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EXISTENCE OF GENERALIZED, POSITIVE AND
PERIODIC SOLUTIONS FOR SOME DIFFERENTIAL
EQUATIONS OF ORDER II

JAN LIGEZA

Abstract. We study the existence of positive periodic solutions of the equa-
tions

v’ (@) — P'(@)y(2) + pQ'(z) f(2,y(x)) =0,
y" (@) + P'(@)y(z) = pQ'(2) f (=, y(x)),

where p > 0, P and Q are real nondecreasing functions, P’ and Q' are 1-
periodic distributions, f is a continuous function and 1l-periodic in the first
variable. The Krasnosielski fixed point theorem on cone is used.

1. Introduction

Positive solutions of various boundary value problem for ordinary differen-
tial equations have been considered by several authors (see for instance [1], [4],
[15], [18], [19]). Many papers on the generalized ordinary differential equations
have appeared too (for instance [5], [8], [10], [11], [14], [16], [17]). The pa-
per deals with existence of positive periodic solutions of nonlinear differential
equations of the form:
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(1.1) y'(x) — P'(2)y(z) + pQ'(x) f(z,y(x)) =0,
(1.2) y' () + P'(x)y(z) = pQ'(z) f(z,y(x)),

where u > 0, P and @ are real, nondecreasing functions, P’ and Q' are
1-periodic distribution. The derivative is understood in the distributional
sense. The solutions of equations (1.1) and (1.2) are considered in the class
of all distributions for which the first derivatives (in the distribution sense)
are functions of locally of bounded variation on the interval (—oo,00). This
class will be denoted by V1. The class of all functions of locally of bounded
variation on the interval (—oo, 00) will be denoted by V. The product P’y we

mean in the following way
z ’
Py~ ([are).

Zo

where the integral is understood in the sense of Riemann—Stieltjes, y € C and
P €V (C denotes the space of all continuous functions y: R — R).

By a solution of equation (1.1) or (1.2) we mean every function y € V1,
which satisfies the equation (1.1) or (1.2) in the distributional sense.

2. Notation and lemmas

We denote I = [0,1] x [0,1] and Iy = (0,1) x (0,1).
By a delta sequence we mean a sequence of real, C°°(R), nonnegative,
scalar functions {6, (z)} satisfying:

(@) [ dalw)de =1,

(b) d,(xz) = 0 for |z| > «,, where {a,} is a sequence of positive numbers
which «, — 0,

(c) dn(z) = 0n(—2) for x € R (see [3], p. 75).
We say that a distribution ¢ in R is 1-periodic, if

glx+1) =g(z) (see [17], p. 229).
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Now we assume two hypotheses:
Hypothesis H;. The functions P and @ have the following properties: P €
V,QeV,P'">0,Q >0,P and Q' are 1-periodic distributions.
Hypothesis H,. Assumptions H; are fulfilled, P’ # 0 and Q' # 0.

LEMMA 2.1. If hypothesis Hy is satisfied and {6,(x)} is a delta sequence,
then

P(xg) + P(xy)
2

Jim (P 6,)(z0) = = P* (o),

where xg € (—o0,00), P(zd) (P(zy)) denotes the left-hand (the right-hand)
side limits of P at the point xo (the asterisk x denotes the convolution of

functions P and dy,).

PROOF. Let

and let
P(z) = (P(z) — g(z)) + g(z),

where

R P
Then

Pr(xo) = (P = g) * 6n)(x0) + gn(zo),
where
In(w0) = (g * 6n)(20).

Evidently

Jim (P — g) % 0n)(20) = 0
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and

0
lgm P, (z9) = hm gn(:vo) = hm / P(xd)H(—t)6,(t)dt

+/P(x5)H(t)5n(t)dt: P<§°+) + P(;’U_) = P*(z). O

0

REMARK 2.2. Now we define the value of the distribution at the point in
the Lojasiewicz sense (see [13]). If G is a distribution defined on the interval
(xo — o, o + ) C R and if the limit

lim G { (x—m())}
e—0 |5| €

exists, for each ¢ € D, it is a constant distribution C' (D denotes the space
of infinitely differentiable functions with compact support). The constant
distribution C' is said to be the value of the distribution G at the point xq
and is denoted by G(xg) (see [13]). So

G(z0)[p] = 1lma[|€| (x_g“"o)} =C ]Onp(w)dx.

LEMMA 2.3. If g is an 1-periodic distribution and if G' = g, then there
exists the value of the distribution G(x + 1) — G(x) at the point zero (see [3],

p. 50).

