Annales Mathematicae Silesianae
 26 (2012)

WYDAWNICTWO UNIWERSYTETU ŚLĄSKIEGO KATOWICE 2013

ORTHOGONALLY PEXIDER FUNCTIONS MODULO A DISCRETE SUBGROUP

Wirginia Wyrobek-Kochanek

Abstract. Under appropriate conditions on abelian topological groups G and H, an orthogonality $\perp \subset G^{2}$ and a σ-algebra \mathfrak{M} of subsets of G we prove that if at least one of the functions $f, g, h: G \rightarrow H$ satisfying

$$
f(x+y)-g(x)-h(y) \in K \quad \text { for } x, y \in G \text { such that } x \perp y
$$

where K is a discrete subgroup of H, is continuous at a point or \mathfrak{M}-measurable, then there exist: a continuous additive function $A: G \rightarrow H$, a continuous biadditive and symmetric function $B: G \times G \rightarrow H$ and constants $a, b \in H$ such that

$$
\left\{\begin{array}{l}
f(x)-B(x, x)-A(x)-a \in K \\
g(x)-B(x, x)-A(x)-b \in K \\
h(x)-B(x, x)-A(x)-a+b \in K
\end{array}\right.
$$

for $x \in G$ and

$$
B(x, y)=0 \quad \text { for } x, y \in G \text { such that } x \perp y
$$

Let G and H be groups and $\perp \subset G^{2}$ an orthogonality. We say that a function $f: G \rightarrow H$ is orthogonally additive, if

$$
f(x+y)=f(x)+f(y) \quad \text { for } x, y \in G \text { such that } x \perp y .
$$

Received: 14.02.2012. Revised: 15.06.2012.
(2010) Mathematics Subject Classification: 39B55, 39B52.

Key words and phrases: additive functions, biadditive functions, Pexider difference, quadratic functions.

In the paper [3] J. Brzdęk considers the Rätz orthogonality (cf.[5]) and, under some assumptions, gives a description of orthogonally additive functions modulo a discrete subgroup, i.e. functions $f: G \rightarrow H$ such that

$$
f(x+y)-f(x)-f(y) \in K \quad \text { for } x, y \in G \text { such that } x \perp y
$$

where K is a discrete subgroup of H. In the papers [7] and [4] authors prove similar theorems (for continuous or measurable functions), but for the orthogonality defined by K. Baron and P. Volkmann in [2], which includes the Rätz orthogonality.

Now we would like to obtain some similar results for the Pexider difference instead of the Cauchy difference, i.e. we assume that functions $f, g, h: G \rightarrow H$ are orthogonally Pexider modulo a discrete subgroup, which means that they satisfy

$$
f(x+y)-g(x)-h(x) \in K \quad \text { for } x, y \in G \text { such that } x \perp y
$$

where K is a discrete subgroup of H. We start with the following result.
Lemma. Let G be a groupoid with a neutral element, H an abelian group, K a subgroup of H. Let $\Delta \subset G \times G$ be a set with

$$
\begin{equation*}
(0, x),(x, 0) \in \Delta \quad \text { for all } x \in G \tag{1}
\end{equation*}
$$

If functions $f, g, h: G \rightarrow H$ satisfy

$$
\begin{equation*}
f(x+y)-g(x)-h(y) \in K \quad \text { for }(x, y) \in \Delta \tag{2}
\end{equation*}
$$

then the following are true:
(a) There are functions $k_{1}, l_{1}: G \rightarrow K, \varphi_{1}: G \rightarrow H$ and constants $a, b \in H$ such that

$$
\varphi_{1}(x+y)-\varphi_{1}(x)-\varphi_{1}(y) \in K \quad \text { for }(x, y) \in \Delta
$$

and
(3)

$$
\left\{\begin{array}{l}
f(x)=\varphi_{1}(x)+a \\
g(x)=\varphi_{1}(x)+k_{1}(x)+b \\
h(x)=\varphi_{1}(x)-k_{1}(x)+l_{1}(x)+a-b
\end{array}\right.
$$

for all $x \in G$.
(b) There are functions $k_{2}, l_{2}: G \rightarrow K, \varphi_{2}: G \rightarrow H$ and constants $a, b \in H$ such that

$$
\varphi_{2}(x+y)-\varphi_{2}(x)-\varphi_{2}(y) \in K \quad \text { for }(x, y) \in \Delta
$$

