Annales Mathematicae Silesianae
 26 (2012)

WYDAWNICTWO UNIWERSYTETU ŚLĄSKIEGO KATOWICE 2013

ON SOME GENERALIZATION OF THE GOŁĄB-SCHINZEL EQUATION

Agata Nowak

Abstract

Inspired by a problem posed by J. Matkowski in [10] we investigate the equation $$
f(p(x, y)(x f(y)+y)+(1-p(x, y))(y f(x)+x)))=f(x) f(y), \quad x, y \in \mathbb{R}
$$

where functions $f: \mathbb{R} \rightarrow \mathbb{R}, p: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are assumed to be continuous.

1. Introduction

The composite functional equation

$$
\begin{equation*}
f(x+y f(x))=f(x) f(y), \quad x, y \in X \tag{1}
\end{equation*}
$$

where X is a real linear space and $f: X \rightarrow \mathbb{R}$ is an unknown function, is the well-known Gołąb-Schinzel equation. For details concerning this equation, its origin, generalizations and applications, we refer e.g. to J. Aczél [1], J. Aczél [2, pp. 132-135], J. Aczél, J. Dhombres [3, Chapter 19], J. Aczél, S. Gołąb [4], S. Gołąb, A. Schinzel [5], K. Baron [6], N. Brillouet, J. Dhombres [7], J. Brzdzęk [8], P. Javor [9], S. Wołodźko [12].

[^0]There are several papers devoted to some generalizations of equation (1), cf. a survey paper Brzdęk [8], Mureńko [11], J. Matkowski [10]. The last one inspired our paper. In [10] the following generalization of (1) is considered:

$$
\begin{equation*}
f(p(x f(y)+y)+(1-p)(y f(x)+x))=f(x) f(y), \quad x, y \in X \tag{2}
\end{equation*}
$$

Roughly speaking, it turns out that the continuous solutions of (2) are the same as the continuous solutions of (1). To be more precise, the main result of J. Matkowski [10] reads as follows:

Theorem 1 ([10]). Let X be a real linear topological space and $p \in \mathbb{R}$ be fixed. A continuous function $f: X \rightarrow \mathbb{R}$ satisfies the equation

$$
f(p(x f(y)+y)+(1-p)(y f(x)+x))=f(x) f(y), \quad x, y \in X
$$

if, and only if, either

$$
f(x)=0, \quad x \in X
$$

or there is an $x^{*} \in X^{*} \backslash\{0\}$ such that

$$
f(x)=1+x^{*}(x), \quad x \in X
$$

or $p \in[0,1]$ and there exists $x^{*} \in X^{*} \backslash\{0\}$ such that

$$
f(x)=\sup \left(1+x^{*}(x), 0\right), \quad x \in X
$$

Let a function $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous and a function $p: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be continuous with respect to each variable. Let $F_{f, p}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by the formula

$$
\begin{equation*}
F_{f, p}(x, y)=p(x, y)(x f(y)+y)+(1-p(x, y))(y f(x)+x), \quad x, y \in \mathbb{R} \tag{3}
\end{equation*}
$$

In this note we consider the generalization of (2) of the form:

$$
\begin{equation*}
f\left(F_{f, p}(x, y)\right)=f(x) f(y), \quad x, y \in \mathbb{R} \tag{4}
\end{equation*}
$$

The following question naturally arises and was posed in [10]: what are the solutions of equation (4)? Our main result (Theorem 4) states that any real continuous function f fulfilling equation (4) is also of one of the forms described in the Theorem 1.

2. Technical lemmas

For arbitrary function $f: \mathbb{R} \rightarrow \mathbb{R}$ and $c \in \mathbb{R}$ let denote

$$
A_{c}^{f}=f^{-1}(\{c\})
$$

and define $g_{f}: \mathbb{R} \backslash A_{1}^{f} \rightarrow \mathbb{R}$ by

$$
g_{f}(x)=\frac{x}{1-f(x)}
$$

2.1. Part I: We establish a form of the function f on the set $f^{-1}((-1,1))$ and a form of the set A_{0}^{f}

Lemma 1. Let $f: \mathbb{R} \rightarrow \mathbb{R}, p: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfy equation (4). Then
(1) $\prod_{j=0}^{n-1}\left(1+f(x)^{2^{j}}\right)=\frac{1-f\left(x 2^{2^{n}}\right.}{1-f(x)}, \quad x \notin A_{1}^{f}, n \in \mathbb{N}$,
(2) $f\left(\prod_{j=0}^{n-1}\left(1+f(x)^{2^{j}}\right) x\right)=f(x)^{2^{n}}, \quad x \in \mathbb{R}, n \in \mathbb{N}$.

Proof. By induction and by using $F_{f, p}(z, z)=z(1+f(z))$ with

$$
z=\prod_{j=0}^{n-1}\left(1+f(x)^{2^{j}}\right) x
$$

Lemma 2. Suppose that a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ and a function $p: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfy equation (4). Then $g_{f}\left(f^{-1}((-1,1))\right) \subseteq A_{0}^{f}$.