Now we introduce the definite integral of a distribution g (defined on the
interval (a —e,b+ ¢),e > 0). Namely, we put

b

/g(x)d:c — (Glz+b) — Gz + a))(0),

a

provided that the value of the distribution G(x 4 b) — G(x + a) at the point
0 exists and G’ = g (see [3], p. 47, [13]).
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LEMMA 2.4. If P €V and P’ is 1-periodic distribution, then

/P’ Ydz = P(17) — P(0") = P(17) — P(0")
0

_ PA*)+P17)  P(0F) + P(07)

2 2
= P*(1) — P*(0) = Pp(z + 1) — Pu(z) = Po(1) — P, (0),

where
P,=Pxd,.
PROOF. Since
(P(x+1)—P(z)) =P (z+1)—P(x) =0,
therefore
P(x+1)— P(x) =C (C denotes a constant distribution).

Hence

Po(z +1) = Po(z) = Pu(1) = Pa(0) = C
=P(1t) - P(0")=P(17) - P(07)

and (by Lemma 2.1)
1
lim P,(1) — P,(0) = P*(1) — P*(0) =C = /P’ . O
n—o0o
0

LEMMA 2.5. Let hypothesis Hy be satisfied. Then the equation

(2.1) y'(x) — P'(a)y(x) = 0

has only the trivial 1-periodic solution of the class V'!.
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PROOF. If y € V! and y # 0 is an 1-periodic solution of equation (2.1),
then

y"(@)y(z) - P'(x)y*(z) = 0.

Hence
1 1
[ v @de ~ [ Py o=
0 0
On the other hand

jy(w)y”(m)dw /1P’(w)y2(w)dl’

The last equality gives
and

where C'is a constant. If C' # 0, then we obtain contradiction (by hypothesis
Hy). O
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Now we give three hypothesis.
Hypothesis H3. Assumptions Hs are satisfied and

1
0< /P’(;U)dx < 16.
0

Hypothesis H,. Assumptions Hs are fulfilled and

1
0< /P’(:C)dx < 4.
0

Hypothesis Hs. 1° The function f: R? — Ry is continuous (Rf = [0, 00)).
2° f(z + 1,v) = f(x,v) for all (z,v) € R2

LEMMA 2.6. Let PV, P, = P x6,, and

b
4
P/ —
[1Pi@lds < =

Then the problem
y"(x) + Py (z)y(x) =0, y(a) =0,y(b) =0
has only the trivial solution (see [7], p. 408, Corollary 5.1).
LEMMA 2.7. Let hypothesis Hs be satisfied. Then the equation
y" () + P'(z)y(x) =0
has only the trivial, 1-periodic solution of the class V' (see [11]).
LEMMA 2.8. Let a,xq,x1 € R. We assume that P € V and
P, (x) = (P % d0,)(x).

Then
(a) the problem

y'(z) + P'(2)y(z) =0, y(a) =0,y (a) =21

has ezactly one solution y of the class V1 (see [10]),
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(b) y = lim y, (almost uniformly)
n— o0

y"(a) = lim ¢, (a),

n— oo

where y, is the solution of the problem

v (@) + Pla(x)y(x) =0, yn(a) = x0,¢',(a) =21 (see [10]),
(c) the sequences {yn(x)} and {y',,(z)} are locally equibounded on R,
(d) y(z) = yot+z1(z—z0)— [ (x—95)y(s)dP*(s) (see [2], p. 341-342, Theorem
11.2.1), '

@)@MWW@yzgmwﬁ@y

where P € V,]S(s) =p (s) for every point of continuity of functions P and
~ K

P and the derivative is understood in the distributional sense. (The last
equality follows from [16], p. 88, Lemma 4.23.)

LEMMA 2.9. Suppose that all assumptions of Lemma 2.5 are fulfilled and
let P'(z) = (P *d,) (x). Then

(i) the problem

(230 (@)= Pyl =0, y(0) = y(1),5'(0) ='(1)
has only the trivial 1-periodic solution for n € N.
(ii) the Green function Gi,(x,s) of problem (2.3), is negative for all (z,s) €
I and n € N, o
(iii) there exist constants 7y, and M, such that

