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FEJÉR-TYPE INEQUALITIES FOR STRONGLY CONVEX
FUNCTIONS

Antonio Azócar, Kazimierz Nikodem, Gari Roa

Abstract. Fejér-type inequalities as well as some refinement and a discrete
version of the Hermite–Hadamard inequalities for strongly convex functions
are presented.

1. Introduction

In recent years several extensions and generalizations have been consid-
ered for classical convexity, and the theory of inequalities has made essential
contributions in many areas of mathematics. A significant subclass of convex
functions is that of strongly convex functions introduced by B. T. Polyak [15].
Strongly convex functions are widely used in applied economics, as well as in
nonlinear optimization and other branches of pure and applied mathematics.
Our investigations are devoted to the classical results related to convex func-
tions due to Charles Hermite [6], Jaques Hadamard [5] and Lipót Fejér [4]. The
Hermite-Hadamard inequalities and Fejér inequalities have been the subject of
intensive research, and many applications, generalizations and improvements
of them can be found in the literature (see, for instance, [2, 3, 9, 11, 14, 20]
and the references therein). In this paper we deal with these inequalities for
strongly convex functions.
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Let f : I → R be a convex function defined on an interval I ⊂ R and let
a, b ∈ I with a < b. The following double integral inequality

(1) f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x) dx ≤ f(a) + f(b)

2
,

is known in the literature as the Hermite–Hadamard inequality (see [3,14] for
some historical notes).

In [4] Fejér generalized inequalities (1) by proving that if g : [a, b]→ [0,∞)
is a symmetric density function on [a, b] (that is, g(a + b − x) = g(x) for all
x ∈ [a, b], and

∫ b
a
g(x) dx = 1), and a function f : [a, b]→ R is convex then

(2) f

(
a+ b

2

)
≤
∫ b

a

f(x)g(x) dx ≤ f(a) + f(b)

2
.

Of course, if g(x) = 1
b−a , then (2) coincides with (1).

Recall that a function f : I → R is called strongly convex with modulus
c > 0 if

(3) f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− ct(1− t)(x− y)2,

for all x, y ∈ I and t ∈ [0, 1]. Strongly convex functions play important

role in optimization theory and mathematical economics. Many properties
and applications of them can be found in the literature (see, for instance,
[1,8,10,12,15–19]). In [10] the following counterpart of the classical Hermite–
Hadamard inequalities for strongly convex functions was obtained:

If a function f : I → R is strongly convex with modulus c then

(4) f
(
a+ b

2

)
+

c

12
(b− a)2 ≤ 1

b− a

∫ b

a

f(x) dx ≤ f(a) + f(b)

2
− c

6
(b− a)2,

for all a, b ∈ I, a < b.
However, the Fejér-type generalization of (4) of the form

(5) f

(
a+ b

2

)
+

c

12
(b− a)2 ≤

∫ b

a

f(x)g(x) dx ≤ f(a) + f(b)

2
− c

6
(b− a)2,

does not hold, in general, for any symmetric density function g : [a, b]→ [0,∞)
and a strongly convex function f : I → R (see the example below).
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Example 1. Let f(x) = x2 and [a, b] = [−1, 1]. Clearly, f is strongly
convex with modulus c = 1. Take the density function g on [−1, 1] given by

g(x) =

{
1, if x ∈ [−1

2 ,
1
2 ]

0, if x ∈ [−1,−1
2) ∪ (12 , 1].

Then
∫ 1

−1

x2g(x) dx =

∫ 1
2

− 1
2

x2 dx =
1

12
<

1

3
= f

(−1 + 1

2

)
+

1

12
(1 + 1)2,

which shows that the left-hand side inequality in (5) does not hold.
Now, take the density function g on [−1, 1] defined by

g(x) =

{
1, if x ∈ [−1,−1

2 ] ∪ [12 , 1]

0, if x ∈ (−1
2 ,

1
2).

Then
∫ 1

−1

x2g(x) dx = 2

∫ 1

1
2

x2 dx =
7

12
>

1

3
=
f(−1) + f(1)

2
− 1

6
(1 + 1)2,

which shows that the right-hand side inequality in (5) does not hold.