Proof. Take arbitrary $x_{0} \in f^{-1}((-1,1))$. Then $\lim _{n \rightarrow+\infty} f\left(x_{0}\right)^{2^{n}}=0$, so Lemma 1 and continuity of f imply that

$$
\begin{aligned}
0=\lim _{n \rightarrow+\infty} f\left(x_{0}\right)^{2^{n}} & =\lim _{n \rightarrow+\infty} f\left(\prod_{j=0}^{n-1}\left(1+f\left(x_{0}\right)^{2^{j}}\right) x_{0}\right) \\
& =f\left(\lim _{n \rightarrow+\infty} \prod_{j=0}^{n-1}\left(1+f\left(x_{0}\right)^{2^{j}}\right) x_{0}\right) \\
& =f\left(\lim _{n \rightarrow+\infty} \frac{1-f\left(x_{0}\right)^{2^{n}}}{1-f\left(x_{0}\right)} x_{0}\right)=f\left(\frac{x_{0}}{1-f\left(x_{0}\right)}\right)
\end{aligned}
$$

Hence $g_{f}\left(x_{0}\right) \in A_{0}$.

Lemma 3. Let $f: \mathbb{R} \rightarrow \mathbb{R}, p: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfy equation (4). Then $f(0)=0$ or $f(0)=1$

Proof. Put $x=y=0$ in (4) in order to obtain $f(0)=f(0)^{2}$.
Lemma 4. Let $f: \mathbb{R} \rightarrow \mathbb{R}, p: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfy equation (4). If there exists $x_{0} \in \mathbb{R}$ such that $f\left(x_{0}\right)=-1$, then $f(0)=1$.

Proof. Put $x=y=x_{0}$ in (4) in order to get

$$
f(0)=f\left(\left(1+f\left(x_{0}\right)\right) x_{0}\right)=f\left(x_{0}\right)^{2}=(-1)^{2}=1
$$

Lemma 5. Suppose that a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ and a function $p: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfy equation (4). If f is not identically equal zero, then $f(0)=1$.

Proof. Assume, in search of a contradiction, that f is not identically equal to 0 and $f(0)=0$ (cf. Lemma 3). Let $S_{0}=(A, B)$ with some $-\infty \leq$ $A<0<B \leq \infty$ be a component of $f^{-1}((-1,1))$ which contains 0 . Then from Lemma 2 it follows that $g_{f}\left(S_{0}\right) \subseteq A_{0}^{f}$ and $0=g_{f}(0) \in g_{f}\left(S_{0}\right)$. Moreover, g_{f} is continuous on $f^{-1}((-1,1))$. So, $g_{f}\left(S_{0}\right)$ is an interval contained in A_{0}^{f}. Since $g_{f}(0)=0$, we have $g_{f}\left(S_{0}\right)=|C, D|$ with some $C \leq 0 \leq D$. If $C=0$, then for every $x \in S_{0}$ we have $g_{f}(x)=\frac{x}{1-f(x)} \geq 0$, which can occur (in the set $\left.f^{-1}((-1,1))\right)$ only when $x \geq 0$ for every $x \in S_{0}$, which is impossible since S_{0} is open and contains 0 . Analogically, $D=0$ can be excluded. Thus $C<0<D$ and at least one of numbers C, D is real (because $f \not \equiv 0$). If for example $D \in \mathbb{R}$ then for every $x \in S_{0}$ we have $\frac{x}{1-f(x)} \leq D$, which is equivalent to $f(x) \leq 1-\frac{x}{D}$. Regarding $f(x) \in(-1,1)$ for every $x \in(A, B)$, we conclude that $B \in \mathbb{R}$ and $f(B)=-1$. Then from Lemma 4 we get $f(0)=1$, which contradicts with our assumption.

Lemma 6. Suppose that a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ and a function $p: \mathbb{R}^{2} \rightarrow \mathbb{R}$ continuous with respect to each variable satisfy equation (4). Then set A_{0}^{f} is a closed interval or is empty.

Proof. Assume that $A_{0}^{f} \neq \emptyset$. If f is identically equal to 0 , then $A_{0}^{f}=\mathbb{R}$ and the thesis holds.

If $f \not \equiv 0$, then $f(0)=1$ (cf. Lemma 5). Let $x_{0}, x_{1} \in A_{0}^{f}, x_{0}<x_{1}$. For every $y \in \mathbb{R}$ we have

$$
f\left(F_{f, p}\left(x_{0}, y\right)\right)=f\left(x_{0}\right) f(y)=0 \quad \text { and } \quad f\left(F_{f, p}\left(y, x_{1}\right)\right)=f(y) f\left(x_{1}\right)=0
$$

so $F_{f, p}\left(x_{0}, \mathbb{R}\right)$ and $F_{f, p}\left(\mathbb{R}, x_{1}\right)$ are intervals contained in A_{0}^{f}. Obviously,

$$
F_{f, p}\left(0, x_{1}\right)=x_{1} \quad \text { and } \quad F_{f, p}\left(x_{0}, 0\right)=x_{0}
$$

Furthermore, $F_{f, p}\left(x_{0}, x_{1}\right) \in F_{f, p}\left(x_{0}, \mathbb{R}\right) \cap F_{f, p}\left(\mathbb{R}, x_{1}\right)$. Thus,

$$
\left[x_{0}, x_{1}\right] \subseteq F_{f, p}\left(x_{0}, \mathbb{R}\right) \cup F_{f, p}\left(\mathbb{R}, x_{1}\right) \subseteq A_{0}^{f}
$$

Therefore A_{0}^{f} is an interval. It is closed, since $A_{0}^{f}=f^{-1}(\{0\})$ and the function f is continuous.

