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FIXED POINT APPROACH TO THE STABILITY
OF AN INTEGRAL EQUATION IN THE SENSE

OF ULAM–HYERS–RASSIAS

Mohamed Akkouchi, Abdellah Bounabat, M.H. Lalaoui Rhali

Abstract. In this paper, by using the classical Banach contraction principle,
we investigate and establish the stability in the sense of Ulam–Hyers and in
the sense of Ulam–Hyers–Rassias for the integral equation which defines the
mild solutions of an abstract Cauchy problem in Banach spaces.

1. Introduction

1.1. In 1940, S.M. Ulam, (see [31] and [32]) was the first to introduce the
notion of stability for functional equations. More precisely, he proposed the
following problem:

Given a group G1, a metric group (G2, d) and a positive number ε, does
there exist a δ > 0 such that if a function f : G1 −→ G2 satisfies the inequality
d(f(xy), f(x)f(y)) < δ for all x, y ∈ G1, then there exists a homomorphism
T : G1 −→ G2 such that d(f(x), T (x)) < ε for all x ∈ G1?

When this problem has a solution, we say that the homomorphisms from
G1 to G2 are stable, or that the equation defining group homomorphisms is
stable (in the sense of Ulam).
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In 1941, D.H. Hyers (see [7]) gave a partial solution of Ulam,s problem
under the assumption that G1 and G2 are Banach spaces.

In 1950, T. Aoki (see [2]) studied the stability problem for additive map-
pings by using unbounded Cauchy differences (see also [16]).

In 1978, Th.M. Rassias (see [23]) studied a similar problem. The stability
considered in [23] is often called the Ulam–Hyers–Rassias stability.

In 1993, M. Obloza [18] (see also [18]) has studied Hyers stability of ordi-
nary and linear differential equations. Works along this direction were under-
taken by C. Alsina and R. Ger (see [1]), S.-M. Jun (see [11], [12], [13], [14])
and by T. Miura, S. Miyajima and S.-E. Takahasi in their joint papers: [16]
and [17].

In the references, at the end of this paper, we have listed other papers
dealing with the stability of functional equations.

For a large amount of information on the stability of functional equations,
the reader is invited to consult the books [9] and [27] (see also the papers [24],
[25], [26] and others).

1.2. Recently, ([29]), Rus has studied the stability of a general ordinary
differential equation in Banach spaces. Precisely, he considered the equation

(1.1) y′(t) = A(y(t)) + f(t, y(t)), t ∈ I ⊂ R,

(i) where I = [a, b] or [a,∞),
(ii) y ∈ X, X is a Banach space,
(iii) A : X −→ X, is the infinitesimal generator of a C0-semi-group, and
(iv) f ∈ C(I ×X,X).
By using a variant of Gronwall lemma and an existence theorem of mild
solutions of the equation (1.1), Rus studied various kinds of stability for the
following inequalities:

‖v′(t)−Av(t)− f(t, v(t))‖ ≤ ε, t ∈ I,(1.2)

‖v′(t)−Av(t)− f(t, v(t))‖ ≤ φ(t), t ∈ I,(1.3)

‖v′(t)−Av(t)− f(t, v(t))‖ ≤ εφ(t), t ∈ I,(1.4)

where v ∈ C1(I,X).

1.3. Let (X, ‖.‖) be a given (real) Banach space and I = [0,+∞) or I = [0, T ],
where T > 0 is a parameter. We denote by L(X) the set of bounded linear
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maps from X to X. Let S : [0,∞) → L(X) be a family of bounded linear
operators which form a strongly continuous semigroup of operators, i.e.,

S(t+ s) = S(t)S(s), ∀t, s ≥ 0,

S(0) = id, the identity mapping

lim
t→t0

S(t)x = S(t0)x, ∀t0 ≥ 0, ∀x ∈ X.

The family (S(t))t≥0 is also called a C0-semigroup. For such semigroups it is
well known (see [21]) that there exist constants ω ∈ R and M ≥ 1 such that

(1.5) ‖S(t)‖ ≤Meωt, t ≥ 0.

(In the sequel, we shall use ‖ · ‖ for both the norm in X, and the norm in
L(X).)

