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ERGODICITY OF FILTERING PROCESSES:
THE HISTORY OF A MISTAKE

AND ATTEMPTS TO CORRECT IT

Łukasz Stettner
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Abstract. The paper describes briefly a history of filtering problems of Mar-
kov processes and then concentrates on ergodic properties of filtering process.
A mistake in a famous Kunita paper on ergodicity of filtering processes is
shown. Then the paper reviews various attempts trying to correct this mistake.

1. Introduction

Let (xn), (yn) be discrete time processes on a given probability space
(Ω,F , P ) taking values in the Polish spaces E0 and E respectively. The pro-
cess (xn), called the state process or hidden Markov process is characterized
by the transition kernel P (x, dx′), while the process (yn), called frequently
the observation process has a transition kernel P x

′

1 (y, dy′) parametrized by
the current value x′ of the hidden Markov process. We do not observe the
state process (xn), we observe the process (yn), which can be considered
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as a noisy observation of (xn) but also can have its own dynamics depend-
ing on the current value of the state process (xn). To be more precise, for
Xn := σ{x0, x1, . . . , xn} and Y n := σ{y0, y1, . . . , yn}, n = 1, 2, . . ., we assume
that P a.s.

P {xn+1 ∈ A | Xn, Y n} = P (xn, A) ,(1.1)

P
{
yn+1 ∈ B | Xn+1, Y n

}
= P

xn+1

1 (yn, B) ,(1.2)

where for fixed x, x′, y, P (x, ·) and P x′1 (y, ·) are probability measures on E0 and
E respectively and for fixed Borel subsets A of E0 and B of E the mappings
x 7→ P (x,A) and (x′, y) 7→ P x

′

1 (y,B) are B(E0) and B(E0 × E) measurable,
where B denote the suitable Borel σ-fields.

In what follows we shall assume the following particular form of the ker-
nel P1,

(1.3) P x
′

1 (y,B) =

∫
B

r (x′, y, y′) η(dy′),

where η ∈ P(E), with P(E) denoting the space of probability measures on
E. This form is very important:the representation (1.3) means that there is a
reference probability measure η which is independent on x′ and y, i.e., on the
initial state of the observation process (yn) and the value of the state process
in the next time step.

Notice that the above form of observation kernel covers models of the form

yn+1 = h (yn, xn+1, wn+1)

(in particular yn+1 = h(yn, xn+1) + g(yn, xn+1)wn+1) with h(yn, xn+1, ·) a C1

diffeomorphism of Rd (in particular matrix g(yn, xn+1) being invertible) and
wn+1 independent of Xn+1, Y n and identically distributed with law η(dy).
Furthermore the form (1.3) is satisfied also in the case of denumerable obser-
vation space E, which is frequent in the practice.

Directly from (1.1) and (1.2) we have

Lemma 1.1. The pair
(
xn
yn

)
forms a Markov process with transition op-

erator

(1.4) Tf(x, y) =

∫
E0

∫
E

f (x′, y′)P x
′

1 (y, dy′)P (x, dx′)

for f ∈ bB(E0 ×E), namely the space of bounded Borel measurable functions
on E0 × E.
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The process (xn) is observable only by means of the observation process
(yn). In the case when dynamics of xn+1 and yn+1 is linear with respect to
xn with independent additive Gaussian noises and parameters dependent in
nonlinear way on yn we have so called conditional Gaussian model studied
in [14], which means that conditional law of xn given Y n is Gaussian with
conditional expected value and conditional variance, which can be derived
recursively. In general nonlinear case we have nonlinear filtering problem. To
describe its evolution we shall need the following family of indexed probability
measures (y, y′ ∈ E, ν ∈ P(E0), A ∈ B(E0))

M (y, y′, ν) (A) =

∫
A

r (x′, y, y′)

∫
E0

P (x, dx′) ν(dx)∫
E0

r (x′, y, y′)

∫
E0

P (x, dx′) ν(dx)

.

In what follows we shall use the notation

P (ν, dx′) =

∫
E0

P (x, dx′) ν(dx).

Moreover we shall assume that

M (y, y′, ν) (A) = 0 whenever
∫
E0

r (x′, y, y′)P (ν, dx′) = 0.