Lemma 7. Suppose that a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ and a function $p: \mathbb{R}^{2} \rightarrow \mathbb{R}$ continuous with respect to each variable satisfy equation (4). If f is not identically equal to 0 , then A_{0}^{f} is the empty set and $f(\mathbb{R}) \subseteq[1,+\infty)$ or there exists $\alpha \in \mathbb{R}^{*}$ such that either
(1) $\alpha<0, A_{0}^{f}=(-\infty, \alpha]$ and $f(x)=1-\frac{x}{\alpha}$ for $x \in(\alpha, 0), f(x) \geq 1$ for $x \geq 0$ or
(2) $\alpha<0, A_{0}^{f}=\{\alpha\}$ and $f(x)=1-\frac{x}{\alpha}$ for $x \in(2 \alpha, 0), f(x) \leq-1$ for $x \leq 2 \alpha$, $f(x) \geq 1$ for $x \geq 0$ or
(3) $\alpha>0, A_{0}^{f}=[\alpha,+\infty)$ and $f(x)=1-\frac{x}{\alpha}$ for $x \in(0, \alpha), f(x) \geq 1$ for $x \leq 0$ or
(4) $\alpha>0, A_{0}^{f}=\{\alpha\}$ and $f(x)=1-\frac{x}{\alpha}$ for $x \in(0,2 \alpha), f(x) \leq-1$ for $x \geq 2 \alpha$ and $f(x) \geq 1$ for $x \leq 0$.

Proof. Assume in search of a contradiction that $A_{0}^{f}=[\alpha, \beta]$ with some $-\infty<\alpha<\beta<+\infty$ (cf. Lemma 6).

If $f(x)>0$ for $x>\beta, f(x)<0$ for $x<\alpha$ (the case $f(x)<0$ for $x>\beta$, $f(x)>0$ for $x<\alpha$ can be treated similarly), then for $x, y<\alpha$ we have $f\left(F_{f, p}(x, y)\right)=f(x) f(y)>0$, so $F_{f, p}(x, y)>\beta$. Hence for every $x<\alpha$ we get

$$
F_{f, p}(x, \alpha)=\lim _{y \rightarrow \alpha^{-}} F_{f, p}(x, y) \geq \beta
$$

and

$$
\alpha=F_{f, p}(\alpha, \alpha)=\lim _{x \rightarrow \alpha^{-}} F_{f, p}(x, \alpha) \geq \beta
$$

which is a contradiction with $\alpha<\beta$.
If $f(x)<0$ for $x \in(-\infty, \alpha) \cup(\beta,+\infty)$, then for $x, y<\alpha$, we have $f\left(F_{f, p}(x, y)\right)=f(x) f(y)>0$, which is impossible.

To finish the proof of the first part of the thesis it is enough to consider the case $f(x)>0$ for $x \in(-\infty, \alpha) \cup(\beta,+\infty)$. Let (γ, δ) be such a component of
$f^{-1}((-1,1))$ that $[\alpha, \beta] \subseteq(\gamma, \delta)$. From Lemma 2 it follows that $g_{f}((\gamma, \delta)) \subseteq$ $[\alpha, \beta]$. Hence for $x \in(\gamma, \delta)$ we have

$$
\alpha f(x) \geq \alpha-x \quad \text { and } \quad \beta f(x) \leq \beta-x
$$

If $\alpha<0$, then $f(x) \leq 1-\frac{x}{\alpha}$, so for $x \in(\gamma, \alpha)$ we would have $f(x)<0$, which contradicts with the assumption.

If $\alpha \geq 0$, then $\beta>0$ and $f(x) \leq 1-\frac{x}{\beta}$. Thus, for $x \in(\beta, \delta)$ we would have $f(x)<0$, which is again a contradiction with the assumption. Therefore either $\alpha=\beta \in \mathbb{R}$ or $\alpha=-\infty$ or $\beta=+\infty$.

If $A_{0}^{f}=\emptyset$, then from Lemma 2 it follows that $f^{-1}((-1,1))=\emptyset$. Lemma 3 and the continuity of f imply $f(\mathbb{R}) \subseteq[1,+\infty)$.

Now assume that $A_{0}^{f} \neq \emptyset$ and fix $x_{0} \in f^{-1}((-1,1)) \backslash A_{0}^{f}$. Then according to Lemma $2 g_{f}\left(x_{0}\right) \in A_{0}^{f}$. If $A_{0}^{f}=\{\alpha\}$, then $g_{f}\left(x_{0}\right)=\alpha$, so $f\left(x_{0}\right)=1-\frac{x_{0}}{\alpha}$. If $A_{0}^{f}=(-\infty, \alpha]$, then $g_{f}\left(x_{0}\right) \leq \alpha$, so $f\left(x_{0}\right) \geq 1-\frac{x_{0}}{\alpha}(\alpha<0$ because $f(0)=1)$. Hence $f\left(x_{0}\right)=1-\frac{x_{0}}{c}$ with some $c \leq \alpha$. Assume in search of a contradiction that $c<\alpha$. From Lemma 1 it follows that

$$
f\left(x_{0} \frac{1-f\left(x_{0}\right)^{2^{n}}}{1-f\left(x_{0}\right)}\right)=f\left(x_{0}\right)^{2^{n}}
$$

for every $n \in \mathbb{N}$. Thus $f\left(x_{0} \frac{1-f\left(x_{0}\right)^{2^{n}}}{1-f\left(x_{0}\right)}\right)>0$ for every $n \in \mathbb{N}$. On the other hand,

$$
\lim _{n \rightarrow+\infty} x_{0} \frac{1-f\left(x_{0}\right)^{2^{n}}}{1-f\left(x_{0}\right)}=\frac{x_{0}}{1-f\left(x_{0}\right)}=c<\alpha
$$

so there exist $N \in \mathbb{N}$ such that $x_{0} \frac{1-f\left(x_{0}\right)^{2 N}}{1-f\left(x_{0}\right)}<\alpha$. Then

$$
f\left(x_{0} \frac{1-f\left(x_{0}\right)^{2^{N}}}{1-f\left(x_{0}\right)}\right)=f\left(x_{0}\right)^{2^{N}}=0
$$

which is not possible. To conclude, for every $x_{0} \in f^{-1}((-1,1)) \backslash A_{0}^{f}$ we have $f\left(x_{0}\right)=1-\frac{x_{0}}{\alpha}$.

