

0

Qn
′(s)G2n(x, s)ds,

Qn
′(x) = (Q ∗ δn)′(x) and G2n(x, s) is the Green function defined by (2.27)n.

Assume, additionally that there exists R > 0 such that R > r and

(3.20) R ≤ µ
1∫

0

τ(s)G2n

(
1

2
, s

)
Qn
′(s)g

(
M2R

d2

)
ds for n ∈ N,

where d2 and M2 are defined by relations (jv).
Then (1.2) has a positive, 1-periodic solution of the class V 1.

Proof. The proof is similar to the proof of Theorem 3.2. Let Ω1 and Ω2

be as in Theorem 3.2. Let

K2 = {u ∈ P1(R) : min
x∈[0,1]

d2u(x) ≥M2‖u‖}.

Then K2 is a cone of E. Now, let ϕ ∈ P1(R) and let ynϕ be the unique,
1-periodic solution of the equation

(3.21)n y′′(x) + Pn
′(x)y(x) = µQn

′(x)f(x, ϕ(x)).

Let A2n : K1 ∩ (Ω2|Ω1)→ E be defined by (A2n)(ϕ) = ynϕ. Then

(3.22)n (A2nϕ)(x) = µ

1∫

0

G2n(x, s)Qn
′(s)f(s, ϕ(s))ds.

It is not difficult to prove that A2n : K2 ∩ (Ω2|Ω1) → K2, A2n is continuous
and completely continuous. Similar arguments as in Theorem 3.2 guarantee
that

‖A2nϕ‖ ≤ ‖ϕ‖ for ϕ ∈ K2 ∩ ∂Ω1
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and

‖A2nϕ‖ ≥ ‖ϕ‖ for ϕ ∈ K2 ∩ ∂Ω2.

Theorem 3.1 implies A2n has a fixed point yn ∈ K2∩(Ω2|Ω1) i.e. yn(x) ≥ M2r
d2

and r ≤ ‖yn‖ ≤ R for n ∈ N. Arzela’s and Helly’s theorems imply that there
exists a subsequence {ynk} of the sequence {yn} uniformly convergent to a
1-periodic, positive function y of the class V 1 and y is a solution of problem
(1.2). The proof of Theorem 3.3 is finished. �

Example 3.4. Consider the following equation

(3.23) y′′(x) +

( ∞∑

k=−∞
δ(x+ k)

)
y(x) =

( ∞∑

k=−∞
δ(x+ k)

)
y2(x),

where δ denotes the delta Dirac distribution. We have

P ′(x) = Q′(x) =

∞∑

k=−∞
δ(x+ k).

Evidently P ′ ≥ 0, Q′ ≥ 0, P ′ 6= 0, Q′ 6= 0, P ′ and Q′ are 1-periodic distribu-
tion. The distribution P ′ and Q′ are derivatives of the function E(x), where
symbol E(a) denotes the greatest integer not exceeding a. Without loss of a
generality we can assume that

P (x) = Q(x) = E(x).

It is not difficult to verify that E(x+ 1)− E(x) = 1 and

0 <

1∫

0

P ′(x)dx = 1 < 4.

Thus the equation

y′′ + P ′(x)y(x) = 0
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has only the trivial, 1-periodic solution of the class V 1. Let G2n(x, s) be
defined by (2.27)n and let lim

n→∞
G2n(x, s) = G2(x, s) (uniformly on I). We

will prove that

(3.24) G2(x, s) =

{
x(s− 1) + 1, if 0 ≤ x ≤ s ≤ 1,

s(x− 1) + 1, if 0 ≤ s ≤ x ≤ 1.

To see this let ϕ(x) and ψ(x) be solutions of the following problems

{
ϕ′′(x) + P ′(x)ϕ(x) = 0,

ϕ(0) = 1, ϕ′∗(0) = 0,

{
ψ′′(x) + P ′(x)ψ(x) = 0,

ψ(0) = 0, ψ′∗(0) = 1.

