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THE GENERALIZED INFIMAL CONVOLUTION CAN BE
USED TO NATURALLY PROVE SOME DOMINATED
MONOTONE ADDITIVE EXTENSION THEOREMS

Tamás Glavosits, Árpád Száz

Abstract. By using a particular case of the generalized infimal convolution,
we provide an instructive proof for a particular case of a dominated monotone
additive extension theorem of Benno Fuchssteiner.

Introduction

In [15], by using a particular case of the infimal convolution [29]

h(x) = (f ∗ g)(x) = inf
{
f(u) + g(v) : (u, v) ∈ Df×Dg : x = u+ v

}
,

we have naturally proved the following classical Hahn–Banach theorem [7].

Theorem 1. If p is a positively homogeneous subadditive function of a real
vector space X to R and ϕ is linear function of a subspace V of X to R such
that ϕ is dominated by p, then there exists a linear function f of X to R that
extends ϕ and is dominated by p.
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Now, by using a particular case of the generalized infimal convolution [32]

h(x) = (f ∗ g)(x) = inf
{
f(u) + g(v) : (u, v) ∈ Df×Dg : x ≤ u+ v

}

and its homogenization

h∗(x) = inf
n∈N

n−1h(nx),

we shall naturally prove the following particular case of a dominated monotone
additive extension theorem of Fuchssteiner [10].

Theorem 2. If p is an increasing subadditive function of a commutative
preordered group X to R and ϕ is and additive function of a subgroup V of X
to R such that ϕ is dominated by p, then there exists an increasing additive
function f of X to R that extends ϕ and is dominated by p.

This theorem can be used to easily prove the following straightforward
generalization of a weakening of a monotone linear extension theorem of
Bauer, Bonsall and Namioka. (See [19, p. 24].)

Theorem 3. If ϕ is an increasing additive function of a cofinal subgroup
V of a commutative preordered group X to R, then there exists an increasing
additive function f of X to R that extends ϕ.

A detailed examination of an example of Jameson [19, p. 25] will show
that even a strictly increasing linear function of a non-cofinal subspace of
a two dimensional partially ordered vector space need not have an increasing
additive extension to the whole space.

1. Hahn–Banach extensions and the infimal convolution

Notation 1.1. Suppose that X is a commutative preordered group and
p is an increasing subadditive function of X to R such that p(0) = 0.

Moreover, assume that V is a subgroup of X and ϕ is an additive function
of V to R such that ϕ is dominated by p in the sense that ϕ(v) ≤ p(v) for all
v ∈ V .

Remark 1.2. Note that thus the inequality relation in X is only assumed
to be reflexive and transitive. Moreover, to guarantee the compatibility of the
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addition and inequality in X, it is enough to assume only that x ≤ y implies
x+ z ≤ y + z for all z ∈ X.

In this respect it also worth noticing that, by the assumed subadditivity
and real-valuedness of p, we necessarily have p(0) = p(0 + 0) ≤ p(0) + p(0),
and thus 0 ≤ p(0). Therefore, to guarantee the equality p(0) = 0, it is enough
to assume only that p(0) ≤ 0.

Remark 1.3. Note that if x ∈ X such that x ≤ 0, then p(x) ≤ p(0) = 0.
Therefore, if in particular p is nonnegative, then we necessarily have p(x) = 0.

Quite similarly, we can note that if 0 ≤ x, and thus −x ≤ 0, then 0 =
p(0) ≤ p(x) and p(−x) ≤ p(0) = 0. Therefore, if in particular p is even, then
we necessarily have p(x) = 0.

This shows that the increasingness of p is, in general, a rather restrictive
property. However, note that the equality relation onX is always a compatible
partial order relation on X for which p is increasing.

Moreover, if following [28, Definition 1.9] of S. Simons, for any x, y ∈ X,
we define x 4 y if p(x − y) ≤ 0, then 4 is the largest compatible preorder
relation on X for which p is still increasing.

In connection with our former assumptions on p and ϕ, we can also easily
establish the following counterparts of [2, Lemma 1.7 and Corollary 1.8] of
B. Anger and J. Lembcke.

Theorem 1.4. If σ is a subadditive function of X to R, then the following
assertions are equivalent:
(1) σ is increasing and σ(x) ≤ 0;
(2) σ(x) ≤ 0 for all x ∈ X with x ≤ 0;
(3) σ ≤ ρ for some increasing function ρ of X to R with ρ(0) ≤ 0.

Proof. If (1) holds, then (3) trivially holds with ρ = σ. While, if (3)
holds and x ∈ X such that x ≤ 0, then we can at once see that σ(x) ≤ ρ(x) ≤
ρ(0) ≤ 0. Therefore, (2) also holds.

Now, it remains to show only that (2) also implies (1). For this, note that
if x, y ∈ X such that x ≤ y, then x− y ≤ 0. Hence, if (2) holds, we can infer
that σ(x− y) ≤ 0. Now, by the subadditivity of σ, it is clear that

σ(x) = σ(x− y + y) ≤ σ(x− y) + σ(y) ≤ 0 + σ(y) = σ(y).

