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EXISTENCE AND UNIQUENESS OF CLASSICAL
SOLUTION TO DARBOUX PROBLEM

TOGETHER WITH NONLOCAL CONDITIONS

Ludwik Byszewski

Abstract. The existence and uniqueness of a classical solution to a semilin-
ear hyperbolic differential Darboux problem together with semilinear nonlocal
conditions in a bounded domain are studied. The Banach fixed point theorem
is applied.

1. Introduction

In this paper we prove a theorem on the existence and uniqueness of a
classical solution to a semilinear hyperbolic differential Darboux problem to-
gether with semilinear nonlocal conditions in the domain [0, a]× [0, b], where
a > 0 and b > 0.

The result obtained is a generalization of results given by Krzyżański in [5],
by Chi, Poorkarimi, Wiener and Shah in [4] and by the author in [1] and [2].

In monograph [5], Krzyżański gives the existence and uniqueness of a clas-
sical solution to a semilinear Darboux problem, in the domain [0, a] × [0, a],
together with the classical local conditions.
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Moreover, in publication [4], Chi, Poorkarimi, Wiener and Shah study the
existence and uniqueness of classical solutions to semilinear Darboux prob-
lems, in the domains [0, a]× [0, b] and [0, a]× [0,∞), together with the classical
local conditions.

In publications [1] and [2], the author considers theorems on the existence
and uniqueness of semilinear Darboux problems together with linear nonlocal
conditions in two domains: [0, a]× [a, b] and [0,∞)× [0,∞).

The study of parabolic problems together with semilinear nonlocal condi-
tions was initiated by Chabrowski in [3].

2. Preliminaries

Let Q := [0, a]×[0, b], where a > 0, b > 0, and let ai (i = 1, . . . , p), bj (j =
1, . . . , s) be given numbers such that

a1 < a2 < . . . < ap ≤ a,

b1 < b2 < . . . < bs ≤ b.

Moreover, let Z := Q× [−A,A]3, where A > 0.
We mean by C1(Q,R) the set of all continuous functions w : Q→ R (w =

w(x, y)) such that the derivatives w′x and w′y are continuous inQ.Moreover, we
mean by C1(Q, [−A,A]) the set of all continuous functions w : Q → [−A,A]
such that the derivatives w′x and w′y are continuous in Q and satisfy the
inequalities

(2.1) ‖w′x‖ ≤ A, ‖w′y‖ ≤ A,

where ‖ · ‖ is the norm of the uniform convergence in Q. In C1(Q, [−A,A]) we
use the following metric ρ:

(2.2) ρ(w, w̃) = ‖w − w̃‖+ ‖w′x − w̃′x‖+ ‖w′y − w̃′y‖

for w, w̃ ∈ C1(Q, [−A,A]). By C1,2(Q, [−A,A]) we denote the class of all
functions w ∈ C1(Q, [−A,A]) such that the derivative w′′xy is continuous in Q.

In this paper we prove a theorem on the existence and uniqueness of a
classical solution of the following Darboux problem together with semilinear
nonlocal conditions:

(2.3) u′′xy(x, y) = F (x, y, u(x, y), u′x(x, y), u
′
y(x, y)), (x, y) ∈ Q,



Classical solution to Darboux problem 69

u(x, 0) +

p∑
i=1

hi(x)H(u(x, bi)) = φ(x), x ∈ [0, a],(2.4)

u(0, y) +

s∑
j=1

kj(y)K(u(aj , y)) = ψ(y), y ∈ [0, b],(2.5)

where F,H,K, hi (i = 1, . . . , p), kj (j = 1, . . . , s), φ, and ψ are given functions
satisfying some assumptions.

A function u ∈ C1,2(Q, [−A,A]) is said to be a classical solution to prob-
lem (2.3)–(2.5) if u satisfies the differential equation (2.3) and the nonlocal
conditions (2.4) and (2.5).

To find the classical solution of problem (2.3)–(2.5) we apply the Banach
fixed point theorem.

