CHARACTERIZATION OF CARATHÉODORY FUNCTIONS

Andrzej Nowak

Abstract. We study Carathéodory functions $f\colon D\to Y$, where (T,\mathcal{T}) is a measurable space, X,Y are metric spaces and $D\subset T\times X$. In the case when \mathcal{T} is complete and Y is a separable Banach space, we give a characterization of such functions.

1. Preliminaries

In this section we introduce notation and definitions, and quote some auxiliary results.

Throughout the whole paper (T, \mathcal{T}) is a measurable space, and X, Y are metric spaces. We say that \mathcal{T} is *complete*, if there exists a σ -finite measure μ such that \mathcal{T} is complete with respect to μ . For $S \subset T$ by $S \cap \mathcal{T}$ we denote the trace σ -field on S, i.e., $S \cap \mathcal{T} = \{S \cap U : U \in \mathcal{T}\}$. $\mathcal{B}(X)$ stands for the Borel σ -field on X, and $\mathcal{T} \otimes \mathcal{B}(X)$ for the product σ -field on $T \times X$.

Let φ be a multifunction from T to X, i.e., $\varphi \colon T \to 2^X$ and $\varphi(t) \neq \emptyset$ for all $t \in T$. We refer to [5] for terminology and proofs of auxiliary results on multifunctions. By the graph of φ we mean the set $\operatorname{Gr} \varphi = \{(t,x) \in T \times X : x \in \varphi(t)\}$. We say that φ is measurable (weakly measurable) if for each closed (open) set $A \subset X$ the preimage $\varphi^-(A) = \{t \in T : \varphi(t) \cap A \neq \emptyset\}$ belongs to the σ -field \mathcal{T} . If φ is measurable then it is weakly measurable. If X is separable and φ is weakly measurable and closed-valued, then $\operatorname{Gr} \varphi \in \mathcal{T} \otimes \mathcal{B}(X)$. A function $h \colon T \to X$ is a measurable selector of φ if it is measurable

Received: 17.12.2012. Revised: 12.04.2013.

⁽²⁰¹⁰⁾ Mathematics Subject Classification: 26B35.

Key words and phrases: Carathéodory function, extension, measurable selection.

94 Andrzej Nowak

and $h(t) \in \varphi(t)$ for all $t \in T$. A countable family (h_n) of measurable selectors of φ such that for each $t \in T$ the set $\{h_n(t) : n \in \mathbb{N}\}$ is dense in $\varphi(t)$ is called a *Castaing representation of* φ . We shall use the following measurable selection theorems (cf. [10] and [11]):

THEOREM 1.1. Let X be separable and φ a weakly measurable multifunction from T to X with complete values. Then φ has a Castaing representation.

THEOREM 1.2. Suppose \mathcal{T} is complete, X is separable and complete, and φ is a multifunction from T to X. If $\operatorname{Gr} \varphi \in \mathcal{T} \otimes \mathcal{B}(X)$, then φ admits a Castaing representation.

Assume that the metric space X is locally compact and separable. Denote by C(X,Y) the space of all continuous functions $u\colon X\to Y$ endowed with the compact-open topology. There a sequence of compact sets (X_n) such that $X=\bigcup_{n=1}^\infty X_n$ and $X_n\subset \operatorname{int} X_{n+1}$. The compact-open topology of C(X,Y) is metrizable by the metric

$$\rho(u, v) = \sum_{n=1}^{\infty} \frac{\rho_n(u, v)}{2^n (1 + \rho_n(u, v))},$$

where $\rho_n(u, v) = \sup\{\rho_Y(u(x), v(x)) : x \in X_n\}, n \in \mathbb{N}, \text{ and } \rho_Y \text{ is the metric of } Y \text{ (see, e.g., [9], 44.VII)}. A sequence <math>(u_n)$ converges in this metric iff it converges uniformly on each compact subset of X. It is known that if Y is separable (complete) then C(X, Y) is also separable (complete) (cf. [9], 44.VII, Theorem 3).

2. Carathéodory functions

Let f be a function from $T \times X$ to Y. We associate with f a new function F defined on T by F(t)(x) = f(t, x). The following theorem is well known:

THEOREM 2.1. Suppose X is locally compact and separable and Y is separable. Then $f: T \times X \to Y$ is measurable in t and continuous in x iff F is C(X,Y)-valued and measurable as a function from T to C(X,Y).

Appel and Väth gave a version of such theorem with (T, \mathcal{T}, μ) being a measure space and the Bochner measurability ([1], Theorem 1). We are going to prove an analogue of Theorem 2.1 for the case when the domain of f is a subset of $T \times X$.

If the space X is separable and a function $f: T \times X \to Y$ is measurable in t and continuous in x, then f is product-measurable. It is not the case when f is defined on a subset of $T \times X$.