The main aim of this paper is to derive an appropriate counterpart of the
Fejér inequalities for strongly convex functions.

We present also some refinement of the Hermite–Hadamard inequalities as
well as a discrete version of the Hermite–Hadamard inequalities for strongly
convex functions.

2. Fejér-type inequalities

The following theorem is a counterpart of the Fejér inequalities for strongly
convex functions.
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Theorem 1. Let g : [a, b] → [0,∞) be a symmetric density function on
[a, b] and f : [a, b] → R be a strongly convex function with modulus c > 0.
Then

(6) f
(a+ b

2

)
+ c
[ ∫ b

a

x2g(x) dx−
(a+ b

2

)2]
≤
∫ b

a

f(x)g(x) dx

≤ f(a) + f(b)

2
− c
[a2 + b2

2
−
∫ b

a

x2g(x) dx
]
.

Remark 2. Using the Fejér inequalities (2) for the function f(x) = x2,
we get

(a+ b

2

)2
≤
∫ b

a

x2g(x) dx ≤ a2 + b2

2

for every symmetric density function g on [a, b]. Therefore the terms

∫ b

a

x2g(x) dx−
(a+ b

2

)2
and

a2 + b2

2
−
∫ b

a

x2g(x) dx

on the left- and the right-hand side of (6) are nonnegative. Consequently,
inequalities (6) are a strengthening of the Fejér inequalities (2). Note also
that inequalities (6) generalize the Hermite–Hadamard-type inequalities (4).
Indeed, for g(x) = 1

b−a we have

∫ b

a

x2g(x) dx−
(a+ b

2

)2
=

(b− a)2
12

,
a2 + b2

2
−
∫ b

a

x2g(x) dx =
(b− a)2

6
,

and then (6) reduces to (4).

Remark 3. If g is any symmetric density function on [a, b], then

∫ b

a

xg(x) dx =
a+ b

2
.

Indeed, putting s = a+b
2 and using the fact that g(2s− x) = g(x), we obtain

∫ b

a

xg(x) dx =

∫ s

a

xg(x) dx+

∫ b

s

yg(y) dy

=

∫ s

a

xg(x) dx+

∫ s

a

(2s− x)g(x) dx = 2s

∫ s

a

g(x) = s =
a+ b

2
.
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Proof of Theorem 1. To prove the left-hand side of (6) put s = a+b
2 ,

and take a function h : [a, b]→ R of the form h(x) = c(x−s)2+m(x−s)+f(s)
supporting f at s (cf. [17, p. 268]). Then

∫ b

a

f(x)g(x) dx ≥
∫ b

a

h(x)g(x) dx

= c

∫ b

a

x2g(x) dx+ (−2cs+m)

∫ b

a

xg(x) dx

+ (cs2 −ms+ f(s))

∫ b

a

g(x) dx.

Hence, using the integrals

(7)
∫ b

a

g(x) dx = 1 and
∫ b

a

xg(x) dx =
a+ b

2
= s,

we obtain
∫ b

a

f(x)g(x) dx ≥ c
∫ b

a

x2g(x) dx− cs2 + f(s)

= f
(a+ b

2

)
+ c
[ ∫ b

a

x2g(x) dx−
(a+ b

2

)2]
.

In the proof of the right-hand side of (6) we use inequality (3).

∫ b

a

f(x)g(x) dx =

∫ b

a

f
(b− x
b− aa+

x− a
b− a b

)
g(x) dx

≤
∫ b

a

(b− x
b− af(a) +

x− a
b− a f(b)− c

(b− x)(x− a)
(b− a)2 (b− a)2

)
g(x) dx

=

∫ b

a

(bf(a)− af(b)
b− a +

f(b)− f(a)
b− a x− c((a+ b)x− ab− x2)

)
g(x) dx.