The infinitesimal generator of the C0-semigroup {S(t), t ≥ 0} is the linear
operator A : D(A)→ X defined by

(1.6) Ax := lim
t→0+

1

t
(S(t)x− x) ,

where D(A) denotes the set of all x ∈ X for which that limit exists.
We know (for more details see, [21]) that the domain D(A) of A is dense

and that A is closed.
For a given initial state ψ0 ∈ X, we consider the following abstract Cauchy

problem:

(CP ) :

{
ψ̇(t) = Aψ(t) + u(t)F (t, ψ(t)), t ∈ I,
ψ(0) = ψ0,

where F : I ×X → X is a a given continuous function such that, for almost
all t ∈ I, we have

(1.7) ‖F (t, x)− F (t, y)‖ ≤ l(t)‖x− y‖, ∀x, y ∈ X,

where l : [0, T ] → R+ and u : [0, T ] → R are two given measurable functions
such that l, u and lu are locally integrable on I.

In general, even if u and l are continuous, the problem (CP) may have
no solutions. Moreover, as in [21], one can show that if a classical solution ψ
exists then it will be given by

(1.8) ψ(t) = S(t)ψ0 +

∫ t

0

u(s)S(t− s)F (s, ψ(s))ds, ∀t ∈ I.
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From [21], we recall the following definition.

Definition 1.1. A continous function ψ which is a solution of the integral
equation (1.8) is called a mild solution of problem (CP).

The purpose of this paper is to study the stability of the solutions of the
integral equation (1.8) by using the classical Banach contraction principle.

Inspired by the paper [29], we introduce four definitions of stabilities which
are essentially variants of the stability the sense of Hyers–Ulam and in the
sense of Hyers–Ulam–Rassias or their generalizations.

This paper is organized as follows.
In the second section we present some definitions and remarks that will be

used in this paper.
The third section is devoted to the study of stability of the integral equa-

tion (1.8) on a finite interval [0, T ]. This kind of stability (see Definition 2.1)
is essentially in the sense of Ulam–Hyers. The main result of this section is
Theorem 3.1.

The fourth section is devoted to the study of stability of the integral equa-
tion (1.8) on a finite interval [0, T ] according to Definition 2.4. This kind of
stability is essentially in the sense of Hyers–Ulam–Rassias. The main result of
this section is Theorem 4.1. We end this section by making some comments
concerning the connections between Theorem 3.1 and Theorem 4.1.

In Section 5, we prove the stability of the integral equation (1.8) on [0,+∞)
according to Definition 2.1. The main result of this section is Theorem 5.1.

In Section 6, we investigate the stability of the integral equation (1.8)
on [0,+∞) according to Definition 2.4. The main result of this section is
Theorem 6.1.

We point out that a Fixed point method (see [5]) was used to investi-
gate the stability of several functional equations. Works along these lines are
achieved by L. Cǎdariu and V. Radu (see [4] and [22]). Fixed point methods
were also used to study the stability of differential equations. (See [14] and
other related papers).

2. Definitions and preliminaries

Let I = [0, T ] or [0,+∞) and let (X, ‖.‖) be a Banach space. The set of
all continuous functions from I to X will be denoted by E := C(I,X).
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For a given ψ0 ∈ X and any ψ ∈ E , we set

Λ(ψ)(t) := S(t)ψ0 +

∫ t

0

u(s)S(t− s)F (s, ψ(s))ds

for all t ∈ I.
Here, l, u are measurable functions such that l, u and the product lu are

locally integrable. With the assumptions made above on F , it is easy to see
that the map ψ 7→ Λ(ψ) is a self-mapping of the space E .

For any given ψ0 ∈ X, ε > 0 and G ∈ C(I, (0,+∞)), we consider the
following equation

(2.1) ψ(t) = Λ(ψ)(t), t ∈ I

and the following inequalities:

‖ψ(t)− Λ(ψ)(t)‖ ≤ ε, t ∈ I,(2.2)

‖ψ(t)− Λ(ψ)(t)‖ ≤ G(t), t ∈ I,(2.3)

where the unknown function ψ is in C(I,X).
As in [29], we introduce the following definitions.