0 <7, <|Gin(z,s)| < My < o0

forn € N and (z,s) € 1,
(iv) there exist constants di and M,y such that

di|Grn(2,8)] = |Grn(s, s)]
forneN and (x,s) € I, (d1 > %) and
Gin(s,s)| 2 Mi|Gun (2, 5)|

forn € N and (z,s) € 1, (M1 IS (0,%))
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PROOF. The proof of property (i) follows from Lemma 2.5. Now we will
examine property (ii). Let

a1n(8)P1n () + azn(s)1n(z), Hf0<z <s <1,
b1n(8)p1n(T) + b2n(s)P1n(z), f0<s<z <1,

(24), Gip(z,s) = {

where ¢1,,, and 11, are solutions of the problems

(2.5)n @10 (2) = Pla(@)pin(z), ©1n(0) =1, ¢'1,,(0) =0,
(2'6)n ¢N1n(x) = Pln(ﬂff)%n(ﬂﬁ)? 1/11n(0) =0, wlln(o) =1,
and a1y, Gon, b1n, bay, satisfy the following system of equations

aln(3)¢1n(5> - bln(s)tpln(s) + a2n(8)wln(s) - b2n(5)7/)1n(5> = 0,
—a1n(5)@ 10, (8) + 010 ()@ 1, (8) — 20 ()11, (5) + ban(8)Y'1,,(s) = 1,

(2.7)n
a1n(8) = b1n(8)P1n(1) — ban(s)Y1n(1) = 0,
—b1n(8)¢" 1 (1) + a2n(s) — ban(s)Y'1,, (1) = 0.
Let
o __ @ln(o) - Qoln(l) ¢1n(0) - "/}1n(1)
(2:8)n Win = 1200) = @1 (1) 9/1,0(0) =1, (1)
and let
T e S )
_|7¥ 1nlS P 1nlS W 1nl\S 1n\S
@9 W= T 00—
0 7()0/171(1) 1 7w/1n(1)

Let us assume that
yn(x) = cin@in (@) + Y1n (@)
is a solution of equation (2.3),,. Then, by (i) we have
(2.10),, We, =2—p1,(1) =9, (1) #0  forneN
and

(2.11),, Win = W0, #0.
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The relations (2.7),—(2.11),, guarantee the existence of the Green functions
G1n(z, ) of problem (2.3),,. It is not difficult to prove that Gy, (z,s) < 0 for
n € N and (z,s) € I (see [18]).

We now show (iii). First we prove that

(2.12) Tllreﬂ& |[Win| =m > 0.

If m = 0 then there exists a subsequence {W7,,, } such that

lim Wi, = 0.

vV— 00

Without loss of a generality we can assume that

lim Wy, =0.

n—oo

From Helly’s theorem (see [12], p. 29, Theorem 1.6.10) it follows that there ex-

ist subsequences {apggk} and {wslz of sequences {gogzrz} and {wig} convergent

to functions <p§z) €V and 1/151) € V for ¢ = 0, 1; respectively. Besides
Jm oine(z) = 1(x),  Hm gur(z) = ¢ (@)
almost uniformly on (—o0, 00). Thus
(2.13) i W= Tim (2 = 1a(1) = 91 (1) = 0= WY
and
(2.14) ¢"1(x) = P'(x)p1(x), ¢1(0) =1, 90/;(0) =0,
(215)  W"i(@) = P@)di(2), a(0) =0, ¥50)=1 (see [10]).
On the other hand the function
Yy = c1p1 + ot (c1, co denote constants)
is also a solution of the equation
(2.16) Y (@) = P(a)y(a)
and

(2.17) y(0) = c1 = y(1) = crpa(1) + catha (1)
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and

(2.18) Y (0) =c2 =y (1) = cr¢'1(1) + 21 (1).

By (2.16)—(2.18) we have

L—oi(1)  —=v1(1) | _ o _
—1(1) 1-ei] T

Hence, there exists a non trivial, 1-periodic solution of equation (2.16) (of the
class V1), i.e. (2.12) holds.

Existence of a constant M; follows from Lemma 2.8 and from (2.5),—
(2.12). We will show that there exists a constant 7; such that

2.1 inf inf |Gy, s)| =7, > 0.
(2.19) éIéN(;,?)eI‘GI (2, 8)| =7, >0

If 7, = 0 then there exists a subsequence {G1,, (7., s,)} of sequence {G1,(x, s)}
such that

li inf Gnl/ 3 = li Gnu V’V:O)
A e (8 = B0, Gana (@, 50)

where (2,,s,) € I.
Without loss of a generality we can assume that

(2.20) lim Gip(Tp,s,) =0 and lim Gi,(z,s) = Gi(z,s)
n—oo n— o0

uniformly for (z,s) € I and

(2:21) lim g1, (2) = pi(2),  lim ¢y, (2) = ¢'1(2),
(222 dm @) =), Tim 00 = ().
(2.23) nh_)nrolo a1nk(s) = a1(s), nh_)ngo bin(s) = bi(s),

uniformly on [0, 1],

(2.24) lim asg,(s) = aa(s), lim boy,(s) = ba(s)

n—oo n—oo

uniformly on [0, 1]. Then there exists a point (z, sg) € I such that

(225) G1(£E0,$0) =0.
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Without loss of a generality we can assume that (xg, sg) € Ip. Let

N( ) B {G1($,50), ifx e [80,1]
T\ Gy —1,50), ifze[lso+1] (see 18],

Then g1 (xo) = 0 and g, () is a solution of the equation

~ 1

1 (z) = P'(x)yi(z) =0 for z € (s0,50 + 1)

i.e.
~t ~ / ~
v (x) = (P(z)y1(z)) + P(x)ys () = 0.
Let
~ ~
z1=y1 —Puy1.

