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ON SOME GENERALIZATION OF THE GOŁĄB–SCHINZEL
EQUATION

Agata Nowak

Abstract. Inspired by a problem posed by J. Matkowski in [10] we investigate
the equation

f
(
p(x, y)(xf(y) + y) + (1− p(x, y))(yf(x) + x))

)
= f(x)f(y), x, y ∈ R,

where functions f : R→ R, p : R2 → R are assumed to be continuous.

1. Introduction

The composite functional equation

(1) f
(
x+ yf(x)

)
= f(x)f(y), x, y ∈ X,

where X is a real linear space and f : X → R is an unknown function, is the
well-known Gołąb–Schinzel equation. For details concerning this equation, its
origin, generalizations and applications, we refer e.g. to J. Aczél [1], J. Aczél
[2, pp. 132-135], J. Aczél, J. Dhombres [3, Chapter 19], J. Aczél, S. Gołąb
[4], S. Gołąb, A. Schinzel [5], K. Baron [6], N. Brillouet, J. Dhombres [7], J.
Brzdzęk [8], P. Javor [9], S. Wołodźko [12].
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There are several papers devoted to some generalizations of equation (1),
cf. a survey paper Brzdęk [8], Mureńko [11], J. Matkowski [10]. The last one
inspired our paper. In [10] the following generalization of (1) is considered:

(2) f
(
p(xf(y) + y) + (1− p)(yf(x) + x)

)
= f(x)f(y), x, y ∈ X.

Roughly speaking, it turns out that the continuous solutions of (2) are the
same as the continuous solutions of (1). To be more precise, the main result
of J. Matkowski [10] reads as follows:

Theorem 1 ([10]). Let X be a real linear topological space and p ∈ R be
fixed. A continuous function f : X → R satisfies the equation

f
(
p(xf(y) + y) + (1− p)(yf(x) + x)

)
= f(x)f(y), x, y ∈ X,

if, and only if, either

f(x) = 0, x ∈ X,

or there is an x∗ ∈ X∗ \ {0} such that

f(x) = 1 + x∗(x), x ∈ X,

or p ∈ [0, 1] and there exists x∗ ∈ X∗ \ {0} such that

f(x) = sup(1 + x∗(x), 0), x ∈ X.

Let a function f : R → R be continuous and a function p : R2 → R be
continuous with respect to each variable. Let Ff,p : R2 → R be defined by the
formula

(3) Ff,p(x, y) = p(x, y)(xf(y) + y) + (1− p(x, y))(yf(x) + x), x, y ∈ R.

In this note we consider the generalization of (2) of the form:

(4) f(Ff,p(x, y)) = f(x)f(y), x, y ∈ R.

The following question naturally arises and was posed in [10]: what are
the solutions of equation (4)? Our main result (Theorem 4) states that any
real continuous function f fulfilling equation (4) is also of one of the forms
described in the Theorem 1.
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2. Technical lemmas

For arbitrary function f : R→ R and c ∈ R let denote

Afc = f−1({c})

and define gf : R \Af1 → R by

gf (x) =
x

1− f(x) .

2.1. Part I: We establish a form of the function f on the set
f−1((−1, 1)) and a form of the set Af0

Lemma 1. Let f : R→ R, p : R2 → R satisfy equation (4). Then

(1)
∏n−1
j=0 (1 + f(x)2

j

) = 1−f(x)2n
1−f(x) , x 6∈ Af1 , n ∈ N,

(2) f(
∏n−1
j=0 (1 + f(x)2

j

)x) = f(x)2
n

, x ∈ R, n ∈ N.

Proof. By induction and by using Ff,p(z, z) = z(1 + f(z)) with

z =

n−1∏

j=0

(1 + f(x)2
j

)x. �

Lemma 2. Suppose that a continuous function f : R → R and a function
p : R2 → R satisfy equation (4). Then gf (f−1((−1, 1))) ⊆ Af0 .

Proof. Take arbitrary x0 ∈ f−1((−1, 1)). Then limn→+∞ f(x0)2
n

= 0,
so Lemma 1 and continuity of f imply that

0 = lim
n→+∞

f(x0)
2n = lim

n→+∞
f
(n−1∏

j=0

(1 + f(x0)
2j )x0

)

= f
(

lim
n→+∞

n−1∏

j=0

(1 + f(x0)
2j )x0

)

= f
(

lim
n→+∞

1− f(x0)2
n

1− f(x0)
x0

)
= f

( x0
1− f(x0)

)
.