Given the initial measure ρ ∈ P(E0 × E) we have the following regular con-
ditional probability decomposition ρ(dx, dy) = pρ(y, dx)ρ(E0, dy) (see [8],
Thm. I.3.1), where pρ(y, dx) stands for conditional law of x given fixed y,
when joint law of (x, y) is given by ρ. We define recursively the following
measure valued process

πρ0(A) = pρ (y0, A)

πρn(A) = M
(
yn−1, yn, π

ρ
n−1
)

(A)
(1.5)

for A ∈ B(E0), n = 1, 2, . . ., which we call the filtering process.
We have that

Lemma 1.2. For A ∈ B(E0) we have

(1.6) πρn(A) = P {xn ∈ A | Y n} P a.s.
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Proof. For n = 0 the claim directly follows from the definition of regular
conditional probability. For n > 0 following the proof of Lemma 1.1 of [18]
on the set

G := {ω :

∫
E0

r(x′, yn−1, yn)P (πρn−1, dx
′) > 0}

or equivalently

G = {ω : F (y0, y1, . . . , yn)(ω) > 0}

with

F (y0, y1, . . . , yn) =

∫
E0

r(x′, yn−1, yn)P (πρn−1, dx
′)

we obtain that πρn(A) = P {xn ∈ A | Y n} for all A ∈ B(E0). On the other
hand

P (Gc) = E
{

1F (y0,y1,...,yn)(ω)=01E0(xn)
}

= E

{∫
E0

∫
E

1F (y0,y1,...,y)=0P
x′

1 (yn−1, dy)P (πρn, dx
′)

}
= 0

so that we finally have (1.6). �

It can be easily seen that we have

Lemma 1.3. The pair
(
πρn
yn

)
forms a Markov process on P(E0)× E with

transition operator

(1.7) ΠF (ν, y) =

∫
E0

∫
E

F (M (y, y′, ν) , y′)P x1 (y, dy′)P (ν, dx)

for F ∈ bB(P(E0)× E).

Limit behaviour of the functionals of Markov processes letting time n to∞
is described using invariant measures. By an invariant measure for a Markov
process we mean a measure such that, whenever Markov processes starts with
such measure, at each time n its law is the same and coincides with that
invariant measure. Although the existence of invariant measure is important
the crucial fact is its uniqueness, since then limits of the functionals of this
Markov process are uniquely defined. In what follows the existence of unique
invariant measure we call ergodicity of Markov process. In this paper we are

interested in the ergodicity of the pair
(
πρn
yn

)
, that is in the uniqueness of
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invariant measures for the operator Π. Such problem has been extensively
studied for partially observed Markov processes, when the function r in (1.3)
does not depend on y. In this case the process (πn) is itself a Markov process.
In the famous paper [12] in the continuous-time setting, with compact state
space, necessary and sufficient condition for the existence of unique invariant
measure of the process (πn) was formulated. Later on this result was extended
to locally compact metric space and continuous and discrete time models in
[20] and [13]. This result can be formulated as follows

Theorem 1.4. Suppose there is a unique invariant measure µ for the state
process (xn) on a locally compact metric space E. Then filtering process (πn)
admits exactly one invariant measure if and only if

lim sup
n→∞

∫
|Ex {f(xn)} − µ(f)|µ(dx) = 0.

Theorem 1.4 appeared to be not correct. In the paper [2] it has been
pointed out a gap in [12] and a counterexample was formulated; a discrete-time
version of it will be presented below (this counterexample in fact appeared
first in [9]).

Example. Let E0 = {1, 2, 3, 4}, E = {0, 1} and the transition matrix of
(xn) is given by 

1
2

1
2 0 0

0 1
2

1
2 0

0 0 1
2

1
2

1
2 0 0 1

2

 .

Let E01 = {1, 3}, E02 = {2, 4} and assume that r(x′, y, y′) does not depend
on y and

r(x, 1) =

{
2 for x ∈ E01

0 for x ∈ E02
r(x, 0) =

{
2 for x ∈ E02

0 for x ∈ E01

with η(0) = η(1) = 1
2 .

In other words the observation process can be described by

yn = 1E01
(xn) .