Then we get the following system of equations

~! ~

1 (x) = P(x)yi(x) + z1(2),

21/ (z) = —P*(x)y1(2) — P(x)z1(z)  (see [14]).

If y1(x9) = 0 then ﬁil(xo) = z1(z0). So g;l/ is a continuous function at the
~ !

point xg. The inequality G1(x,s) < 0 (for all (z,s) € I) implies y; (o) = 0.

By the uniqueness of the solution of the Cauchy problem (Lemma 2.8) we get

gjl(x) =0 forx € (s9,80+1).
Let yy,,(z) be a solution of the problem
yln”(:p) - Pﬂ/(x)gln(w) =0,
~ ~ !
Y1 (20) = Y1n(20),  Y1n'(20) = y1n (20),

where

N G1in(z, s0), if z € [sg, 1],
yln(x) =

Gin(x —1,s9), ifxze[l,so+1].
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Let
21n(2) = Y1 (7) = Pr(@) 1 (@)
Then
Jim 215 (z0) = lim 7y, (20) = 0.
Consequently,
nh_}rrolo zin(z) =0 = nli_)rrgogln(x) = nh_)rréo?m(x) for z € (—o0, 00).
This gives

Jim (771, (s0) = W1,/ (s0 +1)) = 0= lim_[b1n(s0)p1n’(s0)
+ bZn(50)¢1n/(50) — a1n(80)e1n’ (0) — a2n(80)¢1n/(50)] =1,
which is impossible. Thus (iii) holds. The property (iv) is evident. O

LEMMA 2.10. If P’ satisfies Hy and P,/ (z) = (P % §,) (z), then
(j) the problem

(2.26)s, y"(x) + P/ (x)y(z) =0, y(0) =y(1), ¢'(0)=1y(1)
has only the trivial 1-periodic solution for n € N;
(jj) the Green function Gay(x,s) of problem (2.26),, is positive for all (x,s) €
I andn €N; o
(jij) there exist constants 7, and My such that
0 <7y < Gop(w,8) < My < 0

forn e N and (x,s) € I;
(jv) there exist constants de and My such that

d2Gop(x,8) > Gap(s,s) formneN
and (x,s) € I, <d2 > %) and
Gan(s,s) > MyGaop(z,s) forn €N,

(x,s) €1, (M2 € (0, %))
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PROOF. The proof of property (j) follows from Lemma 2.7 and [9]. The
proof of property (jj) is similar to that of property (ii). Let

10 (8)Pan () + G2n(8)han (), fo<az<s<l,
b1n(8)p2n (@) + bon(s)on(2), i 0<s<z<1,

(2.27),, Gap(x,s) = {

where s, and 15, are solutions of the problems

(228), @2 (@) + P (@)p2u(@) =0, 920(0) =1, 2,'(0) =0,
(229)71, an//(x) + Pn,(x)¢2n(x) = 07 an(O) = 07 an/(O) = 17
and @1p, G2n, bin, ban, satisfy the system of equations

@10 (8)920(5) = b1 (8) P20 (5) + T2n(5)1h2n(s) — ban(s)than(s) = 0,
_aln(s)QPZn/(s) + Eln(s)@%z/(s) - a2n(s)¢2n,(s) + 62n(£)¢2n,(3) = 15

(2.30), _ _
—a1n(8) — b1n(8)p2n (1) — ban(s)han (1) =0,
—Bln(s)wgnl(l) + Egn(s) — Bgn(8>’(/}2n/(1) = 0
Let us put
0 _ QDZn(O) - 90271(1) an(O) - ¢2n<1)
(2:31)n Wan =1 0750(0) = @) @50 (0) = ¥'2,(1)
and
‘PQn(‘Z)) —s027<(8)) %n(i)) :;ba;@((S))
(2.32),, Wan= |77 20 8 e
0 —p2n/(1) 1 Y2n (1)
Then
(233)n WQOn =2- 902n(1) - ¢2n/(1) = W2n 7& 0
for n € N.