Furthermore, if $A_{0}^{f}=\{\alpha\}$ and $\alpha<0$, then for every $x_{0} \in f^{-1}((-1,1)) \backslash\{\alpha\}$ we have both $f\left(x_{0}\right)=1-\frac{x_{0}}{\alpha}$ and $f\left(x_{0}\right) \in(-1,1)$, which is possible if and only if $x_{0} \in(2 \alpha, 0)$. Hence $f^{-1}((-1,1))=(2 \alpha, 0)$. Moreover, $f(2 \alpha)=$ $-1, f(0)=1$, so $f((-\infty, 2 \alpha]) \subseteq(-\infty,-1], f\left([0,+\infty) \subseteq[1,+\infty)\right.$. If $A_{0}^{f}=$ $\{\alpha\}$ and $\alpha>0$, then similarly as above we get $f((-\infty, 0]) \subseteq[1,+\infty)$ and $f([2 \alpha,+\infty) \subseteq(-\infty,-1]$.

Finally, we consider the case of $A_{0}^{f}=(-\infty, \alpha]$ with $\alpha<0$ (the case of $A_{0}^{f}=[\alpha,+\infty)$ with $\alpha>0$ may be analyzed analogically). For every $x_{0} \in f^{-1}((-1,1)) \backslash(-\infty, \alpha]$ we have both $f\left(x_{0}\right)=1-\frac{x_{0}}{\alpha}$ and $f\left(x_{0}\right) \in(-1,1)$, which is possible if and only if $x_{0} \in(\alpha, 0)$. Hence $f^{-1}((-1,1))=(-\infty, 0)$ and $f([0,+\infty)) \subseteq[1,+\infty)$.
2.2. Part II: We prove that if $f \not \equiv 0, f \not \equiv 1$ is a solution of (4), then $A_{1}^{f}=\{0\}$, so either f takes values greater than 1 for positive arguments and smaller than 1 for negative arguments or the reverse

Lemma 8. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $p: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfy equation (4). The set A_{1}^{f} is a semigroup.

Proof. Put in (4) $x, y \in A_{1}^{f}$ in order to obtain $f(x+y)=1$.
Lemma 9. Suppose that a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ and a function $p: \mathbb{R}^{2} \rightarrow \mathbb{R}$ continuous with respect to each variable satisfy equation (4). If for some $\varepsilon>0$ we have $f((-\varepsilon, \varepsilon)) \subseteq[1,+\infty)$ or $f((-\varepsilon, \varepsilon)) \subseteq(0,1]$, then $f \equiv 1$.

Proof. Assume that $f((-\varepsilon, \varepsilon)) \subseteq[1,+\infty)$ for some $\varepsilon>0$.Observe that $F_{f, p}(0, x)=x=F_{f, p}(x, 0)$ for every $x \in \mathbb{R}$. Continuity of $F_{f, p}(\cdot, \varepsilon)$ and $F_{f, p}(\cdot,-\varepsilon)$ at the point 0 implies that there exists $\delta>0, \delta<\varepsilon$ such that for every $|x|<\delta$ we have

$$
\left|F_{f, p}(x, \varepsilon)-\varepsilon\right|=\left|F_{f, p}(x, \varepsilon)-F_{f, p}(0, \varepsilon)\right|<\frac{\varepsilon}{2}
$$

and

$$
\left|F_{f, p}(x,-\varepsilon)+\varepsilon\right|=\left|F_{f, p}(x,-\varepsilon)-F_{f, p}(0,-\varepsilon)\right|<\frac{\varepsilon}{2}
$$

Hence

$$
F_{f, p}(x, \varepsilon) \in\left(\frac{\varepsilon}{2}, \frac{3 \varepsilon}{2}\right) \quad \text { and } \quad F_{f, p}(x,-\varepsilon) \in\left(-\frac{3 \varepsilon}{2},-\frac{\varepsilon}{2}\right), \quad|x|<\delta
$$

For every $|x|<\delta$ from Darboux property of function $F_{f, p}(x, \cdot)$ it follows that there exists $y(x) \in(-\varepsilon, \varepsilon)$ such that $F_{f, p}(x, y(x))=0$. Therefore from (4) we have

$$
1=f(0)=f\left(F_{f, p}(x, y(x))\right)=f(x) f(y(x)) \geq 1 \quad \text { for }|x|<\delta
$$

and equality holds if and only if $f(x)=f(y(x))=1$. Thus we have proved that $(-\delta, \delta) \subseteq A_{1}^{f}$. However, the set A_{1}^{f} is a semigroup (cf. Lemma 8), so $\mathbb{R}=A_{1}^{f}$.

Corollary 1. Suppose that a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ and a function $p: \mathbb{R}^{2} \rightarrow \mathbb{R}$ continuous with respect to each variable satisfy equation (4). If $f^{-1}((-1,1))=\emptyset$, then $f \equiv 1$.