Notice that ∀x∈E0 P (x,E01) = 1
2 and (yn) is a sequence of i.i.d. random

variables with P{yn = 0} = P{yn = 1} = 1
2 .
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Then, for α ∈ (0, 1) let

eα1 =

 α
0

1− α
0

 , eα2 =

 0
α
0

1− α

 , eα3 =

 1− α
0
α
0

 , eα4 =

 0
1− α

0
α


and notice that starting from π0 = eα1 the process (πn) will cyclically move
through the points eα2 , eα3 , eα4 , eα1 , . . ., changing its state at each time with
probability 1

2 (and remaining in the same state also with probability 1
2). Con-

sequently the set {eα1 , eα2 , eα3 , eα4 } is invariant and the uniformly distributed
measure on it is invariant for (πn). Replacing α with β such that α 6= β
and α 6= 1 − β we obtain different invariant set and measure respectively.
Therefore, in front of nice ergodic properties of the process (xn) the filter
(πn) admits a continuum of invariant measures with disjoint supports. This
behavior is possibly due to the singular structure of the observation process.

Where was the gap? In the paper stationary flows were studied and
we had the following σ fields Y n−∞ = σ {. . . , y−n, y−n+1, . . . , y0, y1, . . . , yn},
Xm
−∞ = σ {. . . , x−n, x−n+1, . . . , . . . , xm} and the following limit was studied

for a bounded measurable function φ

(1.8) lim
m→−∞

E
{
φ(xn)|Y n−∞ ∨Xm

−∞
}

with X−∞−∞ = {∅,Ω}. By Levy theorem (see Theorem 6.23 in [11]) the limit
in (1.8) exists. However the limit σ field is different than Y n−∞. Consequently

lim
m→−∞

E
{
φ(xn)|Y n−∞ ∨Xm

−∞
}
6= E

{
φ(xn)|Y n−∞

}
.

On the other hand, when we change in our example the observation struc-
ture to yn = 1E01 (xn) + wn with (wn) a sequence of i.i.d. standard normal
random variables, then one can show that there a unique invariant measure
for (πn). This led to the following conjecture formulated in [5]:

Conjecture. Existence of a unique invariant measure for (xn) (of the
pair (xn, yn) in general case) plus equivalence of observation transition oper-
ators

∫
r(x, y)η(dy) (P x1 (y, ·) in general case) for x ∈ E0 implies the existence

of a unique invariant measure for (πn) (
(
πρn
yn

)
in general case).
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As we shall see later this conjecture appeared to be false. In the paper we
shall review a number of necessary and sufficient results for the existence of

unique invariant measure to the pair
(
πρn
yn

)
. Sufficient results will be based

on so called Hilbert metric and are presented in [5] or on vanishing discount
approach from the paper [6]. A number of equivalent results will be based
on [5] and references therein. In the final section we present recent results
obtained by R. Van Handel as well as formulate further open problems.

2. Asymptotic stability of filtering processes using Hilbert metric

The filtering process (πρn) defined in (1.5) is a process of conditional ex-
pected values whenever we know the initial conditional law pρ(y0, ·). Usually
we don’t know it. Given any law ρ′ ∈ P(E0×E), which is not necessarily the
real initial law ρ, we can construct recursively a sequence of measures using
the operator M , namely for A ∈ B(E0) we define

πρρ
′

0 (A) = pρ′ (y0, A)

πρρ
′

n+1(A) = M
(
yn, yn+1, π

ρρ′

n

)
(A)

where ρ′(dx, dy) = pρ′(y, dx)ρ′(E0, dy). We call the process πρρ
′

n approximate
filtering process. Clearly, it does not have conditional law representation (1.6).
We say that we have asymptotical stability of approximate filtering processes
whenever for any ρ, ρ1, ρ2 ∈ P(E0 × E) we have

πρρ1n (f)− πρρ2n (f)→ 0

in Pρ probability, as n→∞, for f ∈ C(E0) - the space of continuous bounded
functions on E0, where Pρ is conditional probability given initial law ρ of the
process (xn, yn) and where

πρρ1n (f) :=

∫
E0

f(y)πρρ1n (dy).

Notice that for ρ1 = ρ the approximate filtering process (πρρn ) coincides with
real filtering process (πρn), so that the asymptotical stability means that no
matter what is the initial law for large time we are close to the real filtering
process. In this section we shall formulate sufficient conditions for asymptot-
ical stability using so called Hilbert norm.
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LetM(E0) be the space of finite measures on E0. For µ, ν ∈M(E0) define

h(µ, ν) := sup
A,B∈B(E0),µ(B),ν(A)>0

ln
µ(A)ν(B)

µ(B)ν(A)
.