The relations (2.30),—(2.33),, imply the existence of the Green function
Gan(z,s) of problem (2.26), for n € N. It is not difficult to prove that
Gon(x,8) > 0 for n € N and (z,s) € I (see [18]). The proof of (jjj) is similar
to that of (iii). The property (jv) is evident. O
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3. Positive periodic solution

In this section we present results on the existence of positive, 1-periodic
solutions of equations (1.1) and (1.2). Existence in this paper will be estab-
lished using Krasnosielski fixed point theorem in a cone which we state here
for the convenience of the reader. First, we shall give definition of a cone (see
[6], p. 1-2).

A nonempty subset K of a real Banach space E is called a cone if K is
closed, convex and

1° ax € K for all z € K and o > 0,
2° z,—x € K implies x = 0.

THEOREM 3.1 ([6], p. 94, Theorem 2.3.4). Let E = (E,|| -||) be a Banach
space and let K C E be a cone in E. Assume that 1 and Qy are bounded
and open subsets of E with 0 € Qy and Qq C Qo and let A: KN (Q2]Q) — K
be continuous and completely continuous. In addition suppose either

|Aull < Jull forue KNoQy and || Aul > [lul
forue KNoQy or
|Au|| > ||ul]] forue KNOQ and ||Aull < ||ul|

for u e KN oQs hold. B
Then A has a fized point in K N (Qg\ 7).

THEOREM 3.2. Let hypotheses Hy and Hs be satisfied. Suppose that there
exists a continuous nondecreasing function

1 [0,00) — [0,00)  such that (u) >0 for u >0
and

(3.1) |f(z,v)]| <(v)  for (z,v) € (—00,00) x [0,00)
and there exists r > 0 such that

(3.2) r > (r) - pma,
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where

1

(3.3) my > sup sup /Qn’(s)\Gln(:p, s)|ds,
neNz€[0,1] 2

Q. () = (Q *6,) (x) and Gin(z,s)
is the Green function defined by (2.4),,. Assume, additionally that
(3.4) f(z,0) > 7(x)g(v) forx €R and veERY,

where T: (—00,00) — [0,00) is continuous, 1-periodic and g: [0,00) — [0, 00)
s continuous, nondecreasing and

g(u) >0 foru>0.

Suppose that there exists R > 0 such that R > r and

1 MR
e (22))o (%) o

forn € N, where dy and M, are defined by relation (iv).
Then (1.1) has a positive, 1-periodic solution of the class V' .

1

(3.5) R< u/r 5)Qn (s

0

PROOF. To show (1.1) has a positive 1-periodic solution we will look at

(3.6), y(z) = —p / Gia(2,5)Qn'(5) (5, y(5))ds
0

We will show that there exists a solution y,, to (3.6),, for n € N with

MR

1

for z € [0,1].

Let E = (P (R),]|| - ||), where P;(R) denotes the space of all continuous,
real, 1-periodic functions y on R with the norm

lyll = max Jy(z)]
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Let

Ki={ue P(R): min dyu(x) > Mu|},

z€]0,1]

where d; and M; are defined by (iv). Obviously K is a cone on E. Let

(3.7) O ={ue P (R): [ul| <r}
and
(3.8) Qy = {u € P (R) : |Jul| < R}.

Now let A, K10 (Q2\ Q1) = Pi(R) be defined by (A1,)(¢) = yny, where
¢ € Pi(R) and y,,, is the unique 1-periodic solution of the equation

(3-9)n y' () — Pl (@)y(z) = —pQx/ (@) f (z, ¢(2)),

where

Pn/(x) = (P *6,) (), Qn/(x) = (Q * 6,) ().

First we show A,: K1 N (52\91) — Ky forn € N. If pe KN (ﬁQ\Ql)
and z € [0, 1], then we have

(310),  (Am(9)(@) = —p / Gin(, 5)Qu’ (3)f (5, 0(5))ds.
0

We have

di (A1) (@) (z) > Mdl/Gln(x7 s)Qn’(s)f(s,go(s))ds
0

> pdy / G, )@’ (5) £ (5. 0(5))ds
0

T pdy / (G (2, 9)|Qu’ (5) £ (5. 0(5))ds.
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The property (iv) implies
d1(A1n)(p)(x) 2 u/ Gn(s,5)|Qn"(5)f (s, 0(s))ds

1
> b,y / G, 9)|Qu ()£ (5, 0(s))ds > M| Al
0

where T € [0,1]. Hence
(3.11) di(A1np)(x) = Ml A1 ()]
Consequently A1, € K; for n € N. So

A K10 (Q2\ Q) — Ky

for n € N.
‘We now show

(3.12) lA(@)] < Il for @ € Ky N o0

and n € N. To see this let ¢ € K1 N9Q;. Then ||¢|| = r and

M17“

1

o(x) > for x € R.