Let $D \subset T \times X$ satisfying $\operatorname{proj}_T D = T$ be fixed for the rest of the paper. By D_t and D^x we denote, respectively, t-sections and x-sections of D. A function $f \colon D \to Y$ such that for each $t \in T$, $f(t,\cdot)$ is continuous on D_t , and for each $x \in \operatorname{proj}_X D$, $f(\cdot,x)$ is $D^x \cap \mathcal{T}$ -measurable need not be $D \cap \mathcal{T} \otimes \mathcal{B}(X)$ -measurable (see e.g., [8], p. 304). This observation motivates the following definition: A function $f \colon D \to Y$ is Carath'eodory if it is $D \cap \mathcal{T} \otimes \mathcal{B}(X)$ -measurable and for each $t \in T$, $f(t,\cdot)$ is continuous on D_t (cf. [8]).

REMARK 2.1. Note that if X is separable, $g: T \times X \to Y$ is measurable in t and continuous in x, then g is Carathéodory in the above sense. Moreover, for each $D \subset T \times X$ the function $g|_D$ is Carathéodory.

Now let $f: D \to Y$ be continuous in x, i.e., for each $t \in T$, $f(t, \cdot)$ is continuous on D_t . As previous, we associate with f the function F defined by F(t)(x) = f(t, x), $x \in D_t$. For each $t \in T$, F(t) is an element of the space $C(D_t, Y)$. How can we define the measurability of such a function F?

Suppose X is locally compact and separable, and (X_n) is a sequence of compact sets such as in Section 1. We shall assume that the sections D_t are closed and the multifunction $t \mapsto D_t$, $t \in T$, is measurable. Since D is the graph of this multifunction, it implies $D \in \mathcal{T} \otimes \mathcal{B}(X)$. The space $C(D_t, Y)$ is endowed with the metric ρ_t defined by

$$\rho_t(v, w) = \sum_{n=1}^{\infty} \frac{\rho_{nt}(v, w)}{2^n (1 + \rho_{nt}(v, w))}, \quad v, w \in C(D_t, Y),$$

where $\rho_{nt}(v, w) = 0$ if $D_t \cap X_n = \emptyset$, and $\rho_{nt}(v, w) = \sup\{\rho_Y(v(x), w(x)) : x \in D_t \cap X_n\}$ if $D_t \cap X_n \neq \emptyset$.

We say that the function F defined as above is measurable if for each $u \in C(X,Y)$ the real-valued function $t \mapsto \rho_t(u|_{D_t}, F(t)), t \in T$, is measurable.

REMARK 2.2. If $D_t = X$ for all $t \in T$, then the metric ρ_t does not depend on t, and coincides with ρ defined in Section 1. In this case our definition says that for each $u \in C(X,Y)$ the function $t \mapsto \rho(u,F(t)), t \in T$, is measurable. If Y is separable then C(X,Y) is also separable, and the last condition is equivalent to the measurability of F as a function from T to C(X,Y).

96 Andrzej Nowak

3. Main results

In this section X and D satisfy assumptions stated above, before the definition of the metric ρ_t on $C(D_t, Y)$. Let $f \colon D \to Y$ be continuous in x, and F associated to f. We shall study relations among the following three conditions:

- (i) f is Carathéodory;
- (ii) F is measurable;
- (iii) f can be extended to a Carathéodory function $g: T \times X \to Y$. It follows from Remark 2.1 that (iii) implies (i).

Theorem 3.1. If Y is separable then $(i) \Rightarrow (ii)$.

PROOF. Let $T_n = \{t \in T : D_t \cap X_n \neq \emptyset\}$, $n \in \mathbb{N}$. Under our assumptions, $T_n \in \mathcal{T}$. Fix $n \in \mathbb{N}$ such that $T_n \neq \emptyset$ and $u \in C(X,Y)$. It suffices to prove that the function $t \mapsto \rho_{nt}(u|_{D_t}, F(t))$, $t \in T_n$, is measurable.

Note that the multifunction $t \mapsto D_t \cap X_n$, $t \in T_n$, is measurable and compact-valued. Thus it admits the Castaing representation, i.e., there exists a sequence of measurable functions $h_k \colon T_n \to X$, $k \in \mathbb{N}$, such that $\operatorname{cl}\{h_k(t) : k \in \mathbb{N}\} = D_t \cap X_n$ for each $t \in T_n$. Hence,

$$\sup \{ \rho_Y(u(x), f(t, x)) : x \in D_t \cap X_n \} = \sup \{ \rho_Y(u(h_k(t)), f(t, h_k(t)) : k \in \mathbb{N} \}.$$

The functions $t \mapsto u(h_k(t))$, $t \in T_n$, and $t \mapsto f(t, h_k(t))$, $t \in T_n$, are measurable. Thus $t \mapsto \rho_Y(u(h_k(t)), f(t, h_k(t)), t \in T_n$, is also measurable. Consequently, the function $t \mapsto \rho_{nt}(u|_{D_t}, F(t))$, $t \in T$, is measurable, which completes the proof.