One can notice that (see [5] and references therein) h is a pseudonorm in
M(E0) and has the following equivalent representation

h(µ, ν) = ln
α(µ, ν)

β(µ, ν)

with

α(µ, ν) = inf {a : aµ ≥ ν} , β(µ, ν) = sup {b : bµ ≤ ν} .

Furthermore if L is a linear transformation preserving order in M(E0) then
(see Theorem 1.1 of [15])

(2.1) h (Lµ,Lν) ≤ tanh

(
∆

4

)
h(µ, ν)

with ∆ = sup
µ,ν

h(Lµ,Lν).

When µ, ν ∈ P(E0) then (see Theorem 2.2 of [3])

(2.2) ‖µ− ν‖var ≤
2

ln 2
h(µ, ν)

where ‖·‖var stands for total variation norm in P(E0). We have (for the proof
see Theorem 1 of [5])

Theorem 2.1. If for k = 1 we have

(A1) sup
x,x′∈E0

h
(
P k(x, ·), P k (x′, ·)

)
<∞

and for k > 1 we have (A1) and
(A2) there exist continuous functions r(y, y′), r(y, y′), r(y′) such that for all

x ∈ E0, y, y′ ∈ E, we have 0 < r (y, y′) ≤ r (x, y, y′) ≤ r (y, y′) ≤ r (y′),

and
k−1∑
i=1

Eρ

{
ln r(yi−1,yi)

r(yi−1,yi)

}
<∞ and

∫
E

∫
E

. . .

∫
E

∫
E

r (y(k − 2), y(k − 1)) η
(
dy(k − 1)

)
r
(
y(k − 3), y(k − 2)

)
η
(
dy(k − 2)

)
. . . r

(
y(0), y(1)

)
η
(
dy(1)

)
r
(
y(0)

)
η
(
dy(0)

)
<∞.
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then for any ρ1, ρ2 ∈ P(E0 × E) we have

(2.3) Eρ [h (πρρ1n , πρρ2n )]→ 0

as n→∞.

By (2.2) we see that the convergence (2.3) holds even in variation norm so
that asymptotically approximate filtering processes coincide with real filtering
processes, which is a desired property in practise. The assumption (A1) is
rather strong and it says that k-th iterations of transition probabilities of the
state process (xn) with different initial states should be mutually equivalent
with transition densities bounded from above. Practically the conditions of
the Theorem are frequently satisfied whenever the state space E0 is compact.
The proof of Theorem 2.1 is based on (2.1) with operator L defined by the
numerator of the operator M . We can relax assumptions of Theorem 2.1 if
we require more about transition operator T (defined in (1.4)). We have (see
Proposition 1 of [5])

Proposition 2.2. If for k = 1 we have (B1) and (B2) or for k > 1 we
have (B1)–(B3), where

(B1) ∃k∈N such that

sup
x,x′∈E0

sup
y,y′∈E

h
(
T k(x, y, ·), T k (x′, y′, ·)

)
<∞,

(B2) there exist continuous functions r(y, y′), r(y, y′)such that for each x ∈ E0

0 < r (y, y′) ≤ r (x, y, y′) ≤ r (y, y′)

and for k as in (B1) we have
k−1∑
i=1

Eρ

{
ln r(yi−1,yi)

r(yi−1,yi)

}
<∞,

(B3) for f1 ∈ C(E0), f2 ∈ C(E) the mappings

x 7→ Pf1(x) and (x, y) 7→ P x1 f2(y)

are continuous,
then for any measures ρ1, ρ2 ∈ P(E0 × E), we have

Eρ [h (πρρ1n , πρρ2n )]→ 0,

whenever n→∞.
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3. Ergodic properties of approximate filtering processes

Approximate filtering process (πρ,ρ
′

n ) is not a Markov process. To have
Markov property we have to consider the triple (xn, yn, π

ρρ′

n ), which is Markov
with transition operator S defined for F ∈ bB(E0×E×P(E0)) by the formula
SF (x, y, ν) =

∫
E0

∫
E
F (x′, y′,M (y, y′, ν))P x

′

1 (y, dy′)P (x, dx′) . Denote by
πµ0η0ν or πxyν the approximate filtering processes πρρ