Hence gf (x0) ∈ A0. �
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Lemma 3. Let f : R→ R, p : R2 → R satisfy equation (4). Then f(0) = 0
or f(0) = 1

Proof. Put x = y = 0 in (4) in order to obtain f(0) = f(0)2. �

Lemma 4. Let f : R→ R, p : R2 → R satisfy equation (4). If there exists
x0 ∈ R such that f(x0) = −1, then f(0) = 1.

Proof. Put x = y = x0 in (4) in order to get

f(0) = f((1 + f(x0))x0) = f(x0)
2 = (−1)2 = 1. �

Lemma 5. Suppose that a continuous function f : R → R and a func-
tion p : R2 → R satisfy equation (4). If f is not identically equal zero, then
f(0) = 1.

Proof. Assume, in search of a contradiction, that f is not identically
equal to 0 and f(0) = 0 (cf. Lemma 3). Let S0 = (A,B) with some −∞ ≤
A < 0 < B ≤ ∞ be a component of f−1((−1, 1)) which contains 0. Then
from Lemma 2 it follows that gf (S0) ⊆ Af0 and 0 = gf (0) ∈ gf (S0). Moreover,
gf is continuous on f−1((−1, 1)). So, gf (S0) is an interval contained in Af0 .
Since gf (0) = 0, we have gf (S0) = |C,D| with some C ≤ 0 ≤ D. If C = 0,
then for every x ∈ S0 we have gf (x) = x

1−f(x) ≥ 0, which can occur (in
the set f−1((−1, 1))) only when x ≥ 0 for every x ∈ S0, which is impossible
since S0 is open and contains 0. Analogically, D = 0 can be excluded. Thus
C < 0 < D and at least one of numbers C,D is real (because f 6≡ 0). If for
example D ∈ R then for every x ∈ S0 we have x

1−f(x) ≤ D, which is equivalent
to f(x) ≤ 1− x

D . Regarding f(x) ∈ (−1, 1) for every x ∈ (A,B), we conclude
that B ∈ R and f(B) = −1. Then from Lemma 4 we get f(0) = 1, which
contradicts with our assumption. �

Lemma 6. Suppose that a continuous function f : R → R and a function
p : R2 → R continuous with respect to each variable satisfy equation (4). Then
set Af0 is a closed interval or is empty.

Proof. Assume that Af0 6= ∅. If f is identically equal to 0, then Af0 = R
and the thesis holds.

If f 6≡ 0, then f(0) = 1 (cf. Lemma 5). Let x0, x1 ∈ Af0 , x0 < x1. For
every y ∈ R we have

f(Ff,p(x0, y)) = f(x0)f(y) = 0 and f(Ff,p(y, x1)) = f(y)f(x1) = 0,
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so Ff,p(x0,R) and Ff,p(R, x1) are intervals contained in Af0 . Obviously,

Ff,p(0, x1) = x1 and Ff,p(x0, 0) = x0.

Furthermore, Ff,p(x0, x1) ∈ Ff,p(x0,R) ∩ Ff,p(R, x1). Thus,

[x0, x1] ⊆ Ff,p(x0,R) ∪ Ff,p(R, x1) ⊆ Af0 .

Therefore Af0 is an interval. It is closed, since Af0 = f−1({0}) and the function
f is continuous. �

Lemma 7. Suppose that a continuous function f : R → R and a function
p : R2 → R continuous with respect to each variable satisfy equation (4). If f
is not identically equal to 0, then Af0 is the empty set and f(R) ⊆ [1,+∞) or
there exists α ∈ R∗ such that either
(1) α < 0, Af0 = (−∞, α] and f(x) = 1− x

α for x ∈ (α, 0), f(x) ≥ 1 for x ≥ 0
or

(2) α < 0, Af0 = {α} and f(x) = 1− x
α for x ∈ (2α, 0), f(x) ≤ −1 for x ≤ 2α,

f(x) ≥ 1 for x ≥ 0 or
(3) α > 0, Af0 = [α,+∞) and f(x) = 1− x

α for x ∈ (0, α), f(x) ≥ 1 for x ≤ 0
or

(4) α > 0, Af0 = {α} and f(x) = 1− x
α for x ∈ (0, 2α), f(x) ≤ −1 for x ≥ 2α

and f(x) ≥ 1 for x ≤ 0.