Now, using the integrals (7), we get

∫ b

a

f(x)g(x) dx ≤ bf(a)− af(b)
b− a +

f(b)− f(a)
b− a

a+ b

2

− c
[(a+ b)2

2
− ab−

∫ b

a

x2g(x) dx
]

=
f(a) + f(b)

2
− c
[a2 + b2

2
−
∫ b

a

x2g(x) dx
]
. �
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Remark 4. The proof presented above is direct. However, we can also
obtain inequalities (6) using the classical Fejér inequalities and the represen-
tation of strongly convex functions of the form f(x) = h(x) + cx2 with a
convex functions h (see [7, Prop.1.1.2]; cf. also [12]).

Rajba and Wąsowicz [16] proved recently that a function f : I → R is
strongly convex with modulus c if and only if

(8) f(E[X]) ≤ E[f(X)]− cD2[X]

for any integrable random variable X taking values in I (E[X] and D2[X]
denote the expected value and the variance of X, respectively). Using this
result we can derive, alternatively, the left-hand side inequality of (6). Indeed,
if X is a random variable with values in [a, b] having a symmetric density
function g : [a, b]→ [0,∞), then

E[X] =

∫ b

a

xg(x) dx =
a+ b

2
,

E[X2] =

∫ b

a

x2g(x) dx,

D2[X] = E[X2]− (E[X])2 =

∫ b

a

x2g(x) dx−
(a+ b

2

)2
,

E[f(X)] =

∫ b

a

f(x)g(x) dx.

Thus, if a function f : [a, b] → R is strongly convex with modulus c then,
substituting the above values to (8), we obtain the left-hand side of (6).

3. A refinement of the Hermite–Hadamard-type inequalities

In this section we present a refinement of the Hermite–Hadamard-type
inequalities (4) for strongly convex functions. A similar result for convex
functions can be found in [11, Remark 1.9.3.].
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Theorem 5. If a function f : [a, b] → R is strongly convex function with
modulus c, then

f
(a+ b

2

)
+

c

12
(b− a)2 ≤ 1

2

[
f
(3a+ b

4

)
+ f

(a+ 3b

4

)]
+

c

48
(b− a)2(9)

≤ 1

b− a

∫ b

a

f(x)dx

≤ 1

2

[
f
(a+ b

2

)
+
f(a) + f(b)

2

]
− c

24
(b− a)2

≤ f(a) + f(b)

2
− c

6
(b− a)2.

Proof. Applying the Hermite–Hadamard-type inequalities (4) on each of
the intervals [a, a+b2 ] and [a+b2 , b] we obtain

f
(3a+ b

4

)
+

c

48
(b−a)2 ≤ 2

b− a

∫ a+b
2

a

f(x) dx ≤ f(a) + f(a+b2 )

2
− c

24
(b−a)2

and

f
(a+ 3b

4

)
+

c

48
(b− a)2 ≤ 2

b− a

∫ b

a+b
2

f(x) dx ≤ f(a+b2 ) + f(b)

2
− c

24
(b− a)2.

Summing up these inequalities we get

(10) f
(3a+ b

4

)
+ f

(a+ 3b

4

)
+

2c

48
(b− a)2 ≤ 2

b− a

∫ b

a

f(x) dx

≤ f(a) + f(b)

2
+ f

(a+ b

2

)
− 2c

24
(b− a)2.

Now, using the strong convexity of f and (10), we obtain

f
(a+ b

2

)
+

c

12
(b− a)2 = f

( 3a+b
4 + a+3b

4

2

)
+

c

12
(b− a)2

≤ 1

2

[
f
(3a+ b

4

)
+ f

(a+ 3b

4

)]
− c

4

(b− a
2

)2
+

c

12
(b− a)2

=
1

2

[
f
(3a+ b

4

)
+ f

(a+ 3b

4

)]
+

c

48
(b− a)2 ≤ 1

b− a

∫ b

a

f(x) dx.
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Similarly, using once more (10) and the strong convexity of f , we get

1

b− a

∫ b

a

f(x)dx ≤ 1

2

[
f
(a+ b

2

)
+
f(a) + f(b)

2

]
− c

24
(b− a)2

≤ 1

2

[f(a) + f(b)

2
+
f(a) + f(b)

2
− c

4
(b− a)2

]
− c

24
(b− a)2

=
f(a) + f(b)

2
− c

6
(b− a)2,

which finishes the proof. �

Remark 6. As a consequence of the above theorem we obtain that in
the Hermite–Hadamard-type inequalities (4) the left-hand side inequality is
stronger than the right-hand one, that is

1

b− a

∫ b

a

f(x) dx−
[
f
(a+ b

2

)
+

c

12
(b− a)2

]

≤
[f(a) + f(b)

2
− c

6
(b− a)2

]
− 1

b− a

∫ b

a

f(x) dx.