′
with ρ = µ0 × η0 and

ρ′ = ν × η0 or ρ = δx × δy and ρ′ = ν × δy, which mean that we know initial
law η0 or initial value y of (yn) but don’t know the real initial law µ0 or
initial value x of (xn). We say that approximate filtering process πµ0η0ν is
asymptotically stable in probability at (µ0, η0) if for any ν1, ν2 ∈ P(E0) and
ϕ ∈ C(E0) we have πµ0η0ν1

n (ϕ) − πµ0η0ν2
n (ϕ) → 0, in Pµ0η0 probability, as

n→∞.
Ergodic behaviour of the triple (xn, yn, π

ρρ′

n ), or the transition operator S
is important to characterize the ergodic properties of the transition operator

Π of the pair
(
πρn
yn

)
. We have the following (see Theorem 2 of [5])

Theorem 3.1. Assume that there exists a unique invariant measure
ζ(dx, dy) for the transition operator T and that the approximate filtering pro-
cesses (πxyνn ) are asymptotically stable in probability at (x, y) for ζ almost
all (x, y). Then there is at most one invariant measure for the transition
operator S.

Whenever transition operator transforms the class of continuous bounded
functions into itself we say that it has Feller property. This property is fre-
quently required when we want to use weak convergence technics to study
ergodic properties of transition operators. Invariant measures for the opera-
tor S exist in many situations, as one can see in the following (see Proposition
2 and Corollary 2 of [5])

Proposition 3.2. If the operator S is Feller and there is an invariant
measure ζ of the operator T , then there exists an invariant measure for S.
Moreover if the operator Π is Feller and there is an invariant measure ζ of
the operator T , then there exists an invariant measure for Π.

Consequently if we have a unique invariant measure for the operator S
then we also have a unique invariant measure for the operator Π, which is
a restriction of the operator S to the second and third variables with ap-
proximate filtering processes replaced by real filtering process. By Theorem
3.1 we have at most one invariant measure for S. Under Feller property of
the operator S and assumptions of Theorem 3.1, using Proposition 3.2 there
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exists exactly one invariant measure for the operator S and consequently for
the operator Π. For the purpose of further analysis of ergodicity it will be
important to introduce the notion of the barycenter of a measure. Given a
measure Φ ∈ P(P(E0) × E) we define its barycenter bΦ, for A ∈ B(E0) and
B ∈ B(E), as

bΦ(A×B) =

∫
P(E0)

ν(A)Φ(dν,B).

Clearly bΦ ∈ P(E0 × E). Moreover we have (see Lemma 5 and Theorem 3
of [5])

Lemma 3.3. If Φ invariant for Π, then bΦ invariant for T .

and

Proposition 3.4. If S is Feller and does not admit more than one in-
variant measure, then the operator Π has at most one invariant measure.

We can now summarize Theorem 3.1, Propositions 3.2 and 3.4

Corollary 3.5. If S is Feller, there exists a unique invariant measure ζ
for T and for ζ almost an (x, y) the approximate filters (πxyρ

′

n ) are asymptoti-
cally stable in probability at (x, y), then there exist unique invariant measures
for the operators S and Π.

Now we introduce an order within the class of probability measures on
P(E0) × E which contains potential invariant measures of the operator Π.
Let Cc(P(E0) × E) be the family of functions P(E0) × E 3 (ν, y) 7→ F (ν, y)
which are continuous and bounded and convex with respect to ν for fixed
y ∈ E. Ordering on P(P(E0)× E) is defined as follows

q1 ≺ q2 if and only if ∀f∈Cc(P(E0)×E) q1(f) ≤ q2(f).

One can consider following [12] the following two filtering processes:

π̃ρn(A) = Pρ {xn ∈ A|x0 ∨ Y n} ,

πρn(A) = Pρ {xn ∈ A|Y n}
(3.1)

defined for A ∈ B(E0). The first process π̃ρn corresponds to the situation
when we know exactly the initial value x0 of the process (xn), although later
we observe only the process (yn). The second process πρn corresponds to the
model in which we don’t know x0, and observe only y0 at time 0. It appears
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that the pairs
(
π̃ρn
yn

)
and

(
πρn
yn

)
form Markov processes on P(E0) × E with

the same transition operator Π.
Define the following family of measures for F ∈ bB(P(E0)× E):

mρ
n(F ) = Eρ {F (πρn, yn)} , Mρ

n(F ) = Eρ {F (π̃ρn, yn)} .