Proof. Assume in search of a contradiction that Af0 = [α, β] with some
−∞ < α < β < +∞ (cf. Lemma 6).

If f(x) > 0 for x > β, f(x) < 0 for x < α (the case f(x) < 0 for x > β,
f(x) > 0 for x < α can be treated similarly), then for x, y < α we have
f(Ff,p(x, y)) = f(x)f(y) > 0, so Ff,p(x, y) > β. Hence for every x < α we get

Ff,p(x, α) = lim
y→α−

Ff,p(x, y) ≥ β

and

α = Ff,p(α, α) = lim
x→α−

Ff,p(x, α) ≥ β,

which is a contradiction with α < β.
If f(x) < 0 for x ∈ (−∞, α) ∪ (β,+∞), then for x, y < α, we have

f(Ff,p(x, y)) = f(x)f(y) > 0, which is impossible.
To finish the proof of the first part of the thesis it is enough to consider the

case f(x) > 0 for x ∈ (−∞, α) ∪ (β,+∞). Let (γ, δ) be such a component of
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f−1((−1, 1)) that [α, β] ⊆ (γ, δ). From Lemma 2 it follows that gf ((γ, δ)) ⊆
[α, β]. Hence for x ∈ (γ, δ) we have

αf(x) ≥ α− x and βf(x) ≤ β − x.

If α < 0, then f(x) ≤ 1− x
α , so for x ∈ (γ, α) we would have f(x) < 0, which

contradicts with the assumption.
If α ≥ 0, then β > 0 and f(x) ≤ 1 − x

β . Thus, for x ∈ (β, δ) we would
have f(x) < 0, which is again a contradiction with the assumption. Therefore
either α = β ∈ R or α = −∞ or β = +∞.

If Af0 = ∅, then from Lemma 2 it follows that f−1((−1, 1)) = ∅. Lemma 3
and the continuity of f imply f(R) ⊆ [1,+∞).

Now assume that Af0 6= ∅ and fix x0 ∈ f−1((−1, 1)) \Af0 . Then according
to Lemma 2 gf (x0) ∈ Af0 . If Af0 = {α}, then gf (x0) = α, so f(x0) = 1− x0

α . If
Af0 = (−∞, α], then gf (x0) ≤ α, so f(x0) ≥ 1− x0

α (α < 0 because f(0) = 1).
Hence f(x0) = 1− x0

c with some c ≤ α. Assume in search of a contradiction
that c < α. From Lemma 1 it follows that

f
(
x0

1− f(x0)2
n

1− f(x0)
)
= f(x0)

2n

for every n ∈ N. Thus f
(
x0

1−f(x0)
2n

1−f(x0)

)
> 0 for every n ∈ N. On the other

hand,

lim
n→+∞

x0
1− f(x0)2

n

1− f(x0)
=

x0
1− f(x0)

= c < α,

so there exist N ∈ N such that x0
1−f(x0)

2N

1−f(x0)
< α. Then

f
(
x0

1− f(x0)2
N

1− f(x0)
)
= f(x0)

2N = 0,

which is not possible. To conclude, for every x0 ∈ f−1((−1, 1)) \ Af0 we have
f(x0) = 1− x0

α .

Furthermore, if Af0 = {α} and α < 0, then for every x0 ∈ f−1((−1, 1))\{α}
we have both f(x0) = 1 − x0

α and f(x0) ∈ (−1, 1), which is possible if and
only if x0 ∈ (2α, 0). Hence f−1((−1, 1)) = (2α, 0). Moreover, f(2α) =

−1, f(0) = 1, so f((−∞, 2α]) ⊆ (−∞,−1], f([0,+∞) ⊆ [1,+∞). If Af0 =
{α} and α > 0, then similarly as above we get f((−∞, 0]) ⊆ [1,+∞) and
f([2α,+∞) ⊆ (−∞,−1].
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Finally, we consider the case of Af0 = (−∞, α] with α < 0 (the case
of Af0 = [α,+∞) with α > 0 may be analyzed analogically). For every
x0 ∈ f−1((−1, 1))\ (−∞, α] we have both f(x0) = 1− x0