and

$$
\left\{\begin{array}{l}
f(x)=\varphi_{2}(x)+k_{2}(x)+a, \\
g(x)=\varphi_{2}(x)+b, \\
h(x)=\varphi_{2}(x)+l_{2}(x)+a-b
\end{array}\right.
$$

for all $x \in G$.
(c) There are functions $k_{3}, l_{3}: G \rightarrow K, \varphi_{3}: G \rightarrow H$ and constants $a, b \in H$ such that

$$
\varphi_{3}(x+y)-\varphi_{3}(x)-\varphi_{3}(y) \in K \quad \text { for }(x, y) \in \Delta
$$

and

$$
\left\{\begin{array}{l}
f(x)=\varphi_{3}(x)+k_{3}(x)+a, \\
g(x)=\varphi_{3}(x)+l_{3}(x)+b, \\
h(x)=\varphi_{3}(x)+a-b
\end{array}\right.
$$

for all $x \in G$.
Moreover, each of assertions (a), (b), (c) gives a complete description of solutions of (2), that is, every triple (f, g, h), being of one of the forms described above, is a solution of (2).

Proof. Setting $y=0$ in (2), by (1) we get

$$
\begin{equation*}
\mu(x):=f(x)-g(x)-h(0) \in K \quad \text { for } x \in G \tag{4}
\end{equation*}
$$

and setting $x=0$ we have

$$
\begin{equation*}
\nu(y):=f(y)-g(0)-h(y) \in K \quad \text { for } y \in G . \tag{5}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
f(0)-g(0)-h(0) \in K . \tag{6}
\end{equation*}
$$

Denote $a=f(0), b=g(0)$ and define $\varphi_{i}, k_{i}, l_{i}: G \rightarrow H$ for $i=1,2,3$ by

$$
\begin{array}{lll}
\varphi_{1}=f-a, & k_{1}=g-\varphi_{1}-b, & \\
\varphi_{1}=h+k_{1}-\varphi_{1}-a+b, \\
\varphi_{2}=g-b, & k_{2}=f-\varphi_{2}-a, & \\
l_{2}=h-\varphi_{2}-a+b, \\
\varphi_{3}=h-a+b, & k_{3}=f-\varphi_{3}-a, & \\
l_{3}=g-\varphi_{3}-b .
\end{array}
$$

Using (4), (5), (2) and (6) for every $(x, y) \in \Delta$ we get

$$
\begin{aligned}
\varphi_{1}(x+y) & -\varphi_{1}(x)-\varphi_{1}(y)=f(x+y)-a-f(x)+a-f(y)+a \\
& =f(x+y)-\mu(x)-g(x)-h(0)-\nu(y)-g(0)-h(y)+a \in K \\
\varphi_{2}(x+y) & -\varphi_{2}(x)-\varphi_{2}(y)=g(x+y)-b-g(x)+b-g(y)+b \\
& =f(x+y)-\mu(x+y)-h(0)-g(x)+\mu(y)-f(y)+h(0)+b \\
& =f(x+y)-\mu(x+y)-g(x)+\mu(y)-\nu(y)-g(0)-h(y)+b \in K \\
\varphi_{3}(x+y) & -\varphi_{3}(x)-\varphi_{3}(y)=h(x+y)-a+b-h(x)+a-b-h(y)+a-b \\
& =f(x+y)-g(0)-\nu(x+y)+\nu(x)-f(x)+g(0)-h(y)+a-b \\
& =f(x+y)-\nu(x+y)+\nu(x)-\mu(x)-g(x)-h(0)-h(y)+a-b \\
& \in K
\end{aligned}
$$

We also have

$$
\begin{gathered}
k_{1}(x)=g(x)-f(x)+a-b=-\mu(x)-h(0)+a-b \in K, \\
k_{2}(x)=f(x)-g(x)+b-a=\mu(x)+h(0)+b-a \in K, \\
k_{3}(x)=f(x)-h(x)+a-b-a=\nu(x)+g(0)-b \in K, \\
l_{1}(x)=h(x)+k_{1}(x)-f(x)+a-a+b=-\nu(x)-g(0)+k_{1}(x)+b \in K, \\
l_{2}(x)=h(x)+k_{2}(x)-f(x)+a-a+b=-\nu(x)-g(0)+k_{2}(x)+b \in K, \\
l_{3}(x)=g(x)+k_{3}(x)-f(x)+a-b=-\mu(x)-h(0)+k_{3}(x)+a-b \in K
\end{gathered}
$$

for $x \in G$.
The part (b) of this lemma in the case when $\Delta=G^{2}$ was also obtained by K. Baron and PL. Kannappan in [1], even under some weaker assumptions. Some variations of (2) for functions with values in groupoids were studied by J. Sikorska in [6].