The following result summarizes Lemmas 9, 10 and Proposition 3 of [5]

Theorem 3.6. If ρ is an invariant measure for the operator T then

mρ
n ≺ m

ρ
n+1 ≺M

ρ
n+1 ≺Mρ

n.

Furthermore, there exist measures m and M such that mρ
n ⇒ m and Mρ

n →
M , as n → ∞, where ⇒ denotes weak convergence of probability measures.
The measures m andM are invariant for the operator Π and for any invariant
measure Φ of the operator Π with barycenter ρ we have m ≺ Φ ≺M .

Consequently the measures m and M are minimal and maximal invariant
measures of the operator Π with respect to the ordering ≺.

Consider now again the filtering processes π̃ρn and πρn. Both processes

have the same initial law of the pair
(
xn
yn

)
. The difference is that by the

formula (3.1) we observe random x0 in the first process case. In fact the law
of x0 is ρ(· × E), while the law of y0 given x0 is given by the conditional law
qρ(x0, ·), where using conditional law decomposition (Theorem I.3.1 of [8])
ρ(dx, dy) = qρ(x, dy)ρ(dx×E). We say that filtering processes π̃ρn and πρn are
asymptotically stable in probability whenever for any f ∈ C(E0) we have

π̃ρn(f)− πρn(f)→ 0

in Pρ probability as n→∞. We have (see Theorem 4 of [5])

Theorem 3.7. Assume that ρ in an invariant measure for the operator T
and the operator Π is Feller. Then there is a unique invariant measure for
the operator Π with barycenter ρ if and only if the filtering processes (π̃n) and
(πn) are asymptotically stable in Pρ probability.

In the Theorem 3.7 above we have equivalence of asymptotical stability
of the processes (π̃n) and (πn) and existence of unique invariant measure for
the operator Π. It appears that we have a similar situation in the case of
asymptotical stability of approximate filtering processes. Namely, as is shown
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in Theorem 5 of [5], following [17] the existence of a unique invariant mea-
sure for the operator Π under nonrestrictive assumptions implies asymptotical
stability of approximate filtering processes. Consequently taking into account
Theorem 3.1 and Corollary 3.5 the asymptotical stability of approximate fil-
tering processes is almost equivalent to the existence of a unique invariant
measure for the operator Π.

4. Ergodicity by vanishing discount approach

In this section we present an alternative method to show uniqueness of the
invariant measure for the operator Π based on an ideas from [19] adapted to
the problem in [6]. Given a nonnegative bounded Borel measurable function
F : P(E0)× E 7→ R define

gF := inf
µ∈P(E0),y∈E

lim sup
n→∞

1

n

n−1∑
i=0

ΠiF (µ, y)

and

wβF (µ, y) :=

∞∑
i=0

βiΠiF (µ, y)

with 0 < β < 1. Let

mβ
F := inf

µ∈P(E0),y∈E
wβF (µ, y),

ḡF := lim sup
β→1

(1− β)mβ
F ,

and

g
F

:= lim inf
β→1

(1− β)mβ
F .

By the Tauberian theorem (see Lemma 1.2 of [19]) we have

(4.1) 0 ≤ g
F
≤ ḡF ≤ gF .

Our approach is based on the following Lemma (see Lemma 1 of [6])
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Lemma 4.1. If there is a nonnegative Borel measurable function wF such
that for µ ∈ P(E0) and y ∈ E

(4.2) wF (µ, y) + g
F
≥ F (µ, y) + ΠwF (µ, y)

then for each µ ∈ P(E0) and y ∈ E

(4.3) g
F

= lim sup
n→∞

1

n

n−1∑
i=0

ΠiF (µ, y).

Proof. Iterating (4.2) we obtain

wF (µ, y) + ng
F
≥
n−1∑
i=0

ΠiF (µ, y) + ΠnwF (µ, y) ≥
n−1∑
i=0

ΠiF (µ, y)

and therefore

(4.4) lim sup
n→∞

1

n

n−1∑
i=0

ΠiF (µ, y) ≤ g
F
.

Since by (4.1) we have g
F
≤ lim supn→∞

1
n

∑n−1
i=0 ΠiF (µ, y), taking into ac-

count (4.4) we obtain (4.3). �

Let

hβF (µ, y) := wβF (µ, y)−mβ
F .

Clearly hβF (µ, y) ≥ 0. Our main assumption is

(AF ) sup
β<1

hβF (µ, y) <∞ for all (µ, y) ∈ P(E0)× E.