α and f(x0) ∈ (−1, 1),
which is possible if and only if x0 ∈ (α, 0). Hence f−1((−1, 1)) = (−∞, 0)
and f([0,+∞)) ⊆ [1,+∞). �

2.2. Part II: We prove that if f 6≡ 0, f 6≡ 1 is a solution of (4), then
Af1 = {0}, so either f takes values greater than 1 for positive
arguments and smaller than 1 for negative arguments or the

reverse

Lemma 8. Let f : R→ R and p : R2 → R satisfy equation (4). The set Af1
is a semigroup.

Proof. Put in (4) x, y ∈ Af1 in order to obtain f(x+ y) = 1. �

Lemma 9. Suppose that a continuous function f : R → R and a function
p : R2 → R continuous with respect to each variable satisfy equation (4). If for
some ε > 0 we have f((−ε, ε)) ⊆ [1,+∞) or f((−ε, ε)) ⊆ (0, 1], then f ≡ 1.

Proof. Assume that f((−ε, ε)) ⊆ [1,+∞) for some ε > 0.Observe that
Ff,p(0, x) = x = Ff,p(x, 0) for every x ∈ R. Continuity of Ff,p(·, ε) and
Ff,p(·,−ε) at the point 0 implies that there exists δ > 0, δ < ε such that for
every |x| < δ we have

|Ff,p(x, ε)− ε| = |Ff,p(x, ε)− Ff,p(0, ε)| <
ε

2

and

|Ff,p(x,−ε) + ε| = |Ff,p(x,−ε)− Ff,p(0,−ε)| <
ε

2
.

Hence

Ff,p(x, ε) ∈
(
ε

2
,
3ε

2

)
and Ff,p(x,−ε) ∈

(
−3ε

2
,−ε

2

)
, |x| < δ.

For every |x| < δ from Darboux property of function Ff,p(x, ·) it follows that
there exists y(x) ∈ (−ε, ε) such that Ff,p(x, y(x)) = 0. Therefore from (4) we
have

1 = f(0) = f(Ff,p(x, y(x))) = f(x)f(y(x)) ≥ 1 for |x| < δ
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and equality holds if and only if f(x) = f(y(x)) = 1. Thus we have proved
that (−δ, δ) ⊆ Af1 . However, the set Af1 is a semigroup (cf. Lemma 8), so
R = Af1 . �

Corollary 1. Suppose that a continuous function f : R→ R and a func-
tion p : R2 → R continuous with respect to each variable satisfy equation (4).
If f−1((−1, 1)) = ∅, then f ≡ 1.

Proof. If f−1((−1, 1)) = ∅, then obviously Af0 = ∅, so from Lemma 7 it
follows that f(R) ⊆ [1,+∞). Therefore, Lemma 9 implies that f ≡ 1. �

Lemma 10. Suppose that a continuous function f : R→ R and a function
p : R2 → R satisfy equation (4). If 0 is a leftside accumulation point (rightside
accumulation point) of Af1 , then f([0,+∞)) = {1} (f((−∞, 0]) = {1}).

Proof. Let (xn)n∈N ∈ (Af1)
N be a decreasing sequence of points tending

to 0. Fix g > 0. For every n ∈ N there exists l(n) ∈ N such that (l(n)−1)xn <
g ≤ l(n)xn. Then |l(n)xn − g| < xn, so

lim
n→+∞

l(n)xn = g.

Moreover, Af1 is a semigroup, so l(n)xn ∈ Af1 . Thus, Af1 is dense in [0,+∞).
On the other hand, Af1 = f−1({1}) is closed as a counterimage of a closed set
by a continuous function. Hence f([0,+∞)) = {1}. �

Corollary 2. Suppose that a continuous function f : R→ R and a func-
tion p : R2 → R continuous with respect to each variable satisfy equation (4).
If condition (1) or (2) from Lemma 7 is satisfied, then there exists ε > 0 such
that f((0, ε)) ⊆ (1,+∞). If condition (3) or (4) from Lemma 7 is satisfied,
then there exists ε > 0 such that f((−ε, 0)) ⊆ (1,+∞).