Definition 2.1. The integral equation (2.1) is Ulam–Hyers stable if there
exists a real number c > 0 such that for each ε > 0 and for each solution
ψ ∈ C(I,X) of (2.2) there exists a solution v ∈ C(I,X) of (2.1) such that

‖ψ(t)− v(t)‖ ≤ cε, ∀t ∈ I.

Definition 2.2. The integral equation (2.1) is generalized Ulam–Hyers
stable if there exists θ ∈ C([0,+∞), [0,+∞)), θ(0) = 0, such that for each
ε > 0 and for each solution ψ ∈ C(I,X) of (2.2) there exists a solution
v ∈ C(I,X) of (2.1) such that

‖ψ(t)− v(t)‖ ≤ θ(ε), ∀t ∈ I.

Definition 2.3. The integral equation (2.1) is generalized Ulam–Hyers–
Rassias stable with respect to G ∈ C([0,+∞), (0,+∞)), if there exists cG > 0
such that for each solution ψ ∈ C(I,X) of (2.3) there exists a solution v ∈
C(I,X) of (2.1) such that

‖ψ(t)− v(t)‖ ≤ cGG(t), ∀t ∈ I.

In the sequel, we are interested by the stability of the equation (2.1) in
the sense of Definition 2.1 and Definition 2.3.
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3. Ulam–Hyers stability of equation (2.1) on a finite interval

Let (S(t))t≥0 be a C0-semigroup on a Banach space (X, ‖·‖). Let T > 0 be
a given positive real number. The set of all continuous functions from [0, T ]
to X will be denoted by E . For any functions φ, ψ ∈ E , we denote

‖φ− ψ‖∞ = d∞(φ, ψ) := sup{‖φ(t)− ψ(t)‖ : t ∈ [0, T ]}.

For any continuous function ψ : [0, T ]→ X, we recall that

Λ(ψ)(t) := S(t)ψ0 +

∫ t

0

u(s)S(t− s)F (s, ψ(s))ds, ∀t ∈ [0, T ],

with a fixed ψ0 ∈ X.
We start by providing a sufficient condition ensuring the Ulam–Hyers sta-

bility of the integral equation (2.1) on the finite interval [0, T ].

Theorem 3.1. Let (S(t))t≥0 be a C0-semigroup on a Banach space (X, ‖·‖)
and let T > 0 be a positive real number. We set

λ := M

∫ T

0

l(s)|u(s)|eω(T−s)ds.

If λ < 1, then the integral equation (2.1) is stable in the sense of Ulam–Hyers.

Proof. Suppose that λ < 1. Let ε > 0 be given. For any arbitrary
functions φ, ψ ∈ E , we have the following inequalities:

‖(Λφ)(t)− (Λψ)(t)‖ =

∥∥∥∥
∫ t

0

u(s)S(t− s)(F (s, φ(s))− F (s, ψ(s)))ds

∥∥∥∥

≤
∫ t

0

|u(s)|‖S(t− s)‖‖F (s, φ(s))− F (s, ψ(s))‖ds

≤
∫ t

0

|u(s)|Meω(t−s)l(s)‖φ(s)− ψ(s)‖ds

≤
[
M

∫ T

0

eω(T−s)|u(s)|l(s) ds
]
d∞(φ, ψ)

≤ λd∞(φ, ψ),
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for all t ∈ [0, T ]. Therefore, we have

d∞(Λ(φ),Λ(ψ)) ≤ λd∞(φ, ψ).

So, Λ is a contraction.
Let θ ∈ E be such that

d∞(θ,Λ(θ)) ≤ ε.

Let φ ∈ E be such that d∞(θ, φ) ≤ ε
1−λ . Then we have

d∞(θ,Λ(φ)) ≤ d∞(θ,Λ(θ)) + d∞(Λ(θ),Λ(φ))) ≤ ε+
λ

1− λε =
ε

1− λ.

Hence the closed ball B̄E
(
θ, ε

1−λ

)
of the Banach space E is invariant by the

map Λ. That is

Λ

(
B̄E

(
θ,

ε

1− λ

))
⊂ B̄E

(
θ,

ε

1− λ

)
.

By applying the Banach contraction principle to the self-mapping Λ acting
in the complete subspace B̄E

(
θ, ε

1−λ

)
, we deduce that there exists a unique

element ψ ∈ B̄E
(
θ, ε

1−λ

)
such that ψ = Λ(ψ). Thus, ψ is a solution of the

integral equation (2.1) which satisfies

d∞(θ, ψ) ≤ ε

1− λ.