Then

ϕ(x) = −xH(x)− 1

2
(x− 1)H(x− 1) +

1

2
x+ 1 for x ∈ (−1, 2),

ψ(x) = −(x− 1)H(x− 1) + x for x ∈ (−1, 2),

ϕ(1) =
1

2
, ϕ′∗(1) = −3

4
, ψ(1) = 1, ψ′∗(1) =

1

2
,

where H denotes the Heaviside function.
Now let

G2(x, s) =

{
a1(s)ϕ(x) + a2(s)ψ(x), if 0 ≤ x ≤ s ≤ 1,

b1(s)ϕ(x) + b2(s)ψ(x), if 0 ≤ s ≤ x ≤ 1.

Then functions a1, a2, b1, b2 satisfy the system of equations (similar to that of
(2.30)n)





a1 − 1
2b1 − b2 = 0,

−1
2b1 + b2 + 1

2a1 − a2 = 1,

a1
(
−1

2s+ 1
)

+ a2s+
(
1
2s− 1

)
b1 − b2s = 0,

a2 + 3
4b1 − 1

2b2 = 0.

Consequently a1 = 1, a2 = s− 1
2 , b1 = 1− s and b2 = 1

2 + 1
2s, so (3.24) holds.
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It is not difficult to verify that

sup
(x,s)∈I

G2(x, s) = 1, inf
(x,s)∈I

G2(x, s) =
3

4
,

G2(x, 0) = G2(x, 1) = 1 = G2(0, s) = G2(1, s).

Let us take

γ2 =
1

2
, M2 =

10

9
, d2 =

20

9
, M2 =

1

3
,

τ(x) = 1, f(x, v) = g(v) = ψ(v) = v2,

µ = 1, m2 = 3, r =
1

3
and R = 40.

Then the inequalities (3.5)–(3.6) are satisfied for sufficiently large n.
Theorem 3.3 implies the existence of positive and 1-periodic solution of

equation (3.23).
Next we show y = 1 is the unique 1-periodic and positive solution of

equation (3.23) (of the class V 1). To see it, let y be an 1-periodic solution of
equation (3.23). Then

y′′(x) +

∞∑

k=−∞
cδ(x+ k) =

∞∑

k=−∞
c2δ(x+ k),

where c = y(0) = y(1). So

y′(x) = (c2 − c)E(x) + c1

and

y(x) = (c2 − c)
∼
E(x) + c1x+ c2,

where c1, c2 denote constants and (
∼
E(x))′ = E(x).

Without loss of generality we can assume that

(3.25) y(x) = (−c+ c2)xH(x) + (−c+ c2)(x− 1)H(x− 1) + c1x+ c2

for x ∈ (−1, 2). By (3.25), we have

y(0) = c2 = y(1) = (−c+ c2) + c1 + c2.
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Consequently

(3.26) c1 = −c2 + c

and

(3.27) y′(0+) = (−c+ c2) + c1 = y′(1+) = (−c+ c2) + (−c+ c2) + c1.

The relations (3.26)–(3.27) yield c = 0 or c = 1. Thus y = 1 is the unique,
positive, 1-periodic solution of equation (3.23).

Remark 3.5. It is not difficult to prove that y = 1 is the unique, 1-
periodic, positive solution of the class V 1 of the equation

(3.28) y′′(x)−
( ∞∑

k=−∞
δ(x+ k)

)
y(x) +

( ∞∑

k=−∞
δ(x+ k)

)
y2(x) = 0.

Theorem 3.6. Let hypothesis H2 and H5 be satisfied. Suppose that there
exist r > 0 and R > 0 such that r < R and for x ∈ [0, 1]

(3.29)

f(x, v) ≤ 1

M1q1µ
v, if 0 ≤ v ≤ r,

f(x, v) ≥ d1
µγ1q1M1

v, if R ≤ v <∞,

where q1 =
1∫
0

Q′(x)dx and constants M1,M1, γ1 have properties (iii)–(iv).