Proof. Assume that condition (1) or (2) from Lemma 7 is fulfilled. From
Lemma 7 follows that f((−∞, 0)) ⊆ (−∞, 1), f([0,+∞)) ⊆ [1,+∞). If
the thesis of the corollary did not hold, then 0 would be a righthand side
accumulation point of the set Af1 and Lemma 1 would imply Af1 = [0,+∞).
Then we would have f(R) ⊆ (−∞, 1] and from Lemma 9 we would get f ≡ 1,
which is a contradiction with the assumption of the lemma.

The proof is similar for condition (3) or (4). �

Lemma 11. Suppose that a continuous function f : R→ R and a function
p : R2 → R continuous with respect to each variable satisfy equation (4). If
condition (1) or (2) from Lemma 7 is fulfilled, then f((0,+∞)) ⊆ (1,+∞). If
condition (3) or (4) from Lemma 7 is fulfilled, then f((−∞, 0)) ⊆ (1,+∞).
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Proof. Without lost of generality we can assume that condition (1) or (2)
from Lemma 7 is satisfied.

Assume for contradiction that (0,+∞) ∩ Af1 6= ∅. From Corollary 2 it
follows that α = inf((0,+∞) ∩ Af1) > 0. Define h : R → R by the formula
h(x) = x(1 + f(x)). Then h([0, α]) is a compact interval which contains
h(0) = 0 and h(α) = 2α. If there is β ∈ (α, 2α) such that f(β) = 1, then
β = h(γ) with some γ ∈ (0, α) and according to (4) we would have

1 = f(β) = f(h(γ)) = f(γ)2,

which is equivalent to f(γ) = 1 (cf. Lemma 7). However, this is a contradic-
tion with the definition of α. Thus we proved that f((α, 2α)) ⊆ (1,+∞).

Obviously h(α) = 2α, h(2α) = 4α, so [2α, 4α] ⊆ h([α, 2α]). Hence 3α =
h(γ) with some γ ∈ (α, 2α) and f(3α) = f(h(γ)) = f(γ)2 > 1. On the other
hand 3α ∈ Af1 , because Af1 is a semigroup (cf. Lemma 8). �

2.3. Part III: We establish the form of function f on the set
f−1(R \ (−1, 1))

Theorem 2. Suppose that a continuous function f : R→ R and a function
p : R2 → R continuous with respect to each variable satisfy equation (4). If
condition (1) or (2) from Lemma 7 is fulfilled, then f(x) = 1 − x

α for x > 0.
If condition (3) or (4) from Lemma 7 is fulfilled, then f(x) = 1− x

α for x < 0.

Proof. Without lost of generality we can assume that condition (1) or (2)
from Lemma 7 is satisfied.

Equation (4), Lemma 11 and Lemma 7 imply that for arbitrary x > 0
there exists exactly one k(x) ∈ (α, 0) such that f(x)f(k(x)) = 1. Thus,
f(x) = α

α−k(x) for every x > 0.
Let x > 0, α < y < 0. Then f(x) = α

α−k(x) , f(y) =
α−y
α , so f(x)f(y) =

α−y
α−k(x) . Therefore, from Lemma 7 for x > 0, y < 0 we have

Ff,p(x, y) ∈ (α, 0)⇐⇒ f(Ff,p(x, y)) = f(x)f(y) ∈ (0, 1)⇐⇒ y ∈ (α, k(x))

and

Ff,p(x, y) > 0⇐⇒ f(Ff,p(x, y)) = f(x)f(y) > 1⇐⇒ y ∈ (k(x), 0).

Fix x > 0, y ∈ (α, k(x)). Then

f(Ff,p(x, y)) = 1− Ff,p(x, y)

α
,
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Ff,p(x, y) = p(x, y)
(
x
(
1− y

α

)
+ y − y α

α− k(x) − x
)
+ y

α

α− k(x) + x

= p(x, y)
y(xk(x)− αx− αk(x))

α(α− k(x)) +
αx+ αy − xk(x)

α− k(x) .