That is

‖θ(t)− ψ(t)‖ ≤ 1

1− λε = c ε, ∀t ∈ [0, T ],

where c := 1
1−λ , which shows that the integral equation (2.1) is stable in the

sense of Ulam–Hyers and completes the proof. �



34 Mohamed Akkouchi, Abdellah Bounabat, M.H. Lalaoui Rhali

4. Ulam–Hyers–Rassias stability of equation (2.1)
on a finite interval

In this section, we study the Ulam–Hyers–Rassias stability of equation
(2.1) on a finite interval. Our second main result reads as follows.

Theorem 4.1. Let (X, ‖·‖) be a (real) Banach space and let (S(t))t≥0 be a
C0-semigroup on X. Let M ≥ 1, w ≥ 0 be constants such that ‖S(t)‖ ≤Meωt

for all t ≥ 0. Let ψ0 ∈ X be fixed and let T > 0 be a given positive number.
Let G : [0, T ]→ (0,∞) be a continuous function.

Suppose that a continuous function f : [0, T ]→ X satisfies

(4.1)

∥∥∥∥f(t)− S(t)ψ0 −
∫ t

0

u(s)S(t− s)F (s, f(s))ds

∥∥∥∥ ≤ G(t), ∀t ∈ [0, T ].

Suppose that there exists a positive constant D such that

(4.2) l(s)|u(s)|eω(T−s) ≤ D, for almost all s ∈ [0, T ].

Then there exist a constant cG > 0 and a unique continuous function
v : [0, T ]→ X such that

(4.3) v(t) = S(t)ψ0 +

∫ t

0

u(s)S(t− s)F (s, v(s))ds, ∀t ∈ [0, T ],

and

(4.4) ‖f(t)− v(t)‖ ≤ cG G(t), ∀t ∈ [0, T ].

Proof. We recall that E is the set of all continuous functions from [0, T ]
to X. Let K > 0 be such that

(4.5) MKD < 1.

We choose a continuous function φ : [0, T ]→ (0,∞) such that

(4.6)

∫ t

0

φ(s)ds ≤ K φ(t), ∀t ∈ [0, T ].

Such functions exist.
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Let f and G satisfy the inequality (4.1). Let αG and βG be two positive
numbers such that

(4.7) αGφ(t) ≤ G(t) ≤ βGφ(t), ∀t ∈ [0, T ].

For all h, g ∈ E , we set

dφ(h, g) := inf{C ∈ [0,∞) : ‖h(t)− g(t)‖ ≤ Cφ(t), ∀t ∈ [0, T ]}.

It is easy to see that (E , dφ) is a metric space and that (E , dφ) is complete.
Now, consider the operator Λ: E → E defined by

(Λh)(t) := S(t)ψ0 +

∫ t

0

u(s)S(t− s)F (s, h(s))ds, ∀t ∈ [0, T ].

We prove that Λ is strictly contractive on the metric space (E , dφ). Indeed,
let h, g ∈ E and let C(h, g) ∈ [0,∞) be an arbitrary constant such that
‖h(t)− g(t)‖ ≤ C(h, g)φ(t), ∀t ∈ [0, T ]. Then, by using (1.5), (4.2) and (4.6),
we have the following inequalities:

‖(Λh)(t)− (Λg)(t)‖ =

∥∥∥∥
∫ t

0

u(s)S(t− s)(F (s, h(s))− F (s, g(s)))ds

∥∥∥∥

≤
∫ t

0

|u(s)|‖S(t− s)‖‖F (s, h(s))− F (s, g(s))‖ds

≤
∫ t

0

|u(s)|Meω(t−s)l(s)‖h(s)− g(s)‖ds

≤MC(f, g)

∫ t

0

l(s)|u(s)|φ(s)eω(t−s)ds

≤MC(f, g)

∫ t

0

l(s)|u(s)|φ(s)eω(T−s)ds

≤MC(f, g)D

∫ t

0

φ(s)ds

≤ C(f, g)MDKφ(t), for all t ∈ [0, T ].