From (3.2)-(3.3) we have

(Arnp)(z) < pap(rymy <r < ol

So (3.12) holds.
Next we show

(3.13) [Arnell = [lel| - for ¢ € K1 N0y
and n € N. To see it let ¢ € K1 N9Ns. Then ||¢|| = R and

dyp(x) > RM; for x € R.



Existence of generalized, positive and periodic solutions 7

The relations (3.4)—(3.5) yield

4 2 Aunle) (5) 2

o _

Gun (25| @001t

1

> u/T(s)Gln (;3> Q. (5)g <Rf1> ds > R

0

for n € N. Hence we have (3.13).

Next we show Ay, is continuous and completely continuous. The continu-
ity of Ay, follows from the continuity of Gi,,@Q), and f. Let Q@ C P (R) be
bounded i.e. ||u| < Ry for each u € Q. Then if ¢ € Q we have

x

(A1ne)(z) = —M/[bln(S)so’m(ﬂf) + bon ()91, (2)]Q", () f (s, (5))]ds

- u/[aln(sw’ln(w) + azn(8)0'1,(2)]Q", (2) f (5, 0(5))]ds,

x

so (by Lemmas 2.8-2.9)

(3.14) |A1ne) ()] < pp(R1)Ko(Q*(1) — Q*(0)) < oo,
where n € N and

Ko =sup sup [y, ()| + [¢1,(z)]]-
neN ze[0,1]

sup sup {[ain(s)| + [azn(s)] + [b1n ()] + [b2n(s)]] < o0
neN s€[0,1]

The boundedness of Ay, () is immediate from (3.10),, and Lemmas 2.8-2.9,
whereas A1,(€) is equicontinuous on [0, 1], because of (3.14). Consequently
the Arzela theorem implies Ay, is completely continuous. This together with
Theorem 3.1 implies Ay, has a fixed point 3, € K1 N (Q2\ 1), i.e.

MlT
dy

(3.15) r<yall SR and y(e) >

for n € N and z € (—00,0).
Now we will prove that there exists a subsequence {y,, } of the sequence
{Yn} uniformly convergent to an l-periodic function y. The relations (3.15)
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imply that the sequence {y, } is equibounded. By (3.14) we conclude that {y, }
is a family of equicontinuous functions on the interval [0, 1]. From the Arzela
theorem it follows that there exists a subsequence {y,x} of {y,} uniformly
convergent to a l-periodic continuous function y. By (3.15) we get

M
(3.16) r<|yl <R and y(x)> d”".
1
We will prove y € V1. In fact, by
(3.17) Ynk" () = P (2)ynr(2) = —pQur’ (x) f (2, ynr ()

and

319) )~ ( / ynk<s>dpnk<s>)/ ——( / f(s,ynk<s>>dc2k<s>)/

and Helly’s theorem (see [12], p. 29, Theorem 1.6.10), we have

x x

Jim [y (s)dP(s)ds = [ y(sdP (s
0 0
and
i / £ (5, Yo ())dQui(s) = / £(5,9(5))dQ" (s),
0 0
i g 0) =) = / y<s>dP*<s>)’ ~a( / f(s,y(S))dQ*(s)>/

= P'(2)y(x) — pQ'(x) f(x, y(x))

and y € V. This completes the proof of Theorem 3.2. O
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THEOREM 3.3. Let hypotheses Ho, Hy and Hs be satisfied. Suppose that a
function f has properties (3.1), (3.4) and there exists r > 0 such that

(3.19) T > () pma,

where
neNze[0,1]

1
Mgy > sup sup /QnI(S)G%z(va)dsv
0

Qn'(z) = (Q*8,) (x) and Gap(x,s) is the Green function defined by (2.27),,.
Assume, additionally that there exists R > 0 such that R > r and

1
(3.20) R< /L/T(S)ng (;, s) Q,/(s)g(l\{;R)ds forn € N|
0

where do and My are defined by relations (jv).
Then (1.2) has a positive, 1-periodic solution of the class V1.

PrOOF. The proof is similar to the proof of Theorem 3.2. Let ©; and €5
be as in Theorem 3.2. Let

Ky ={ue P (R): m[g)nl] dou(x) > Mallul|}.
xe|0,

Then K, is a cone of E. Now, let ¢ € Pi(R) and let y,, be the unique,
1-periodic solution of the equation

(3.21) y' (@) + P/ (2)y(z) = pQu' () f (2, ().