Similarly as in paper [1], the theorem from this paper can be applied in
the theory of elasticity with better effects than the analogous known theorem
with classical local conditions.

3. Theorem on the existence and uniqueness

Theorem 1. Assume that:
(i) F ∈ C(Z,R) and there is a constant L > 0 such that

(3.1)
∣∣F (x, y, z, p, q)− F (x, y, z̃, p̃, q̃)∣∣≤ L(∣∣z − z̃∣∣+∣∣p− p̃∣∣+∣∣q − q̃∣∣)

for (x, y, z, p, q), (x, y, z̃, p̃, q̃) ∈ Z.
Moreover,

(3.2) M := max
(x,y,z,p,q)∈Z

∣∣F (x, y, z, p, q)∣∣;
(ii) H ∈ C1([−A,A],R), K ∈ C1([−A,A],R) and there are constants Li >

0 (i = 1, . . . , 4) such that∣∣H(z)−H(z̃)
∣∣≤ L1

∣∣z − z̃∣∣, z, z̃ ∈ [−A,A],(3.3) ∣∣K(z)−K(z̃)
∣∣≤ L2

∣∣z − z̃∣∣, z, z̃ ∈ [−A,A],(3.4) ∣∣H ′(z)−H ′(z̃)∣∣≤ L3

∣∣z − z̃∣∣, z, z̃ ∈ [−A,A],(3.5) ∣∣K ′(z)−K ′(z̃)∣∣≤ L4

∣∣z − z̃∣∣, z, z̃ ∈ [−A,A].(3.6)
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Moreover,

(3.7) M1 := max
(

max
z∈[−A,A]

∣∣H(z)
∣∣, max
z∈[−A,A]

∣∣H ′(z)∣∣)
and

(3.8) M2 := max
(

max
z∈[−A,A]

∣∣K(z)
∣∣, max
z∈[−A,A]

∣∣K ′(z)∣∣);
(iii) φ ∈ C1([0, a],R), ψ ∈ C1([0, b],R), φ(0) = ψ(0), hi ∈ C1([0, a],R),

hi(0) = 0 (i = 1, . . . , p), kj ∈ C1([0, b],R), kj(0) = 0 (j = 1, . . . , s).
Moreover,

K1 := max
(

max
x∈[0,a]

∣∣φ(x)∣∣, max
x∈[0,a]

∣∣φ′(x)∣∣),(3.9)

K2 := max
(

max
y∈[0,b]

∣∣ψ(y)∣∣, max
y∈[0,a]

∣∣ψ′(y)∣∣),(3.10)

K3 := max
i=1,...,p

(
max
x∈[0,a]

∣∣hi(x)∣∣, max
x∈[0,a]

∣∣h′i(x)∣∣),(3.11)

K4 := max
j=1,...,s

(
max
y∈[0,b]

∣∣kj(y)∣∣, max
y∈[0,b]

∣∣k′j(y)∣∣).(3.12)

(iv) The following inequalities are satisfied:

(1 + a)K1 + 2K2 + pK3M1(A+ 2)(3.13)

+sK4M2(A+ 2) + (a+ b+ ab)M ≤ A,

q < 1,(3.14)

where q := pK3(2L1+M1+L3A)+sK4(2L2+M2+L4A)+(a+b+ab)L.

Then problem (2.3)–(2.5) has a unique classical solution.