Therefore, we have dφ(Λ(h),Λ(g)) ≤ MDKC(h, g), from which we deduce
that

dφ(Λ(h),Λ(g)) ≤MDKdφ(h, g).
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Since MDK < 1, it follows that Λ is strictly contractive on the met-
ric space (E , dφ). By the Banach fixed point principle, there exits a unique
function (say) v in E such that v = Λ(v).

By the triangle inequality, we have

dφ(f, v) ≤ dφ(f,Λ(f)) + dφ(Λ(f),Λ(v))) ≤ βG +MDKdφ(f, v),

which implies that

dφ(f, v) ≤ βG
1−MDK

,

from which, we deduce the following inequality

‖f(t)− v(t)‖ ≤ βG
1−MDK

φ(t)(4.8)

≤ βG
1−MDK

G(t)

αG
≤ cGG(t), ∀t ∈ [0, T ],

where

cG :=
βG

(1−MDK)αG
,

which is the desired inequality (4.4). �

The remainder of this section is devoted to some comments concerning
connections between Theorem 3.1 and Theorem 4.1.

We start with the following immediate consequence of Theorem 4.1 which
is a variant of Theorem 3.1.

Corollary 4.1. Let (X, ‖ · ‖) be a (real) Banach space and let (S(t))t≥0
be a C0-semigroup on X. Let M ≥ 1, w ≥ 0 be constants such that ‖S(t)‖ ≤
Meωt for all t ≥ 0. We suppose that there exists a positive constant D such
that

(4.9) l(s)|u(s)|eω(T−s) ≤ D, for almost all s ∈ [0, T ].

Then the integral equation (2.1) is stable in the sense of Ulam–Hyers.

This corollary is obtained from Theorem 4.1 by setting G(t) = ε, for all
t ∈ [0, T ].
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Remark 4.1. Suppose that (4.9) is satisfied, then we have

λ := M

∫ T

0

l(s)|u(s)|eω(T−s) ds ≤MTD.

If MTD < 1, then we can apply Theorem 3.1 to deduce a particular case of
Theorem 4.1.

Remark 4.2. (i) Theorem 4.1 is based on the boundedness of the function
s 7→ l(s)|u(s)|eω(T−s) on the interval [0, T ] while Theorem 3.1 is based on its
Lebesgue-integrability on [0, T ].

(ii) It turns out that from Theorem 3.1, we can derive the following variant
of Theorem 4.1.

Theorem 4.2. Let (X, ‖·‖) be a (real) Banach space and let (S(t))t≥0 be a
C0-semigroup on X. Let M ≥ 1, w ≥ 0 be constants such that ‖S(t)‖ ≤Meωt

for all t ≥ 0. Let ψ0 ∈ X be fixed and let T > 0 be a given positive number.
Let G : [0, T ]→ (0,∞) be a continuous function.

Suppose that a continuous function f : [0, T ]→ X satisfies

(4.10)

∥∥∥∥f(t)− S(t)ψ0 −
∫ t

0

u(s)S(t− s)F (s, f(s))ds

∥∥∥∥ ≤ G(t), ∀t ∈ [0, T ].

Suppose that

(4.11) λ := M

∫ T

0

l(s)|u(s)|eω(T−s) ds < 1.

Then there exist a constant cG > 0 and a unique continuous function
v : [0, T ]→ X such that

(4.12) v(t) = S(t)ψ0 +

∫ t

0

u(s)S(t− s)F (s, v(s))ds, ∀t ∈ [0, T ],

and

(4.13) ‖f(t)− v(t)‖ ≤ cG G(t), ∀t ∈ [0, T ].
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Proof. We set α := inf G([0, T ]) and ε := supG([0, T ]). We have

(4.14) 0 < α ≤ G(t) ≤ ε, ∀t ∈ [0, T ].

If (4.11) is assumed and if f ∈ C([0, T ], X) satisfies (4.10), then from Theorem
3.1, it follows that there exist a unique continuous function v : [0, T ]→ X such
that (Λv)(t) = v(t) for all t ∈ [0, T ] (i.e., (4.12) holds true) and satisfying

(4.15) ‖f(t)− v(t)‖ ≤ ε

1− λ, ∀t ∈ [0, T ].