Thus

f(Ff,p(x, y)) = 1− p(x, y)y(xk(x)− αx− αk(x))
α2(α− k(x)) +

xk(x)− αx− αy
α(α− k(x)) ,

so

1− p(x, y)y(xk(x)− αx− αk(x))
α2(α− k(x)) +

xk(x)− αx− αy
α(α− k(x)) =

α− y
α− k(x)

and

α2(α− k(x))− p(x, y)y(xk(x)− αx− αk(x))
+ α(xk(x)− αx− αy) = α2(α− y),

which implies

p(x, y)y(αx+ αk(x)− xk(x)) = α(αx+ αk(x)− xk(x)).

Therefore, either

k(x) =
αx

x− α, which is equivalent to f(x) = 1− x

α
,

or
p(x, y) =

α

y
.

Assume that there exists a sequence (xn)n∈N decreasing to 0 such that
f(xn) 6= 1− xn

α . Fix y0 ∈ (α, 0). Since limx→0+ k(x) = 0, there is N ∈ N such
that for every n ≥ N we have y0 ∈ (α, k(xn)), so p(xn, y0) = α

y0
. Then

p(0, y0) = lim
n→+∞

p(xn, y0) = lim
n→+∞

α

y0
=

α

y0
.

Thus,
p(0, 0) = lim

y0→0−
p(0, y0) = +∞.

This contradiction proves that such a sequence (xn)n∈N does not exists. So,
there is an ε > 0 such that f(x) = 1− x

α for every x ∈ [0, ε].
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If f(x) = 1− x
α , f(y) = 1− y

α , then Ff,p(x, y) = x+ y − xy
α and

f(Ff,p(x, y)) = f(x)f(y) = 1− x+ y − xy
α

α
= 1− Ff,p(x, y)

α
.

Therefore, f(z) = 1− z
α for every z ∈ Ff,p([0, ε]2). In particular, for x ∈ [0, ε]

we have Ff,p([0, ε]2) 3 Ff,p(x, x) = x(1 + f(x)) > 2x, so [0, 2ε] ⊆ Ff,p([0, ε]
2)

and f(z) = 1− z
α for every z ∈ [0, 2ε]. Repeating this reasoning, we get that

f(z) = 1− z
α for every z > 0. �

Theorem 3. Suppose that a continuous function f : R→ R and a function
p : R2 → R continuous with respect to each variable satisfy equation (4). If
condition (2) from Lemma 7 is fulfilled, then f(x) = 1 − x

α for x < 0. If
condition (4) from Lemma 7 is fulfilled, then f(x) = 1− x

α for x > 0.

Proof. Without lost of generality we can assume that condition (2) from
Lemma 7 is satisfied.

Suppose that there exist x < 2α such that f(x) < −1. Then x(f(x)+1) >
0, so from Theorem 2 and (4) we have

1− x(1 + f(x))

α
= f(x(1 + f(x))) = f(x)2,

so αf(x)2 + xf(x) + x − α = 0 and solving this quadratic equation we get
f(x) = 1− x

α or f(x) = −1. We have chosen x such that f(x) < −1, so finally
f(x) = 1− x

α .
Let A = {x ∈ (−∞, 2α) : f(x) = −1} and

B =
{
x ∈ (−∞, 2α) : f(x) = 1− x

α

}
.

The sets A, B are disjoint, their union is (−∞, 2α) and they are closed in
(−∞, 2α), since the function f is continuous. Connectedness of (−∞, 2α)
implies that A = ∅ or B = ∅, so

f(x) = −1 for every x < 2α or f(x) = 1− x

α
for every x < 2α.

Now we show that the first case leads to a contradiction. Indeed, in this case
we would have f(x) = max{−1, 1 − x

α} and we could choose x0 > 0, y0 ≤
2α and get f(Ff,p(x0, y0)) = f(x0)f(y0) = −(1 − x0

α ) < −1. However, in
the considered situation f(R) ∩ (−∞,−1) = ∅, which implies the desired
contradiction. �
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3. Main result

Our main result reads as follows:

Theorem 4. Let a continuous function f : R→ R and a continuous with
respect to each variable function p : R2 → R satisfy equation (4). Then one of
the following conditions is satisfied:
(1) f ≡ 0, p arbitrary continuous function or
(2) f ≡ 1, p arbitrary continuous function or
(3) f(x) = 1− x