Let Ay, : K1 N (Q2]Q1) — E be defined by (As,)(p) = Yne- Then

(3.22), (Aa2)(2) = 1 [ Gianli5)Qu(5) 1 (5. (5))ds.

It is not difficult to prove that As,: Ko N (Q2]Q1) — Ka, As, is continuous
and completely continuous. Similar arguments as in Theorem 3.2 guarantee
that

[A2neo|l < |l for ¢ € KoM O
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and

[Aznell = lloll - for ¢ € Ky N Oy,

Theorem 3.1 implies Ay, has a fixed point 3, € KoN(Q2|Q) ie. yn(x) > ]\ézr

and r < |ly,|| < R for n € N. Arzela’s and Helly’s theorems imply that there
exists a subsequence {y,r} of the sequence {y,} uniformly convergent to a
1-periodic, positive function y of the class V! and y is a solution of problem
(1.2). The proof of Theorem 3.3 is finished. 0

ExXAMPLE 3.4. Consider the following equation

(3.23) y'(x) + ( Z §(x + k:)> y(z) = < Z §(x + k:)) v* (),

k=—oc0 k=—oc0
where § denotes the delta Dirac distribution. We have
Pr)=Qx)= > dx+k).

k=—oc0

Evidently P' > 0,Q" > 0, P’ # 0,Q' # 0, P’ and Q' are 1-periodic distribu-
tion. The distribution P’ and Q' are derivatives of the function E(x), where
symbol E(a) denotes the greatest integer not exceeding a. Without loss of a
generality we can assume that

P(z) = Q(z) = E(x).
It is not difficult to verify that F(z + 1) — E(x) = 1 and

1
0< /P’(J;)da:: 1<4.
0

Thus the equation

y'+ Pl(x)y(z) =0
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has only the trivial, 1-periodic solution of the class V1. Let Ga,(z,s) be
defined by (2.27),, and let lim Gap(x,s) = Ga(x,s) (uniformly on I). We
n—oo

will prove that

x(s—1)+1, fo<zr<s<l,

(3.24) Ga(x,s) = {

s(zx—1)+1, fo<s<azx<l.
To see this let p(x) and 1 (x) be solutions of the following problems

{90"(17) + P(z)p(z) =0,
©(0) =1, ¢"(0) =0,

{1/)”(1?) + P'(z)y(z) =0,
$(0) =0, ¥"(0) = 1.

Then

o(x) = —xH(z) — %(m —-1)H(z—-1)+ %x—i— 1 forxze (—1,2),

Y(x)=—(r—1)H(x—-1)+=x forxe(-1,2),

1 3

p)=5 @ =-7 )=1 ¥ ()=

where H denotes the Heaviside function.
Now let

a1 (s)e(x) + az(s)Y(x), if0<ax<s<l,

Galee) = {bl(s)gp(x) + ba(s)9(x), ifo<s<z<l1.

Then functions a1, as, by, by satisfy the system of equations (similar to that of
(2.30),)
—1b—by=0
a; — 501 2 =V,
—3b1+ by + a1 —az =1,
a1 (—%s + 1) + ass + (%s - 1) by — bas =0,
as + %bl — %bg = 0.

Consequently a; = 1,a0 = s — %,bl =1-—sandby = % + %S, 0 (3.24) holds.
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It is not difficult to verify that

3
sup Gs(x,s) =1, inf Gy(z,s) = —,
(w,s)%I 2( ) (z,8)€l 2( ) 4

Gg(.T,O) = GQ(J?, 1) =1= GQ(O,S) = Gz(l,s).

Let us take
1 — 10 20 1
No=—=, Mog=—, do=—, DMy=—
Y2 27 2 9? 2 97 2 37
m(z) =1, flz,v)=g() =)=
1
p=1 mg=3, 7":5 and R = 40.

Then the inequalities (3.5)—(3.6) are satisfied for sufficiently large n.
Theorem 3.3 implies the existence of positive and 1-periodic solution of
equation (3.23).
Next we show y = 1 is the unique l-periodic and positive solution of
equation (3.23) (of the class V). To see it, let § be an 1-periodic solution of
equation (3.23). Then

[ee] [ee]

7' (x) + Z cd(x+k)= Z *8(x + k),

k=—oo ke —oo
where ¢ = 7(0) = 7(1). So

y'(2) = (= 0)B(z) + 1
and

7(z) = (c* — ¢ LN?(:C) + 1z + ca,

where ¢1, co denote constants and (E(m))’ = E(x).
Without loss of generality we can assume that

(3.25) ()= (—c+AzH(x) + (—c+)(z— )H(z — 1)+ c17 + c2
for x € (—1,2). By (3.25), we have

7(0) =co =7(1) = (—c+*) +c1 + ca.
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Consequently

(3.26) c1=—-c+c¢

and

(327 Y(ON) =(—c+A 4+ =70 =(—c+A)+(—c+c) +eci.