From (4.15), we obtain the following inequality

(4.16) ‖f(t)− v(t)‖ ≤ cGG(t), ∀t ∈ [0, T ],

where cG :=
ε

(1− λ)α
. This completes the proof. �

5. Ulam–Hyers stability of equation (2.1) on [0,+∞)

We keep the notations and assumptions of subsection 1.3. The aim of this
section is to investigate conditions ensuring the stability of equation (2.1) on
[0,+∞) in the sense of Definition 2.1. The main result of this section is as
follows.

Theorem 5.1. Let (X, ‖ · ‖) be a (real) Banach space and let (S(t))t≥0 be
a C0-semigroup on X. Let ψ0 ∈ X be fixed and let ε > 0 be a given positive
number. Suppose that a continuous function f : [0,+∞)→ X satisfies

(5.1)

∥∥∥∥f(t)− S(t)ψ0 −
∫ t

0

u(s)S(t− s)F (s, f(s))ds

∥∥∥∥ ≤ ε, ∀t ∈ [0,+∞).

Suppose that

(5.2) λ∞ = sup
t≥0

∫ t

0

l(s)|u(s)| ‖S(t− s)‖ ds < 1.

Then there exists a unique continuous function v : [0,+∞)→ X such that

(5.3) v(t) = S(t)ψ0 +

∫ t

0

u(s)S(t− s)F (s, v(s))ds, ∀t ∈ [0,+∞)
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and

(5.4) ‖f(t)− v(t)‖ ≤ ε

1− λ∞
∀t ∈ [0,+∞).

Proof. Suppose that λ∞ < 1. Let ε > 0 be given. Let f ∈ C([0,+∞), X)
satisfy the inequality (5.1). We consider the set Ef defined by

Ef := {g ∈ C([0,+∞), X) : sup
t≥0
‖g(t)− f(t)‖ < +∞}

The set Ef is not empty, because it contains f and Λ(f). For any arbitrary
functions h, g ∈ Ef , we set

d∞(h, g) := sup
t≥0
‖h(t)− g(t)‖ .

Then d∞ is a distance and the metric space (Ef , d∞) is complete.
For any functions h, g ∈ Ef , we have the following inequalities:

‖(Λh)(t)− (Λg)(t)‖ =

∥∥∥∥
∫ t

0

u(s)S(t− s)(F (s, h(s))− F (s, g(s)))ds

∥∥∥∥

≤
∫ t

0

|u(s)|‖S(t− s)‖‖F (s, h(s))− F (s, g(s))‖ds

≤
∫ t

0

|u(s)|‖S(t− s)‖l(s)‖h(s)− g(s)‖ds

≤
[∫ t

0

l(s)|u(s)|‖S(t− s)‖ ds
]
d∞(h, g)

≤ λ∞d∞(h, g),

for all t ∈ [0,+∞). Therefore, we have

d∞(Λ(h),Λ(g)) ≤ λ∞d∞(h, g).

Moreover, it is easy to show that Λ(h) ∈ Ef for any function h ∈ Ef . So, Λ is
a contraction of the complete metric space (Ef , d∞). By applying the Banach
contraction principle, we deduce that there exists a unique element v ∈ Ef
such that v = Λ(v). By the triangle inequality, we have

d∞(f, v) ≤ d∞(f,Λ(f)) + d∞(Λ(f),Λ(v))) ≤ ε+ λ∞d∞(f, v),
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from which, we deduce the following inequality

d∞(f, v) ≤ ε

1− λ∞
.

That is

(5.5) ‖f(t)− v(t)‖ ≤ 1

1− λ∞
ε = c ε, ∀t ∈ [0,+∞),

where c := 1
1−λ∞

. The inequality (5.5) shows that the integral equation (2.1)
is stable in the sense of Definition 2.1. This ends the proof. �

6. Ulam–Hyers–Rassias stability of equation (2.1) on [0,∞)

The purpose of this section is to study the Ulam–Hyers–Rassias stability
of equation (2.1) on [0,∞). The main result of this section reads as follows.

Theorem 6.1. Let X be a (real) Banach space and let (S(t))t≥0 be a
C0-semigroup on X. Let ψ0 ∈ X be fixed. Let K > 0 be given and let
φ : [0,∞)→ (0,∞) be a continuous function such that

(6.1)

∫ t

0

φ(s)ds ≤ K φ(t), ∀t ∈ [0,∞).