Proof. If $f^{-1}((-1,1))=\emptyset$, then obviously $A_{0}^{f}=\emptyset$, so from Lemma 7 it follows that $f(\mathbb{R}) \subseteq[1,+\infty)$. Therefore, Lemma 9 implies that $f \equiv 1$.

Lemma 10. Suppose that a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ and a function $p: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfy equation (4). If 0 is a leftside accumulation point (rightside accumulation point) of A_{1}^{f}, then $f([0,+\infty))=\{1\}(f((-\infty, 0])=\{1\})$.

Proof. Let $\left(x_{n}\right)_{n \in \mathbb{N}} \in\left(A_{1}^{f}\right)^{\mathbb{N}}$ be a decreasing sequence of points tending to 0 . Fix $g>0$. For every $n \in \mathbb{N}$ there exists $l(n) \in \mathbb{N}$ such that $(l(n)-1) x_{n}<$ $g \leq l(n) x_{n}$. Then $\left|l(n) x_{n}-g\right|<x_{n}$, so

$$
\lim _{n \rightarrow+\infty} l(n) x_{n}=g
$$

Moreover, A_{1}^{f} is a semigroup, so $l(n) x_{n} \in A_{1}^{f}$. Thus, A_{1}^{f} is dense in $[0,+\infty)$. On the other hand, $A_{1}^{f}=f^{-1}(\{1\})$ is closed as a counterimage of a closed set by a continuous function. Hence $f([0,+\infty))=\{1\}$.

Corollary 2. Suppose that a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ and a function $p: \mathbb{R}^{2} \rightarrow \mathbb{R}$ continuous with respect to each variable satisfy equation (4). If condition (1) or (2) from Lemma 7 is satisfied, then there exists $\varepsilon>0$ such that $f((0, \varepsilon)) \subseteq(1,+\infty)$. If condition (3) or (4) from Lemma 7 is satisfied, then there exists $\varepsilon>0$ such that $f((-\varepsilon, 0)) \subseteq(1,+\infty)$.

Proof. Assume that condition (1) or (2) from Lemma 7 is fulfilled. From Lemma 7 follows that $f((-\infty, 0)) \subseteq(-\infty, 1), f([0,+\infty)) \subseteq[1,+\infty)$. If the thesis of the corollary did not hold, then 0 would be a righthand side accumulation point of the set A_{1}^{f} and Lemma 1 would imply $A_{1}^{f}=[0,+\infty)$. Then we would have $f(\mathbb{R}) \subseteq(-\infty, 1]$ and from Lemma 9 we would get $f \equiv 1$, which is a contradiction with the assumption of the lemma.

The proof is similar for condition (3) or (4).
Lemma 11. Suppose that a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ and a function $p: \mathbb{R}^{2} \rightarrow \mathbb{R}$ continuous with respect to each variable satisfy equation (4). If condition (1) or (2) from Lemma 7 is fulfilled, then $f((0,+\infty)) \subseteq(1,+\infty)$. If condition (3) or (4) from Lemma 7 is fulfilled, then $f((-\infty, 0)) \subseteq(1,+\infty)$.

Proof. Without lost of generality we can assume that condition (1) or (2) from Lemma 7 is satisfied.

Assume for contradiction that $(0,+\infty) \cap A_{1}^{f} \neq \emptyset$. From Corollary 2 it follows that $\alpha=\inf \left((0,+\infty) \cap A_{1}^{f}\right)>0$. Define $h: \mathbb{R} \rightarrow \mathbb{R}$ by the formula $h(x)=x(1+f(x))$. Then $h([0, \alpha])$ is a compact interval which contains $h(0)=0$ and $h(\alpha)=2 \alpha$. If there is $\beta \in(\alpha, 2 \alpha)$ such that $f(\beta)=1$, then $\beta=h(\gamma)$ with some $\gamma \in(0, \alpha)$ and according to (4) we would have

$$
1=f(\beta)=f(h(\gamma))=f(\gamma)^{2}
$$

which is equivalent to $f(\gamma)=1$ (cf. Lemma 7). However, this is a contradiction with the definition of α. Thus we proved that $f((\alpha, 2 \alpha)) \subseteq(1,+\infty)$.

Obviously $h(\alpha)=2 \alpha, h(2 \alpha)=4 \alpha$, so $[2 \alpha, 4 \alpha] \subseteq h([\alpha, 2 \alpha])$. Hence $3 \alpha=$ $h(\gamma)$ with some $\gamma \in(\alpha, 2 \alpha)$ and $f(3 \alpha)=f(h(\gamma))=f(\gamma)^{2}>1$. On the other hand $3 \alpha \in A_{1}^{f}$, because A_{1}^{f} is a semigroup (cf. Lemma 8).

2.3. Part III: We establish the form of function f on the set

$$
f^{-1}(\mathbb{R} \backslash(-1,1))
$$

ThEOREM 2. Suppose that a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ and a function $p: \mathbb{R}^{2} \rightarrow \mathbb{R}$ continuous with respect to each variable satisfy equation (4). If condition (1) or (2) from Lemma 7 is fulfilled, then $f(x)=1-\frac{x}{\alpha}$ for $x>0$. If condition (3) or (4) from Lemma 7 is fulfilled, then $f(x)=1-\frac{x}{\alpha}$ for $x<0$.

Proof. Without lost of generality we can assume that condition (1) or (2) from Lemma 7 is satisfied.