We work with the orthogonality proposed by K. Baron and P. Volkmann in [2], assuming additionally that the last condition in the following definition holds:

Let G be a group such that the mapping

$$
\begin{equation*}
x \mapsto 2 x, \quad x \in G \tag{7}
\end{equation*}
$$

is a bijection onto the group G. A relation $\perp \subset G^{2}$ is called orthogonality if it satisfies the following three conditions:
(i) $0 \perp 0$; and from $x \perp y$ the relations $-x \perp-y, \frac{x}{2} \perp \frac{y}{2}$ follow.
(ii) If an orthogonally additive function from G to an abelian group is odd, then it is additive; if it is even, then it is quadratic.
(iii) $x \perp 0$ and $0 \perp x$ for every $x \in G$.

For a subset U of a given group and for $n \in \mathbb{N}$ the symbol $n U$ denotes the set $\{n x: x \in U\}$.

Theorem. Assume G is an abelian topological group such that the mapping (7) is a homeomorphism and every neighbourhood of zero in G contains a neighbourhood U of zero such that

$$
\begin{equation*}
U \subset 2 U \quad \text { and } \quad G=\bigcup\left\{2^{n} U: n \in \mathbb{N}\right\} \tag{8}
\end{equation*}
$$

Let $\perp \subset G^{2}$ be an orthogonality, H an abelian topological group and $K a$ discrete subgroup of H. Assume that functions $f, g, h: G \rightarrow H$ satisfy

$$
\begin{equation*}
f(x+y)-g(x)-h(y) \in K \quad \text { for } x, y \in G \text { such that } x \perp y \tag{9}
\end{equation*}
$$

(i) If at least one of the functions f, g, h is continuous at a point, then there exist: a continuous additive function $A: G \rightarrow H$, a continuous biadditive and symmetric function $B: G \times G \rightarrow H$ and constants $a, b \in H$ such that

$$
\left\{\begin{array}{l}
f(x)-B(x, x)-A(x)-a \in K \tag{10}\\
g(x)-B(x, x)-A(x)-b \in K \\
h(x)-B(x, x)-A(x)-a+b \in K
\end{array}\right.
$$

for $x \in G$ and

$$
\begin{equation*}
B(x, y)=0 \quad \text { for } x, y \in G \text { such that } x \perp y \tag{11}
\end{equation*}
$$

(ii) Let \mathfrak{M} be a σ-algebra of subsets of G such that

$$
\begin{equation*}
x \pm 2 A \in \mathfrak{M} \quad \text { for all } x \in G \text { and } A \in \mathfrak{M} \tag{12}
\end{equation*}
$$

and there is a proper σ-ideal \mathfrak{I} of subsets of G with

$$
\begin{equation*}
0 \in \operatorname{Int}(A-A) \quad \text { for } A \in \mathfrak{M} \backslash \mathfrak{I} \tag{13}
\end{equation*}
$$

Assume moreover that H is separable metric and the following condition (G) is fulfilled:
(G) either G is a first countable Baire group, or G is metric separable, or G is metric and \mathfrak{M} contains all Borel subsets of G.
If at least one of the functions f, g, h is \mathfrak{M}-measurable, then there exist: a continuous additive function $A: G \rightarrow H$, a continuous biadditive and symmetric function $B: G \times G \rightarrow H$ and constants $a, b \in H$ such that (10) and (11) hold.

Moreover, each of assertions (i), (ii) gives a complete description of solutions of (9).