It follows immediately from the third inequality in (9). For the classical Her-
mite–Hadamard inequalities an analogous observation is given in [14, p.140].

4. Discrete version of the Hermite–Hadamard-type inequalities

It is known (see J.E.Pečarić [13]; cf. also [14, p. 145]) that if a function
f : I → R is convex and x1 < x2 < . . . < xn are equidistant points in I
then the following discrete analogues of the Hermite-Hadamard inequalities
are valid:

f
(x1 + xn

2

)
≤ 1

n

n∑

i=1

f(xi) ≤
f(x1) + f(xn)

2
.

In this section we present a counterpart of that result for strongly convex
functions.
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Theorem 7. Let f : [a, b]→ R be a strongly convex function with modulus
c and a = x1 < x2 < . . . < xn = b be equidistant points. Then

f
(a+ b

2

)
+

c(n+ 1)

12(n− 1)
(b− a)2 ≤ 1

n

n∑

i=1

f(xi)(11)

≤ f(a) + f(b)

2
− c(n− 2)

6(n− 1)
(b− a)2.

Proof. Since the points x1, . . . , xn are equidistant, we have 1
n

n∑
i=1

xi =

x1+xn

2 . Hence, using the Jensen-type inequality for strongly convex functions
(see [1]), we get

(12) f
(a+ b

2

)
= f

( 1
n

n∑

i=1

xi

)
≤ 1

n

n∑

i=1

f(xi)−
c

n

n∑

i=1

(xi − s)2,

where s = 1
n

n∑
i=1

xi =
a+b
2 . To finish the left-hand side inequality in (11) we

will show that

1

n

n∑

i=1

(xi − s)2 =
n+ 1

12(n− 1)
(b− a)2.

Putting h = b−a
n−1 , we have xi = a+ (i− 1)h, i = 1, . . . , n. From here

1

n

n∑

i=1

(xi − s)2 =
1

n

n∑

i=1

(xi)
2 − s2

=
1

n

n∑

i=1

(a2 + 2ah(i− 1) + (i− 1)2h2)− s2

= a2 +
2ah

n

n∑

i=1

(i− 1) +
h2

n

n∑

i=1

(i− 1)2 − s2.

Consequently, using the formulas

n∑

i=1

(i− 1) =
n(n− 1)

2
and

n∑

i=1

(i− 1)2 =
(n− 1)n(2n− 1)

6
,
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we obtain

1

n

n∑

i=1

(xi − s)2 = a2 + a(b− a) + 2n− 1

6(n− 1)
(b− a)2 −

(a+ b

2

)2

=
n+ 1

12(n− 1)
(b− a)2,

which was to be proved.
To show the right-hand side inequality in (11) note that

xi = (1− qi)a+ qib, where qi =
i− 1

n− 1
, i = 1, . . . , n.

Hence, by the strong convexity of f ,

f(xi) = f((1− qi)a+ qib) ≤ (1− qi)f(a) + qif(b)− cqi(1− qi)(b− a)2.

Summing up the above inequalities and using the fact that the numbers (1−
qi)f(a) + qif(b) are terms of an arithmetic sequence, we get

1

n

n∑

i=1

f(xi) ≤
f(a) + f(b)

2
− c

n(n− 1)2

n∑

i=1

(i− 1)(n− i)(b− a)2.

Now, applying the formula

n∑

i=1

(i− 1)(n− i) = (n− 2)(n− 1)n

6
,

we obtain

1

n

n∑

i=1

f(xi) ≤
f(a) + f(b)

2
− c(n− 2)

6(n− 1)
(b− a)2,

which finishes the proof. �

Remark 8. Note that the sums b−a
n

n∑
i=1

f(xi) are the Riemann approxi-

mate sums of the integral
∫ b
a
f(x) dx. Therefore, letting n → ∞ in (11) , we

get the Hermite–Hadamard-type inequalities (4).