One can easily show that wβF is a solution to the following equation

(4.5) wβF (µ, y) = F (µ, y) + βΠwβF (µ, y).

Consequently we have the following equation for hβF

(4.6) hβF (µ, y) = F (µ, y)− (1− β)mβ
F + βΠhβF (µ, y).

We would like to let β → 1 in (4.6). We have
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Lemma 4.2. Under (AF ) there is a nonnegative Borel measurable function
wF such that for µ ∈ P(E0) and y ∈ E inequality (4.2) is satisfied.

Proof. We first choose a subsequence βm → 1 such that (1−βm)mβm
F →

g
F

as m → ∞ and define wF (µ, y) := lim infm→∞ h
βm
F (µ, y). Then using the

Fatou Lemma in (4.6) we obtain (4.2). �

Consequently under (AF ) we have (4.3) and by (4.1) g
F

coincides with
gF . We have the following main result (see Proposition 1 of [6])

Theorem 4.3. Assume that the assumption (AF ) is satisfied for the boun-
ded functions F from the class which determines measures on P(E0)×E. Then

there is at most one invariant measure Φ for the pair
(
πρn
yn

)
.

Proof. By Kakutani theorem (see [10] and [25] Section XIII.2) if Φ is

an invariant measure for the pair
(
πρn
yn

)
then 1

n

∑n−1
i=0 ΠiF (µ, y) converges for

Φ almost all (µ, y) ∈ P(E0) × E. By Lemma 4.1 and Lemma 4.2 this limit
is defined in a unique way as g

F
. The limit is therefore the same for each

(µ, y) ∈ P(E0)×E. By the individual ergodic theorem (see Theorem XIII.2.6
of [25]) the integral of the limit of 1

n

∑n−1
i=0 ΠiF (µ, y) as n→∞ with respect

to Φ (equal to g
F
) coincides with the value of

∫
P(E0)×E F (µ, y)Φ(dµ, dy).

Therefore

g
F

=

∫
P(E0)×E

F (µ, y)Φ(dµ, dy).

Since this is true for functions F which determine measures we have at most
one invariant measure for the pair

(
πρn
yn

)
. �

To use Theorem 4.3 need the assumption (AF ) to be satisfied for the
bounded functions F from the class which determines measures on P(E0)×E.
The family Cc(P(E0)× E) of functions P(E0)× E 3 (ν, y) 7→ F (ν, y), which
are continuous and bounded and convex with respect to ν for fixed y ∈ E is
in particular such class. Let the operator Z that transforms the functions on
P(E0)× E intoM(E0)× E be given by the formula

ZF (ζ, y) = ζ(E0)F
( ζ

ζ(E0)
, y
)
.
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Then one can notice that the operator Π defined in (1.7) is also of the form

ΠF (µ, y) =

∫
E

ZF (N(y, y′, µ), y′)η(dy′)

where for A ∈ B(E0) we define N(y, y′, µ)(A) :=
∫
A
r (x′, y, y′)P (ν, dx′). We

also have (see Lemma 2 in [7])

Lemma 4.4. If F : P(E0) × E 7→ R is concave with respect to the first
coordinate then ZF : M+(E0) × E 7→ R is also concave with respect to the
first coordinate.

Let A ∈ B(E0)

N0(y, µ)(A) := µ(A),

N1(y, y′, µ)(A) := N(y, y′, µ)(A),

and by induction

Nn(y0, y1, . . . , yn, µ)(A) := N(yn−1, yn, Nn−1(y0, y1, . . . , yn−1, µ))(A),

Mn(y0, y1, . . . , yn, µ)(A) :=
Nn(y0, y1, . . . , yn, µ)(A)

Nn(y0, y1, . . . , yn, µ)(E0)
.

If the initial law of (xn) is µ and y0 = y then one can show that

πµyn (A) = Mn(y, y1, . . . , yn, µ)(A)

P a.e.. We have the following important interpretation for iterations of the
operator Π (for details see Lemma 4 of [6])

Lemma 4.5.

ΠnF (µ, y) = Eµy {F (πn, yn)}

= E0 {ZF (Nn(y, ỹ1, . . . , ỹn, µ), ỹn)} ,
(4.7)

where E0 is with respect to P 0 under which random variables ỹ1, ỹ2, . . . , ỹn
are i.i.d. with common law η.