α with α 6= 0, p arbitrary continuous function or
(4) f(x) = max{0, 1− x

α} with some α < 0 and p being a continuous function
satisfying conditions:
• if x, y ≥ α or x = y ≤ α or x = 0 or y = 0, then p(x, y) is arbitrary,
• if x < y ≤ α, then p(x, y) ≤ α−x

y−x ,
• if y < x ≤ α, then p(x, y) ≥ α−x

y−x ,
• if x ∈ (α, 0), y < α, then p(x, y) ≥ 1− α

x ,
• if x > 0, y < α, then p(x, y) ≤ 1− α

x ,
• if x < α, y ∈ (α, 0), then p(x, y) ≤ α

y ,
• if x < α, y > 0, then p(x, y) ≥ α

y , or
(5) f(x) = max{0, 1− x

α} with some α > 0 and p being a continuous function
satisfying conditions:
• if x, y ≤ α or x = y ≥ α or 0 = y or x = 0, then p(x, y) is arbitrary,
• if x > y ≥ α, then p(x, y) ≤ α−x

y−x ,
• if y > x ≥ α, then p(x, y) ≥ α−x

y−x ,
• if x < 0, y > α, then p(x, y) ≤ 1− α

x ,
• if x ∈ (0, α), y > α, then p(x, y) ≥ 1− α

x ,
• if x > α, y ∈ (0, α), then p(x, y) ≤ α

y ,
• if x > α, y < 0, then p(x, y) ≥ α

y .

Conversely, if functions f : R → R, p : R2 → R satisfy one of the conditions
(1)− (5), then f, p is a solution of equation (4).

Proof. From Lemma 7, Theorem 2, Theorem 3 follows that if f is not
identically equal neither to 0 nor to 1, then f(x) = 1− x

α or f(x) = max{0, 1−
x
α}. Obviously, if f(x) = 1− x

α , then the function p is arbitrary. Therefore, to
complete the proof it is enough to show that in cases (4) and (5) the function
p must satisfy conditions mentioned in, respectively, (4) or (5).

Now we consider the case f(x) = max{0, 1 − x
α} and α < 0. For x, y ≥

α equation (4) is satisfied independently of p(x, y). For x, y ≤ α we have
f(F (x, y)) = 0, so F (x, y) ≤ α and F (x, y) = p(x, y)(y − x) + x. Thus, if
x < y ≤ α, then p(x, y) ≤ α−x

y−x ; if x = y ≤ α, then p(x, y) is arbitrary; if
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y < x ≤ α, then p(x, y) ≥ α−x
y−x . For x > α, y < α we have f(x)f(y) = 0, so

F (x, y) ≤ α. The definition of F gives

F (x, y) = p(x, y)
(
y − y

(
1− x

α

)
− x
)
+ y
(
1− x

α

)
+ x

= −xp(x, y)
(
1− y

α

)
+ x+ y − xy

α
≤ α,

so −xp(x, y)α−yα ≤ 1
α(α − x)(α − y). Thus, p(0, y) are arbitrary; if x ∈

(α, 0), y < α, then p(x, y) ≥ 1 − α
x ; if x > 0, y < α, then p(x, y) ≤ 1 − α

x .
Similarly, if x < α, y > α, then F (x, y) ≤ α and

F (x, y) = p(x, y)
(
x
(
1− y

α

)
+ y − x

)
+ x = yp(x, y)

(
1− x

α

)
+ x ≤ α,

so yp(x, y)α−xα ≤ α− x. Thus, p(x, 0) are arbitrary; if x < α, y ∈ (α, 0), then
p(x, y) ≤ α

y ; if x < α, y > 0, then p(x, y) ≥ α
y .

The case (5) is treated analogically to the case (4).
It is easy to check that function fulfilling one of the conditions (1)–(5) is

a solution of (4). �

In the end observe, that there exist a lot of continuous functions p which
satisfy conditions from (4) or (5) of Theorem 4, e.g. for α > 0 one may take

p0(x, y) =

{ α
y , for |y| ≥ α

2
4y
α , for |y| < α

2 .

Let p1 : R2 → R be an arbitrary function continuous with respect to each
variable and such that p1(x, y) 6= 0 only for x < 0 and y < 0. Then the
function p0 + p1 satisfies conditions (5) of Theorem 4, too.
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