Equation (4), Lemma 11 and Lemma 7 imply that for arbitrary $x>0$ there exists exactly one $k(x) \in(\alpha, 0)$ such that $f(x) f(k(x))=1$. Thus, $f(x)=\frac{\alpha}{\alpha-k(x)}$ for every $x>0$.

Let $x>0, \alpha<y<0$. Then $f(x)=\frac{\alpha}{\alpha-k(x)}, f(y)=\frac{\alpha-y}{\alpha}$, so $f(x) f(y)=$ $\frac{\alpha-y}{\alpha-k(x)}$. Therefore, from Lemma 7 for $x>0, y<0$ we have

$$
F_{f, p}(x, y) \in(\alpha, 0) \Longleftrightarrow f\left(F_{f, p}(x, y)\right)=f(x) f(y) \in(0,1) \Longleftrightarrow y \in(\alpha, k(x))
$$

and

$$
F_{f, p}(x, y)>0 \Longleftrightarrow f\left(F_{f, p}(x, y)\right)=f(x) f(y)>1 \Longleftrightarrow y \in(k(x), 0)
$$

Fix $x>0, y \in(\alpha, k(x))$. Then

$$
f\left(F_{f, p}(x, y)\right)=1-\frac{F_{f, p}(x, y)}{\alpha}
$$

$$
\begin{aligned}
F_{f, p}(x, y) & =p(x, y)\left(x\left(1-\frac{y}{\alpha}\right)+y-y \frac{\alpha}{\alpha-k(x)}-x\right)+y \frac{\alpha}{\alpha-k(x)}+x \\
& =p(x, y) \frac{y(x k(x)-\alpha x-\alpha k(x))}{\alpha(\alpha-k(x))}+\frac{\alpha x+\alpha y-x k(x)}{\alpha-k(x)}
\end{aligned}
$$

Thus

$$
f\left(F_{f, p}(x, y)\right)=1-p(x, y) \frac{y(x k(x)-\alpha x-\alpha k(x))}{\alpha^{2}(\alpha-k(x))}+\frac{x k(x)-\alpha x-\alpha y}{\alpha(\alpha-k(x))}
$$

so

$$
1-p(x, y) \frac{y(x k(x)-\alpha x-\alpha k(x))}{\alpha^{2}(\alpha-k(x))}+\frac{x k(x)-\alpha x-\alpha y}{\alpha(\alpha-k(x))}=\frac{\alpha-y}{\alpha-k(x)}
$$

and

$$
\begin{aligned}
\alpha^{2}(\alpha-k(x))-p(x, y) y(x k(x)-\alpha x- & \alpha k(x)) \\
& +\alpha(x k(x)-\alpha x-\alpha y)=\alpha^{2}(\alpha-y)
\end{aligned}
$$

which implies

$$
p(x, y) y(\alpha x+\alpha k(x)-x k(x))=\alpha(\alpha x+\alpha k(x)-x k(x))
$$

Therefore, either

$$
k(x)=\frac{\alpha x}{x-\alpha}, \text { which is equivalent to } f(x)=1-\frac{x}{\alpha}
$$

or

$$
p(x, y)=\frac{\alpha}{y}
$$

Assume that there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ decreasing to 0 such that $f\left(x_{n}\right) \neq 1-\frac{x_{n}}{\alpha}$. Fix $y_{0} \in(\alpha, 0)$. Since $\lim _{x \rightarrow 0^{+}} k(x)=0$, there is $N \in \mathbb{N}$ such that for every $n \geq N$ we have $y_{0} \in\left(\alpha, k\left(x_{n}\right)\right)$, so $p\left(x_{n}, y_{0}\right)=\frac{\alpha}{y_{0}}$. Then

$$
p\left(0, y_{0}\right)=\lim _{n \rightarrow+\infty} p\left(x_{n}, y_{0}\right)=\lim _{n \rightarrow+\infty} \frac{\alpha}{y_{0}}=\frac{\alpha}{y_{0}}
$$

Thus,

$$
p(0,0)=\lim _{y_{0} \rightarrow 0^{-}} p\left(0, y_{0}\right)=+\infty
$$

This contradiction proves that such a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ does not exists. So, there is an $\varepsilon>0$ such that $f(x)=1-\frac{x}{\alpha}$ for every $x \in[0, \varepsilon]$.

$$
\begin{aligned}
& \text { If } f(x)=1-\frac{x}{\alpha}, f(y)=1-\frac{y}{\alpha} \text {, then } F_{f, p}(x, y)=x+y-\frac{x y}{\alpha} \text { and } \\
& \qquad f\left(F_{f, p}(x, y)\right)=f(x) f(y)=1-\frac{x+y-\frac{x y}{\alpha}}{\alpha}=1-\frac{F_{f, p}(x, y)}{\alpha} .
\end{aligned}
$$

Therefore, $f(z)=1-\frac{z}{\alpha}$ for every $z \in F_{f, p}\left([0, \varepsilon]^{2}\right)$. In particular, for $x \in[0, \varepsilon]$ we have $F_{f, p}\left([0, \varepsilon]^{2}\right) \ni F_{f, p}(x, x)=x(1+f(x))>2 x$, so $[0,2 \varepsilon] \subseteq F_{f, p}\left([0, \varepsilon]^{2}\right)$ and $f(z)=1-\frac{z}{\alpha}$ for every $z \in[0,2 \varepsilon]$. Repeating this reasoning, we get that $f(z)=1-\frac{z}{\alpha}$ for every $z>0$.