REMARK 3.1. In some interesting cases the measurability of the multifunction $t \mapsto D_t$ follows from $D \in \mathcal{T} \otimes \mathcal{B}(X)$. Note that D is the graph of this multifunction. If \mathcal{T} is complete, X is a complete and separable metric space, and $D \in \mathcal{T} \otimes \mathcal{B}(X)$, then $t \mapsto D_t$, $t \in T$, is measurable. It follows from the Projection Theorem (see e.g. [3], Theorem 1.3). If T and X are complete and separable metric spaces, $\mathcal{T} = \mathcal{B}(T)$ and $D \in \mathcal{B}(T \times X)$ has σ compact t-sections, then the multifunction $t \mapsto D_t$ is Borel-measurable. This is a consequence of the Arsenin–Kunugui–Novikov Theorem (see [6], Theorem 18.18).

THEOREM 3.2. If the σ -field \mathcal{T} is complete and Y is a separable Banach space, then $(ii) \Rightarrow (iii)$.

PROOF. Let the multifunction $\Phi: T \to 2^{C(X,Y)}$ be defined by

$$\Phi(t) = \{ v \in C(X, Y) : v|_{D_t} = F(t) \}, \quad t \in T.$$

By the Dugundji Extension Theorem, $\Phi(t) \neq \emptyset$. If $G: T \to C(X,Y)$ is a measurable selector of Φ , then for each $t \in T$, $G(t)|_{D_t} = F(t)$. Let g(t,x) = G(t)(x). Such g is measurable in t, continuous in x, and g(t,x) = F(t)(x) = f(t,x) for $x \in D_t$. It means that g is a required extension of f. Hence, it suffices to prove that Φ has a measurable selector.

In order to apply Theorem 1.2, we show that $\operatorname{Gr}\Phi\in\mathcal{T}\otimes\mathcal{B}(C(X,Y))$. We have $\operatorname{Gr}\Phi=\{(t,v)\in T\times C(X,Y): \rho_t(v|_{D_t},F(t))=0\}$. The function $(t,v)\mapsto \rho_t(v|_{D_t},F(t)),\, (t,v)\in T\times C(X,Y)$, is continuous in v and measurable in t, by the measurability of F. Since Y is separable, C(X,Y) is separable too, and this function is $\mathcal{T}\otimes\mathcal{B}(X)$ -measurable. Hence $\operatorname{Gr}\Phi\in\mathcal{T}\otimes\mathcal{B}(X)$, and Φ has a measurable selector. It completes the proof.

COROLLARY. Suppose \mathcal{T} is complete and Y is a separable Banach space. Then $(i) \Leftrightarrow (ii) \Leftrightarrow (iii)$.

REMARK 3.2. The problem of the extension of Carathéodory functions defined on $D \subset T \times X$ was studied by DeBlasi and Myjak [4], Kucia [7],[8], and Brown and Schreiber [2]. It is already known that under assumptions of Theorem 3.2 the implication (i) \Rightarrow (iii) holds (see [7], Corollary and [8], Corollary 3).

PROBLEMS:

- 1. It would be interesting to know if the implication (ii) \Rightarrow (i) holds without completeness of \mathcal{T} and linear structure of Y. Of course, in this case we can not expect the implication (ii) \Rightarrow (iii).
- 2. Does Theorem 3.2 hold for an arbitrary σ -field \mathcal{T} ? In fact, we ask if the multifunction Φ defined in the proof admits a measurable selector.

Acknowledgement. The research was supported by the Silesian University Mathematics Department (Iterative Functional Equations and Real Analysis program).

References

 Appell J., Väth M., The space of Carathéodory functions, in: Nonlinear analysis and related problems, Tr. Inst. Mat. (Minsk) 2 Natl. Acad. Nauk Belarusi, Inst. Mat., Minsk, 1999, pp. 39–43 (in Russian). 98 Andrzej Nowak

[2] Brown L., Schreiber B.M., Approximation and extension of random functions, Monatsh. Math. 107 (1989), 111–123.

- [3] Christensen J.P.R., Topology and Borel Structures, North Holland, Amsterdam, 1974.
- [4] DeBlasi F.S., Myjak J., On the random Dugundji extension theorem, J. Math. Anal. Appl. 128 (1987), 305–311.
- [5] Himmelberg C.J., Measurable relations, Fund. Math. 87 (1975), 53–72.
- [6] Kechris A.S., Classical Descriptive Set Theory, Springer-Verlag, New York, 1994.
- [7] Kucia A., Extending Carathéodory functions, Bull. Polish Acad. Sci. Math. 36 (1988), 593-601.
- [8] Kucia A., Some results on Carathéodory selections and extensions, J. Math. Anal. Appl. 223 (1998), 302–318.
- [9] Kuratowski K., Topology, Vol. II, Academic Press, New York, 1968.
- [10] Wagner D.H., Survey of measurable selection theorems, SIAM J. Control 15 (1977), 859–903.
- [11] Wagner D.H., Survey of measurable selection theorems: an update, in: Measure Theory, Oberwolfach 1979, Lecture Notes in Math., 794, Springer, Berlin-New York, 1980, pp. 176–219.

Institute of Mathematics Silesian University Bankowa 14 40-007 Katowice Poland

e-mail: anowak@math.us.edu.pl