Then (1.1) has a positive, 1-periodic solution of the class V 1.

Proof. Let Ω1,Ω2 and K1 be as in Theorem 3.2. Let ϕ ∈ P1(R) and let
ynϕ be the unique solution, 1-periodic of equation (3.9) n and let (A1n)(ϕ) =
ynϕ. Then

A1n : K1 ∩ (Ω2|Ω1)→ K1 for n ∈ N,

A1n is continuous and completely continuous.
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For ϕ ∈ K1 ∩ ∂Ω1 and n ∈ N, we have (by (3.29))

‖A1n(ϕ)‖ ≤ µM1

1∫

0

Qn
′(s)f(s, ϕ(s))ds

≤ µM1
1

M1q1µ

1∫

0

Q′(s)ϕ(s)ds

≤ 1

q1

1∫

0

Qn
′(s)ds‖ϕ‖ = ‖ϕ‖.

If ϕ ∈ K1 ∩ ∂Ω2, then by (3.29) and (iii) we obtain

‖A1nϕ‖ ≥ µγ1
1∫

0

Qn
′(s)f(s, ϕ(s))ds

≥ µγ1
d1

µγ1q1M1

1∫

0

Qn
′(s)ϕ(s)ds

≥ d1
q1M1

1∫

0

Qn
′(s)

M1‖ϕ‖
d1

ds = ‖ϕ‖

for n ∈ N. Theorem 3.1 implies A1n has a fixed point yn ∈ K1 ∩ (Ω2|Ω1), i.e.

r ≤ ‖yn‖ ≤ R and yn(x) ≥ M1r

d1
for n ∈ N.

It is not difficult to prove that there exists a subsequence {ynk} of the sequence
{yn} uniformly convergent to an 1-periodic and positive function y ∈ V 1 and
y is a solution of (1.1), which completes the proof of Theorem 3.6. �

Remark 3.7. If

lim
v→0+

f(x, v)

v
= 0 and lim

v→∞
f(x, v)

v
=∞

uniformly on x ∈ [0, 1], then condition (3.29) will be satisfied for r sufficiently
small and for R > 0 sufficiently large.
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Corollary 3.8. Let hypotheses H2 and H5 be satisfied, suppose that there
exist r > 0 and R > 0 such that r < R and for x ∈ [0, 1]

(3.30)

f(x, v) ≥ d1
µγ1q1M1

v, if 0 ≤ v ≤ r,

f(x, v) ≤ 1

M1q1µ
v, if R ≤ v <∞.

Then (1.1) has a positive, 1-periodic solution of the class V 1.

The proof is analogous to that of Theorem 3.6 and uses the second part
of Theorem 3.1.

Remark 3.9. If

lim
v→0+

f(x, v)

v
=∞ and lim

v→∞
f(x, v)

v
= 0

uniformly on x ∈ [0, 1], then conditions (3.30) will be satisfied for r > 0
sufficiently small and for R > 0 sufficiently large.

Theorem 3.10. Let hypotheses H2, H4 and H5 be satisfied. We assume
that there exist r > 0 and R > 0 such that r < R and for x ∈ [0, 1]

(3.31)

f(x, v) ≤ 1

µM2q1
v, if 0 ≤ v ≤ r,

f(x, v) ≥ d2
µγ2q1M2

v, if R ≤ v <∞,

where M2,M2, γ2 have properties (jjj)–(jv). Then (1.2) has a positive, 1-
periodic solution of the class V 1.

The proof is analogous to that of Theorem 3.6.

Theorem 3.11. Let hypotheses H2, H4 and H5 be satisfied. Suppose that
there exist r > 0 and R > 0 such that r < R and for x ∈ [0, 1]

f(x, v) ≥ d2
µγ2q1M2

v, if 0 ≤ v ≤ r,

f(x, v) ≤ 1

M2q1µ
v, if R ≤ v <∞.

Then (1.2) has a positive, 1-periodic solution of the class V 1.
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