Theorem 3. Suppose that a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ and a function $p: \mathbb{R}^{2} \rightarrow \mathbb{R}$ continuous with respect to each variable satisfy equation (4). If condition (2) from Lemma 7 is fulfilled, then $f(x)=1-\frac{x}{\alpha}$ for $x<0$. If condition (4) from Lemma 7 is fulfilled, then $f(x)=1-\frac{x}{\alpha}$ for $x>0$.

Proof. Without lost of generality we can assume that condition (2) from Lemma 7 is satisfied.

Suppose that there exist $x<2 \alpha$ such that $f(x)<-1$. Then $x(f(x)+1)>$ 0 , so from Theorem 2 and (4) we have

$$
1-\frac{x(1+f(x))}{\alpha}=f(x(1+f(x)))=f(x)^{2}
$$

so $\alpha f(x)^{2}+x f(x)+x-\alpha=0$ and solving this quadratic equation we get $f(x)=1-\frac{x}{\alpha}$ or $f(x)=-1$. We have chosen x such that $f(x)<-1$, so finally $f(x)=1-\frac{x}{\alpha}$.

Let $A=\{x \in(-\infty, 2 \alpha): f(x)=-1\}$ and

$$
B=\left\{x \in(-\infty, 2 \alpha): f(x)=1-\frac{x}{\alpha}\right\}
$$

The sets A, B are disjoint, their union is $(-\infty, 2 \alpha)$ and they are closed in $(-\infty, 2 \alpha)$, since the function f is continuous. Connectedness of $(-\infty, 2 \alpha)$ implies that $A=\emptyset$ or $B=\emptyset$, so

$$
f(x)=-1 \quad \text { for every } x<2 \alpha \quad \text { or } \quad f(x)=1-\frac{x}{\alpha} \quad \text { for every } x<2 \alpha
$$

Now we show that the first case leads to a contradiction. Indeed, in this case we would have $f(x)=\max \left\{-1,1-\frac{x}{\alpha}\right\}$ and we could choose $x_{0}>0, y_{0} \leq$ 2α and get $f\left(F_{f, p}\left(x_{0}, y_{0}\right)\right)=f\left(x_{0}\right) f\left(y_{0}\right)=-\left(1-\frac{x_{0}}{\alpha}\right)<-1$. However, in the considered situation $f(\mathbb{R}) \cap(-\infty,-1)=\emptyset$, which implies the desired contradiction.

3. Main result

Our main result reads as follows:

ThEOREM 4. Let a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ and a continuous with respect to each variable function $p: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfy equation (4). Then one of the following conditions is satisfied:
(1) $f \equiv 0, p$ arbitrary continuous function or
(2) $f \equiv 1, p$ arbitrary continuous function or
(3) $f(x)=1-\frac{x}{\alpha}$ with $\alpha \neq 0$, p arbitrary continuous function or
(4) $f(x)=\max \left\{0,1-\frac{x}{\alpha}\right\}$ with some $\alpha<0$ and p being a continuous function satisfying conditions:

- if $x, y \geq \alpha$ or $x=y \leq \alpha$ or $x=0$ or $y=0$, then $p(x, y)$ is arbitrary,
- if $x<y \leq \alpha$, then $p(x, y) \leq \frac{\alpha-x}{y-x}$,
- if $y<x \leq \alpha$, then $p(x, y) \geq \frac{\alpha-x}{y-x}$,
- if $x \in(\alpha, 0), y<\alpha$, then $p(x, y) \geq 1-\frac{\alpha}{x}$,
- if $x>0, y<\alpha$, then $p(x, y) \leq 1-\frac{\alpha}{x}$,
- if $x<\alpha, y \in(\alpha, 0)$, then $p(x, y) \leq \frac{\alpha}{y}$,
- if $x<\alpha, y>0$, then $p(x, y) \geq \frac{\alpha}{y}$, or
(5) $f(x)=\max \left\{0,1-\frac{x}{\alpha}\right\}$ with some $\alpha>0$ and p being a continuous function satisfying conditions:
- if $x, y \leq \alpha$ or $x=y \geq \alpha$ or $0=y$ or $x=0$, then $p(x, y)$ is arbitrary,
- if $x>y \geq \alpha$, then $p(x, y) \leq \frac{\alpha-x}{y-x}$,
- if $y>x \geq \alpha$, then $p(x, y) \geq \frac{\alpha-x}{y-x}$,
- if $x<0, y>\alpha$, then $p(x, y) \leq 1-\frac{\alpha}{x}$,
- if $x \in(0, \alpha), y>\alpha$, then $p(x, y) \geq 1-\frac{\alpha}{x}$,
- if $x>\alpha, y \in(0, \alpha)$, then $p(x, y) \leq \frac{\alpha}{y}$,
- if $x>\alpha, y<0$, then $p(x, y) \geq \frac{\alpha}{y}$.

Conversely, if functions $f: \mathbb{R} \rightarrow \mathbb{R}, p: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfy one of the conditions (1) - (5), then f, p is a solution of equation (4).

Proof. From Lemma 7, Theorem 2, Theorem 3 follows that if f is not identically equal neither to 0 nor to 1 , then $f(x)=1-\frac{x}{\alpha}$ or $f(x)=\max \{0,1-$ $\left.\frac{x}{\alpha}\right\}$. Obviously, if $f(x)=1-\frac{x}{\alpha}$, then the function p is arbitrary. Therefore, to complete the proof it is enough to show that in cases (4) and (5) the function p must satisfy conditions mentioned in, respectively, (4) or (5).