Proof. It is evident that if the function u ∈ C1,2(Q, [−A,A]) satisfies
problem (2.3)–(2.5) then it also satisfies the integral equation

u(x, y) = φ(x)− φ(0) + ψ(y)

−
p∑
i=1

hi(x)H(u(x, bi))−
s∑
j=1

kj(y)K(u(ai, y))(3.15)

+

∫ x

0

∫ y

0

F (ξ, η, u(ξ, η), u′ξ(ξ, η), u
′
η(ξ, η))dξdη.
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Conversely, if the function u ∈ C1(Q, [−A,A]) and satisfies equation (3.15)
then it has the continuous derivative u′′xy = u′′yx in Q, satisfies equation (2.3)
and, moreover, conditions (2.4)–(2.5). Therefore, we will seek the solution
of equation (3.15). For this purpose introduce the operator T given by the
following formula:

(Tw)(x, y) := φ(x)− φ(0) + ψ(y)

−
p∑
i=1

hi(x)H(w(x, bi))−
s∑
j=1

kj(y)K(w(aj , y))(3.16)

+

∫ x

0

∫ y

0

F (ξ, η, w(ξ, η), w′ξ(ξ, η), w
′
η(ξ, η))dξdη

for w ∈ C1(Q, [−A,A]).
Since φ ∈ C1([0, a],R), ψ ∈ C1([0, b],R), hi ∈ C1([0, a],R) (i = 1, . . . , p),

kj ∈ C1([0, b],R) (j = 1, . . . , s), H,K ∈ C1([−A,A],R), and F ∈ C(Z,R)
then operator T maps C1(Q, [−A,A]) into C1(Q,R). Now, we will show that
operator T maps C1(Q, [−A,A]) into C1(Q, [−A,A]). To this end observe that
by (3.16), (3.7)–(3.12) and (3.2),∣∣(Tw)(x, y)∣∣ ≤ ∣∣φ(x)− φ(0)∣∣+∣∣ψ(y)∣∣

+

p∑
i=1

∣∣hi(x)∣∣·∣∣H(w(x, bi))
∣∣+ s∑

j=1

∣∣kj(y)∣∣·∣∣K(w(aj , y))
∣∣(3.17)

+

∫ x

0

∫ y

0

∣∣F (ξ, η, w(ξ, η), w′ξ(ξ, η), w′η(ξ, η))∣∣dξdη
≤ aK1 +K2 + pK3M1 + sK4M2 + abM

for w ∈ C1(Q, [−A,A]),

∣∣[(Tw)(x, y)]′x∣∣ ≤ ∣∣φ′(x)∣∣+ p∑
i=1

∣∣h′i(x)∣∣·∣∣H(w(x, bi))
∣∣

+

p∑
i=1

∣∣hi(x)∣∣·∣∣H ′(w(x, bi))∣∣·∣∣w′x(x, bi)∣∣(3.18)

+

∫ y

0

∣∣F (x, η, w(x, η), w′x(x, η), w′η(x, η))∣∣dη
≤ K1 + pK3M1 + pK3M1A+ bM

for w ∈ C1(Q, [−A,A]), and
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∣∣[(Tw)(x, y)]′y∣∣ ≤ ∣∣ψ′(y)∣∣+ s∑
j=1

∣∣k′j(y)∣∣·∣∣K(w(aj , y))
∣∣

+

s∑
j=1

∣∣kj(y)∣∣·∣∣K ′(w(aj , y))∣∣·∣∣w′y(aj , y)∣∣(3.19)

+

∫ x

0

∣∣F (ξ, y, w(ξ, y), w′ξ(ξ, y), w′y(ξ, y))∣∣dξ
≤ K2 + sK4M2 + sK4M2A+ aM, w ∈ C1(Q, [−A,A]).

Consequently, from (2.2), (3.17)–(3.19) and (3.13),

ρ(Tw, 0) = ‖Tw‖+ ‖(Tw)′x‖+ ‖(Tw)′y‖ ≤ A for w ∈ C1(Q, [−A,A]).

Therefore,

(3.20) T : C1(Q, [−A,A])→ C1(Q, [−A,A]).

Now, we will show that

(3.21) ρ(Tw, T w̃) ≤ qρ(w, w̃), w, w̃ ∈ C1(Q, [−A,A]).