Also
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Lemma 4.6. For bounded Borel measurable function F : P(E0) × E 7→ R

and β ∈ (0, 1) there is a unique solution wβF of (4.5). If F is continuous and
Π is Feller then wβF is also continuous. If F concave with respect to the first
coordinate then wβF is also concave with respect to the first coordinate.

For given µ, ν ∈ P(E0), ε ∈ (0, 1), and a positive integer m define

Dν,µ
ε,m(y, y′) :=

{
ω : Nm(y, ỹ1, . . . , ỹm, ν) ≥ εNm(y′, ỹ1, . . . , ỹm, µ)

}
.

We introduce the following assumption

(C1) ∃m∃ε>0,δ>0 such that ∀y,y′∈E

E0
{

1Dν,µε,m(y,y′)(ω)Nm(y′, ỹ1, . . . , ỹm, µ)(E)
}
≥ δ.

Iterating (4.5) and taking into account (4.7) we have

hβF (µ, y) =

m−1∑
i=0

βiE0 {ZF (Ni(y, ỹ1, . . . , ỹi, µ), ỹi)}

− (1− β)mβ
F

m−1∑
i=0

βi + βmE0
{
ZhβF (Nm(y, ỹ1, . . . , ỹm, µ), ỹm

}
from which using (C1) and concavity of ZhβF we obtain (see Proposition 1
of [6])

Proposition 4.7. Under (C1) for continuous bounded concave with re-
spect to the first argument function F

‖hβF ‖ ≤
m‖F‖
εδ

,

where ‖ · ‖ stands for the supremum norm.

Notice that we have much more than is required in (AF ), on the other hand
we need in (C1) to have δ uniform for all y, y′ ∈ E, which is quite restrictive
in the case when E is a not compact.
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5. Recent results and open problems

The main result concerning ergodicity of filtering processes was formulated
in the paper [23], where the case of observation independent of previous ob-
servation i.e. the case when r in (1.1) was of the form r(x′, y′) was studied.
We shall present below a further result from [22] in which the observation
structure (1.3) was considered. We introduce the following assumption

(H) there is a probability measure φ ∈ P(E0 × E) such that

P {(xn, yn) ∈ ·} → φ(·),

in variation norm as n→∞.
This assumption is clearly satisfied for a wide family of ergodic processes
called positive aperiodic Harris processes (see Theorem 13.3.1 of [16]). We
have from [22]

Theorem 5.1. Under (H), whenever the kernels P x
′

1 (y, ·) are equivalent
for x′ ∈ E0 and y ∈ E, there is a unique invariant measure Φ for the pair
(πn, yn) and Πn converges in variation norm to Φ, as n→∞.

If the convergence in (H) is replaced by convergence in weak topology
and the kernels P x

′

1 (y, ·) are equivalent, then we may have more invariant

measures, as is shown in [24], for the pair
(
πρn
yn

)
. Therefore the conjecture

formulated in the introduction is false. On the other hand a long standing
problem consisting in filling out the gap in the famous paper [9] has been then
partially solved by [23] and [22]. It is still an open problem to clarify what
we should add to the weak convergence of P {(xn, yn) ∈ ·} → φ(·), as n→∞

to get a unique invariant measure Φ for the pair
(
πρn
yn

)
.

From the application to system theory point of view ergodicity of filtering
processes is only the first step required to study partially observed control
problems with average cost per unit time functionals. We would like to study
the case when the state process is controlled using at time n control vn val-
ues in a compact set U , which is adapted to Y n and the processes (xn) and
(yn) have controlled transition kernels P vn(xn, dx) and P

xn+1,vn
1 (yn, dy) re-

spectively. Denote by V the class of such admissible controls (vn). We would
like to minimize the cost functional

J(V ) = lim sup
n→∞

1

n
EV

{
n−1∑
i=0

c(xi, yi)

}
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and study the ergodicity of the pair
(
πρn
yn

)
, where now πρn is a controlled

filtering process. A good candidate for the value function of the cost functional
J(V ) is g, which comes from so called Bellman equation

(5.1) w(µ, y) + g = inf
a∈U

[c(µ, y) + Πaw(µ, y)].

Although under certain assumptions we are able to show the existence of
solutions to (5.1) (see [21] or [4]), the question of ergodicity of the pair remains
still open.
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