Now we consider the case $f(x)=\max \left\{0,1-\frac{x}{\alpha}\right\}$ and $\alpha<0$. For $x, y \geq$ α equation (4) is satisfied independently of $p(x, y)$. For $x, y \leq \alpha$ we have $f(F(x, y))=0$, so $F(x, y) \leq \alpha$ and $F(x, y)=p(x, y)(y-x)+x$. Thus, if $x<y \leq \alpha$, then $p(x, y) \leq \frac{\alpha-x}{y-x}$; if $x=y \leq \alpha$, then $p(x, y)$ is arbitrary; if
$y<x \leq \alpha$, then $p(x, y) \geq \frac{\alpha-x}{y-x}$. For $x>\alpha, y<\alpha$ we have $f(x) f(y)=0$, so $F(x, y) \leq \alpha$. The definition of F gives

$$
\begin{aligned}
F(x, y) & =p(x, y)\left(y-y\left(1-\frac{x}{\alpha}\right)-x\right)+y\left(1-\frac{x}{\alpha}\right)+x \\
& =-x p(x, y)\left(1-\frac{y}{\alpha}\right)+x+y-\frac{x y}{\alpha} \leq \alpha
\end{aligned}
$$

so $-x p(x, y) \frac{\alpha-y}{\alpha} \leq \frac{1}{\alpha}(\alpha-x)(\alpha-y)$. Thus, $p(0, y)$ are arbitrary; if $x \in$ $(\alpha, 0), y<\alpha$, then $p(x, y) \geq 1-\frac{\alpha}{x}$; if $x>0, y<\alpha$, then $p(x, y) \leq 1-\frac{\alpha}{x}$. Similarly, if $x<\alpha, y>\alpha$, then $F(x, y) \leq \alpha$ and

$$
F(x, y)=p(x, y)\left(x\left(1-\frac{y}{\alpha}\right)+y-x\right)+x=y p(x, y)\left(1-\frac{x}{\alpha}\right)+x \leq \alpha
$$

so $y p(x, y) \frac{\alpha-x}{\alpha} \leq \alpha-x$. Thus, $p(x, 0)$ are arbitrary; if $x<\alpha, y \in(\alpha, 0)$, then $p(x, y) \leq \frac{\alpha}{y}$; if $x<\alpha, y>0$, then $p(x, y) \geq \frac{\alpha}{y}$.

The case (5) is treated analogically to the case (4).
It is easy to check that function fulfilling one of the conditions (1)-(5) is a solution of (4).

In the end observe, that there exist a lot of continuous functions p which satisfy conditions from (4) or (5) of Theorem 4, e.g. for $\alpha>0$ one may take

$$
p_{0}(x, y)=\left\{\begin{array}{c}
\frac{\alpha}{y}, \text { for }|y| \geq \frac{\alpha}{2} \\
\frac{4 y}{\alpha}, \text { for }|y|<\frac{\alpha}{2} .
\end{array}\right.
$$

Let $p_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be an arbitrary function continuous with respect to each variable and such that $p_{1}(x, y) \neq 0$ only for $x<0$ and $y<0$. Then the function $p_{0}+p_{1}$ satisfies conditions (5) of Theorem 4, too.

References

[1] Aczél J., Beirtäge zur Theorie der geometrischen Objecte III-IV, Acta Math. Acad. Sci. Hungar. 8 (1957), 19-52.
[2] Aczél J., Lectures on Functional Equations and their Applications, Academic Press, New York, 1966.
[3] Aczél J., Dhombres J., Functional Equations in Several Variables, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1989.
[4] Aczél J., Gołąb S., Remarks on one-parameter subsemigroups of the affine group and their homo- and isomorphims, Aequationes Math. 4 (1970), no. 1-2, 1-10.
[5] Gołąb S., Schinzel A., Sur l' équation fonctionnelle $f[x+y f(x)]=f(x) f(y)$, Publ. Math. Debrecen 6 (1960), 113-125.
[6] Baron K., On the continuous solutions of the Gołab-Schinzel equation, Aequationes Math. 38 (1989), no. 2-3, 155-162.
[7] Brillouet N., Dhombres J., Equations fonctionelleset recherche de sous-groupes, Aequationes Math. 31 (1986), 253-293
[8] Brzdzęk J., The Gołab-Schinzel equation and its generalization, Aequationes Math. 70 (2005), no. 1-2, 14-24.
[9] Javor P., On the general solution of the functional equation $f[x+y f(x)]=f(x) f(y)$, Aequationes Math. 1 (1968), 235-238.
[10] Matkowski J., A generalization of the Gołab-Schinzel functional equation, Aequationes Math. 80 (2010), 181-192.
[11] Mureńko A., On the general solution of a generalization of the Gołab-Schinzel equation, Aequationes Math. 77 (2009), 107-118.
[12] Wołodźko S., Solution générale de l'équation fonctionelle $f[x+y f(x)]=f(x) f(y)$, Aequationes Math. 2 (1968), 12-29.

Institute of Mathematics
Silesian University
Bankowa 14
40-007 Katowice
Poland
e-mail: agata.nowak@us.edu.pl

[^0]: Received: 9.10.2012. Revised: 8.12.2012.
 (2010) Mathematics Subject Classification: 39B22, 26B99.

 Key words and phrases: composite equation, Gołąb-Schinzel equation, iterative equation, continuous solution.