For this purpose observe that, by (3.16),

(Tw)(x, y)− (Tw̃)(x, y) = −
p∑
i=1

hi(x)[H(w(x, bi))−H(w̃(x, bi))]

−
s∑
j=1

kj(y)[K(w(aj , y))−K(w̃(aj , y))]

+

∫ x

0

∫ y

0

[F (ξ, η, w(ξ, η), w′ξ(ξ, η), w
′
η(ξ, η))

− F (ξ, η, w̃(ξ, η), w̃′ξ(ξ, η), w̃′η(ξ, η))]dξdη,

w, w̃ ∈ C1(Q, [−A,A]), and, therefore, from (3.11), (3.3), (3.12), (3.4), (3.1)
and (2.2),

(3.22)
∣∣(Tw)(x, y)− (Tw̃)(x, y)

∣∣≤ (pK3L1 + sK4L2 + abL)ρ(w, w̃),

w, w̃ ∈ C1(Q, [−A,A]).
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Moreover, observe that, by (3.16),

[(Tw)(x, y)]′x − [(Tw̃)(x, y)]′x

=

p∑
i=1

h′i(x) · [H(w(x, bi))−H(w̃(x, bi))]

+

p∑
i=1

hi(x) · [H ′(w(x, bi)) · w′x(x, bi)−H ′(w̃(x, bi)) · w̃′x(x, bi)]+∫ y

0

[F (x, η, w(x, η), w′x(x, η), w
′
η(x, η))− F (x, η, w̃(x, η), w̃′x(x, η), w̃′η(x, η))]dη

=

p∑
i=1

h′i(x) · [H(w(x, bi))−H(w̃(x, bi))]

+

p∑
i=1

hi(x)H
′(w(x, bi)) · [w′x(x, bi)− w̃′x(x, bi)]

+

p∑
i=1

hi(x)[H
′(w(x, bi))−H ′(w̃(x, bi))] · w̃′x(x, bi)+∫ y

0

[F (x, η, w(x, η), w′x(x, η), w
′
η(x, η))− F (x, η, w̃(x, η), w̃′x(x, η), w̃′η(x, η))]dη,

w, w̃ ∈ C1(Q, [−A,A]), and, therefore, from (3.11), (3.3), (3.7), (3.5), (3.1),
and (2,2),

(3.23)
∣∣[(Tw)(x, y)]x − [(Tw̃)(x, y)]x

∣∣
≤ (pK3L1 + pK3M1 + pK3L3A+ bL)ρ(w, w̃),

w, w̃ ∈ C1(Q, [−A,A]). Finally, observe that, by (3.16),

(Tw)(x, y)]′y − [(Tw̃)(x, y)]′y

=

s∑
j=1

k′j(y) · [K(w(aj , y))−K(w̃(aj , y))]

+
s∑
j=1

kj(y)K
′(w(aj , y)) · [w′y(aj , y)− w̃′y(aj , y)]

+

s∑
j=1

kj(y) · [K ′(w(aj , y))−K ′(w̃(aj , y))] · w̃′y(aj , y)+∫ x

0

[F (ξ, y, w(ξ, y), w′ξ(ξ, y), w
′
y(ξ, y))− F (ξ, y, w̃(ξ, y), w̃′ξ(ξ, y), w̃′y(ξ, y))]dξ,
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w, w̃ ∈ C1(Q, [−A,A]), and, therefore from (3.12), (3.4), (3.8), (3.6), (3.1)
and (2.2),

(3.24)
∣∣[Tw)(x, y)]′y − [(Tw̃)(x, y)]′y

∣∣
≤ (sK4L2 + sK4M2 + sK4L4A+ aL)ρ(w, w̃),

w, w̃ ∈ C1(Q, [−A,A]). Consequently, by (3.22)–(3.24), (2.2) and (3.14), in-
equality (3.21) is satisfied with 0 < q < 1.

By (3.20) and (3.21) operator T satisfies all the assumptions of the Banach
fixed point theorem. Therefore, in space C1(Q, [−A,A]) there is the only one
fixed point of T and this point is the classical solution of problem (2.3)–(2.5).
So, the proof of Theorem 3.1 is complete. �
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