The relations (3.26)—(3.27) yield ¢ = 0 or ¢ = 1. Thus y = 1 is the unique,
positive, 1-periodic solution of equation (3.23).

REMARK 3.5. It is not difficult to prove that y = 1 is the unique, 1-
periodic, positive solution of the class V! of the equation

(3.28) y'(x) — < i §(z + k))y(x) + ( i §(x + k:))gf(x) =0.

k=—o00 k=—o0c0

THEOREM 3.6. Let hypothesis Hy and Hs be satisfied. Suppose that there
exist v > 0 and R > 0 such that r < R and for x € [0, 1]

1
f(x,"U)Si v, ifOSUST,
Miqip
(3.29) P
flx,v) > ! v, if R<wv<oo,
(.7) WY1q1 My

1
where g1 = [ Q'(z)dx and constants M1, M1,7, have properties (iii)-(iv).
0

Then (1.1) has a positive, 1-periodic solution of the class V.

PROOF. Let Q1,85 and K7 be as in Theorem 3.2. Let ¢ € P;(R) and let
Yne be the unique solution, 1-periodic of equation (3.9) n and let (A1,)(p) =
Ynp- Then

Alni Klﬂ(§2|91)—>K1 fOI'TLGN,

Ay, is continuous and completely continuous.
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For ¢ € K1 N9Q; and n € N, we have (by (3.29))

41n() < 31, / Q' ($)7 (5. 9())ds

<MM7 /Q s)p(s
Mg oo

1
<@
— "(s)ds||¢|| =
Y Jdsllell = llell-

If ¢ € K1 N0, then by (3.29) and (iii) we obtain

1
| Arell > 17, / Qu'(5)£ (5, p())ds
0

_ dl / /
> _— n (8)p(s)ds
2 = J Qn' () (s)

1

M1||<p||
> TL/ S d =
U 0/ Q. (s) =l

for n € N. Theorem 3.1 implies Aj,, has a fixed point y,, € K1 N (Q2]2), i.e

MlT'

r<|lyn| < R and yy,(z)> for n € N.

1

It is not difficult to prove that there exists a subsequence {y,x} of the sequence
{y»} uniformly convergent to an 1-periodic and positive function y € V! and
y is a solution of (1.1), which completes the proof of Theorem 3.6. O

REMARK 3.7. If

lim f(@,v) =0 and lim f(@,v) =

v—0t v V—00 v

uniformly on z € [0, 1], then condition (3.29) will be satisfied for r sufficiently
small and for R > 0 sufficiently large.
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COROLLARY 3.8. Let hypotheses Hy and Hy be satisfied, suppose that there
exist 7 > 0 and R > 0 such that r < R and for x € [0,1]

d
fz,v) > *71MU’ if 0 <wv <,
(3.30) M'thIl 1
flz,v) < = v, ifR<v<oo.
Miyqip

Then (1.1) has a positive, 1-periodic solution of the class V'*.

The proof is analogous to that of Theorem 3.6 and uses the second part
of Theorem 3.1.

REMARK 3.9. If

lim f(z,v) =00 and lim 7]"(90,1}) =
v—0t v V—00 v

0

uniformly on = € [0,1], then conditions (3.30) will be satisfied for r > 0
sufficiently small and for R > 0 sufficiently large.

THEOREM 3.10. Let hypotheses Ho, Hy and Hs be satisfied. We assume
that there exist r > 0 and R > 0 such that r < R and for x € [0, 1]

1
f(z,v) < ——v, f0<v<r,
uMaoq
(3.31) ;
fi’f,UZ,izU, ZfRS’U<OO,
(@) Wyoq1 Mo

where Mo, Mo, 7y have properties (jjj)—(jv). Then (1.2) has a positive, 1-
periodic solution of the class V'!.

The proof is analogous to that of Theorem 3.6.

THEOREM 3.11. Let hypotheses Ho, Hy and Hs be satisfied. Suppose that
there exist > 0 and R > 0 such that r < R and for x € [0,1]

P
flz,v) > ———v, f0<wv<r,
(=) WY 2q1 M2

1
flz,v) < = v, if R<wv<oo.
Magip

Then (1.2) has a positive, 1-periodic solution of the class V'*.
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