Proof. (i): Case 1. Assume that f is continuous at a point. Let k_{1}, l_{1} : $G \rightarrow K, \varphi_{1}: G \rightarrow H$ be as in Lemma (a). Then the function φ_{1} is continuous at a point. According to Theorem 1 from [7] we get a continuous additive function $A: G \rightarrow H$ and a continuous biadditive and symmetric function $B: G \times G \rightarrow H$ such that

$$
\varphi_{1}(x)-B(x, x)-A(x) \in K \quad \text { for } x \in G
$$

and (11) hold. Then, according to (3),

$$
\begin{aligned}
f(x)-B(x, x)-A(x)-a= & \varphi_{1}(x)+a-B(x, x)-A(x)-a \in K, \\
g(x)-B(x, x)-A(x)-b= & \varphi_{1}(x)+k_{1}(x)+b-B(x, x)-A(x)-b \in K, \\
h(x)-B(x, x)-A(x)-a+b= & \varphi_{1}(x)-k_{1}(x)+l_{1}(x)+a-b \\
& -B(x, x)-A(x)-a+b \in K
\end{aligned}
$$

for all $x \in G$.
Case 2. If the function g is continuous at a point then instead of Lemma (a) we use Lemma (b).

Case 3. If the function h is continuous at a point then we use Lemma (c).
(ii): If one of the functions f, g, h is \mathfrak{M}-measurable then we use Theorem 1 from [4] instead of Theorem 1 from [7].

For $\perp=G^{2}$ some special cases were obtained in [1] (cf. Corollaries 6 and 7 there).

If in the Theorem G is Baire and we consider the Baire measurability, then we do not need to assume the first countability of G in order to get the factorization with a separately continuous biadditive term only (cf. Corollary 2 in [4]).

Corollary 1. Assume G is an abelian topological group such that the mapping (7) is a homeomorphism and every neighbourhood of zero in G contains a neighbourhood U of zero such that (8) holds. Let $\perp \subset G^{2}$ be an
orthogonality, H an abelian separable metric group, K a discrete subgroup of H and functions $f, g, h: G \rightarrow H$ satisfy (9). If G is Baire and at least one of the functions f, g, h is Baire measurable, then there exist: a continuous additive function $A: G \rightarrow H$, a function $B: G \times G \rightarrow H$ biadditive, symmetric and continuous in each variable, and constants $a, b \in H$ such that (10) and (11) hold.

If we take $\perp=G^{2}$, then our Theorem gives us Corollary 2 below. It also leads to another conclusions in the case when we consider Baire or Christensen measurability.

Corollary 2. Assume G is an abelian topological group such that the mapping (7) is a homeomorphism and every neighbourhood of zero in G contains a neighbourhood U of zero such that (8) holds. Let H be an abelian separable metric group, K a discrete subgroup of H, \mathfrak{M} a σ-algebra of subsets of G satisfying (12) and such that there is a proper σ-ideal \mathfrak{I} of subsets of G with property (13). If functions $f, g, h: G \rightarrow H$ satisfy

$$
f(x+y)-g(x)-h(y) \in K \quad \text { for } x, y \in G
$$

and at least one of them is \mathfrak{M}-measurable, then there exist a continuous additive function $A: G \rightarrow H$ and constants $a, b \in H$ such that

$$
\left\{\begin{array}{l}
f(x)-A(x)-a \in K \\
g(x)-A(x)-b \in K \\
h(x)-A(x)-a+b \in K
\end{array}\right.
$$

for $x \in G$.
Acknowledgement. The research was supported by the Silesian University Mathematics Department (Iterative Functional Equations and Real Analysis program).

References

[1] Baron K., Kannappan Pl., On the Pexider difference, Fund. Math. 134 (1990), 247254.
[2] Baron K., Volkmann P., On orthogonally additive functions, Publ. Math. Debrecen 52 (1998), 291-297.
[3] Brzdęk J., On orthogonally exponential functionals, Pacific J. Math. 181 (1997), 247267.
[4] Kochanek T., Wyrobek-Kochanek W., Measurable orthogonally additive functions modulo a discrete subgroup, Acta Math. Hungar. 123 (2009), 239-248.
[5] Rätz J., On orthogonally additive mappings, Aequationes Math. 28 (1985), 35-49.
[6] Sikorska J., On a Pexiderized conditional exponential functional equation, Acta Math. Hungar. 125 (2009), 287-299.
[7] Wyrobek W., Orthogonally additive functions modulo a discrete subgroup, Aequationes Math. 78 (2009), 63-69.

Institute of Mathematics
Silesian University
Bankowa 14
40-007 Katowice
Poland
e-mail: wwyrobek@math.us.edu.pl