Fejér-type inequalities for strongly convex functions 53

References

[1] Azócar A., Giménez J., Nikodem K., Sánchez J.L., On strongly midconvex functions,
Opuscula Math. 31 (2011), no. 1, 15–26.

[2] Bessenyei M., Páles Zs., Characterization of convexity via Hadamard’s inequality,
Math. Inequal. Appl. 9 (2006), no. 1, 53–62.

[3] Dragomir S.S., Pearce C.E.M., Selected Topics on Hermite–Hadamard Inequal-
ities and Applications, RGMIA Monographs, Victoria University, 2002. (online:
http://rgmia.vu.edu.au/monographs/).

[4] Fejér L., Über die Fourierreihen, II, Math. Naturwiss, Anz. Ungar. Akad. Wiss. 24
(1906), 369–390 (in Hungarian).

[5] Hadamard J., Étude sur les propriétés entières et en particulier d’une fonction con-
siderée par Riemann, J. Math. Pures Appl. 58 (1893), 171–215.

[6] Hermite Ch., Sur deux limites d’une intégrale définie, Mathesis 3 (1883), 82.
[7] Hiriart–Urruty J.-B., Lemaréchal C., Fundamentals of Convex Analysis, Springer-

Verlag, Berlin–Heidelberg, 2001.
[8] Jovanovič M.V., A note on strongly convex and strongly quasiconvex functions, Math.

Notes 60 (1996), no. 5, 778–779.
[9] Kuczma M., An Introduction to the Theory of Functional Equations and Inequalities.

Cauchy’s Equation and Jensen’s Inequality, PWN – Uniwersytet Śląski, Warszawa–
Kraków–Katowice, 1985. Second Edition: Birkhäuser, Basel–Boston–Berlin, 2009.

[10] Merentes N., Nikodem K., Remarks on strongly convex functions, Aequationes Math.
80 (2010), 193–199.

[11] Niculescu C.P., Persson L.-E., Convex Functions and their Applications. A Contem-
porary Approach, CMS Books in Mathematics, vol. 23, Springer, New York, 2006.

[12] Nikodem K., Páles Zs., Characterizations of inner product spaces by strongly convex
functions, Banach J. Math. Anal. 5 (2011), no. 1, 83–87.

[13] Pečarić J.E., On some inequalities for convex functions and some related applications,
Mat. Bilten (Skopje) 5–6 (1981–1982), 29–36.

[14] Pečarić J.E., Proschan F., Tong Y.L., Convex Functions, Partial Orderings, and Sta-
tistical Applications, Academic Press, Boston, 1992.

[15] Polyak B.T., Existence theorems and convergence of minimizing sequences in ex-
tremum problems with restrictions, Soviet Math. Dokl. 7 (1966), 72–75.

[16] Rajba T., Wąsowicz Sz., Probabilistic characterization of strong convexity, Opuscula
Math. 31 (2011), no. 1, 97–103.

[17] Roberts A.W., Varberg D.E., Convex Functions, Academic Press, New York–London,
1973.

[18] Vial J.P., Strong convexity of sets and functions, J. Math. Economy 9 (1982), 187–205.
[19] Vial J.P., Strong and weak convexity of sets and functions, Math. Oper. Res. 8 (1983),

231–259.
[20] Zalinescu C., Convex Analysis in General Vector Spaces, World Scientific, New Jersey,

2002.

Departamento de Matemáticas
Universidad Nacional Abierta
Caracas, Venezuela
e-mail: azocar@yahoo.com

Escuela de Matemáticas
Universidad Central de Venezuela
Caracas, Venezuela
e-mail: gariroa@gmail.com

Department of Mathematics
and Computer Science
University of Bielsko-Biała
ul. Willowa 2
43-309 Bielsko-Biała
Poland
e-mail: knikodem@ath.bielsko.pl