Suppose that a continuous function f : [0,∞)→ X satisfies

(6.2)
∥∥∥f(t)− S(t)ψ0 −

∫ t

0

u(s)S(t− s)F (s, f(s))ds
∥∥∥ ≤ φ(t), ∀t ∈ [0,+∞).

Suppose that there exists a positive constant D > 0 such that

(6.3) l(s)|u(s)| ‖S(t− s)‖ ≤ D,

for almost all (s, t) ∈ [0,∞) with 0 ≤ s ≤ t and suppose that

(6.4) KD < 1.
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Then there exists a unique continuous function v : [0,∞)→ X such that

(6.5) v(t) = S(t)ψ0 +

∫ t

0

u(s)S(t− s)F (s, v(s))ds, ∀t ∈ [0,∞),

and

(6.6) ‖f(t)− v(t)‖ ≤ 1

1−KD φ(t), ∀t ∈ [0,∞).

Proof. We recall that E is the set of all continuous functions from [0,∞)
to X. Let f ∈ C([0,+∞)) satisfy the inequality (6.2). We consider the set Ef
defined by

Ef := {g ∈ C([0,+∞), X) : ∃C ≥ 0 ‖g(t)− f(t)‖ ≤ Cφ(t), ∀t ∈ [0,+∞)}.

The set Ef is not empty, because it contains f and Λ(f).
For any arbitrary functions h, g ∈ Ef , we set

dφ(h, g) := inf{C ∈ [0,∞) : ‖h(t)− g(t)‖ ≤ Cφ(t), ∀t ∈ [0,∞)}.

It is easy to see that (E , dφ) is a complete metric space satisfying Λ(Ef ) ⊂ Ef ,
where Λ: Ef → Ef is defined by

(Λh)(t) := S(t)ψ0 +

∫ t

0

u(s)S(t− s)F (s, h(s))ds, ∀t ∈ [0,∞).

We prove that Λ is strictly contractive on the metric space (Ef , dφ). Indeed,
let h, g ∈ Ef and let C(h, g) ∈ [0,∞) be an arbitrary constant such that
‖h(t)− g(t)‖ ≤ C(h, g)φ(t), ∀t ∈ [0,+∞). Observe that we have the following
inequalities:

‖(Λh)(t)− (Λg)(t)‖ =

∥∥∥∥
∫ t

0

u(s)S(t− s)(F (s, h(s))− F (s, g(s)))ds

∥∥∥∥

≤
∫ t

0

|u(s)|‖S(t− s)‖‖F (s, h(s))− F (s, g(s))‖ds

≤
∫ t

0

|u(s)|‖S(t− s)‖l(s)‖h(s)− g(s)‖ds

≤ C(h, g)

∫ t

0

l(s)|u(s)|‖S(t− s)‖φ(s)ds.
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Then, by using (6.3) and (6.1), we obtain

‖(Λh)(t)− (Λg)(t)‖ ≤ C(h, g)

∫ t

0

l(s)|u(s)|‖S(t− s)‖φ(s)ds

≤ C(h, g)D

∫ t

0

φ(s)ds

≤ C(h, g)DKφ(t), for all t ∈ [0,∞).

Therefore, we have dφ(Λ(h),Λ(g)) ≤ DKC(h, g), from which we deduce that

dφ(Λ(h),Λ(g)) ≤ DKdφ(h, g).

By assumption (6.4), DK < 1. Hence, the self-mapping Λ is strictly contrac-
tive on the metric space (Ef , dφ).

By the Banach fixed point principle, there exits a unique function (say) v
in Ef such that v = Λ(v). By the triangle inequality, we have

dφ(f, v) ≤ dφ(f,Λ(f)) + dφ(Λ(f),Λ(v))) ≤ 1 +DKdφ(f, v),

which implies that

dφ(f, v) ≤ 1

1−DK ,

from which, we deduce the following inequality

(6.7) ‖f(t)− v(t)‖ ≤ 1

1−DKφ(t) = cφ φ(t) ∀t ∈ [0,∞),

where

cφ :=
1

1−DK .

(6.7) is the desired inequality. This completes the proof. �
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