Therefore, σ is increasing. Moreover, if (2) holds, then because of 0 ≤ 0 we
also have σ(0) ≤ 0. Therefore, (1) also holds. �

From our former assumptions on p and ϕ, by using this theorem, we can
immediately derive
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Corollary 1.5. ϕ is increasing.

Proof. Note that Theorem 1.4 can be applied by taking V in place of X,
ϕ in place of σ and p|V in place of ρ. �

Definition 1.6. If U is a subgroup of X such that V ⊂ U , then an
additive function ψ of U to R, that extends ϕ and is dominated by p, will be
called a Hahn–Banach extension of ϕ to U .

Remark 1.7. In the sequel, we shall actually be interested in the Hahn–
Banach extensions f of ϕ to the whole of X. However, to prove the existence
of total Hahn–Banach extensions, we shall need that of some partial ones.

Definition 1.8. For any x ∈ X, we define

Γ(x) =
{

(u, v) ∈ X×V : x ≤ u+ v
}
.

Remark 1.9. Thus, X is the domain of Γ. Namely, if x ∈ X, then because
of x ≤ x = x + 0 and 0 ∈ V , we have (x, 0) ∈ Γ(x). Thus, in particular
Γ(x) 6= ∅.

Moreover, it is also worth noticing that Γ is decreasing, N-superhomoge-
neous and superadditive in the sense that Γ(y) ⊂ Γ(x) for all x, y ∈ X with
x ≤ y,

nΓ(x) ⊂ Γ(nx) and Γ(x) + Γ(y) ⊂ Γ(x+ y)

for all n ∈ N and x, y ∈ X. Note that the N-superhomogeneity is a conse-
quence of the superadditivity.

Definition 1.10. For any x ∈ X, we define

q(x) = (p ∗ ϕ)(x) = inf
{
p(u) + ϕ(v) : (u, v) ∈ Γ(x)

}
.

Remark 1.11. Note that if x ∈ X, then because of Γ(x) 6= ∅, we have
q(x) 6= +∞. In the next section, we shall show that q(x) 6= −∞ also holds.

The function q is a generalized infimal convolution of p and ϕ such that

q(x) = inf
{
p(u) + ϕ(v) : (u, v) ∈ X×V : x ≤ u+ v

}

≤ inf
{
p(u) + ϕ(v) : (u, v) ∈ X×V : x = u+ v

}

= inf
v∈V

(
p(x− v) + ϕ(v)

)

for all x ∈ X.
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For the origins, generalizations and applications of the infimal convolution,
see [21, 29, 15, 32] and the references therein.

Definition 1.12. For any function ρ of X to R and x ∈ X, we define

ρ̌(x) = ρ(−x) and ρ̂(x) = −ρ(−x).

Remark 1.13. Clearly, ρ is even if and only if ρ = ρ̌, and ρ is odd if and
only if ρ = ρ̂. Thus, in particular we have ϕ = ϕ̂.

Moreover, the mapping ρ 7→ ρ̌ is increasing and the mapping ρ 7→ ρ̂ is
decreasing. Furthermore, we have ρ̂ = −ρ̌, and ˇ̌ρ = ρ and ˆ̂ρ = ρ.

Now, the close relationship that exists between the Hahn–Banach exten-
sions and the infimal convolution can be nicely clarified by the following

Theorem 1.14. If U is a subgroup of X such that V ⊂ U , and ψ is a
Hahn–Banach extension of ϕ to U , then ψ is increasing and for any u ∈ U
we have

q̂(u) ≤ ψ(u) ≤ q(u).

Proof. By Corollary 1.5, it is clear that ψ is also increasing. Moreover,
if u ∈ U and (s, t) ∈ Γ(u), then we can note that s ∈ X and t ∈ V such that
u ≤ s+ t. Hence, we can infer u− t ≤ s, and thus p(u− t) ≤ p(s). Moreover,
since u− t ∈ U − V ⊂ U − U ⊂ U , we can also easily see that

ψ(u) = ψ(u− t+ t) = ψ(u− t) + ψ(t) ≤ p(u− t) + ϕ(t) ≤ p(s) + ϕ(t).

Therefore,

ψ(u) ≤ inf
{
p(s) + ϕ(t) : (s, t) ∈ Γ(u)

}
= q(u).

Thus, we have proved that ψ ≤ q. Hence, by using Remark 1.13, we can
already see that q̂(u) ≤ ψ̂(u) = ψ(u) also holds. �

Remark 1.15. In the next section, we shall show that q ≤ p and q is
also increasing and subadditive. Therefore, q is, in general, a better control
function for ψ than p.

Now, as an immediate consequence of Theorem 1.14, we can also state

Corollary 1.16. If ψ is as in Theorem 1.14 and q is odd on U , then q
is an extension of ψ.



72 Tamás Glavosits, Árpád Száz

Proof. In this case, for any u ∈ U , we have q̂(u) = q(u). Therefore, by
Theorem 1.14, we also have ψ(u) = q(u), and thus the required assertion also
holds. �

Hence, it is clear that in particular we also have

Corollary 1.17. If U is a subgroup of X such that V ⊂ U and q is odd
on U , then there exists at most one Hahn–Banach extension ψ of ϕ to U .

Definition 1.18. For any function ρ of X to R and x ∈ X, we define

ρ̄(x) = max
{
ρ(x), ρ̌(x)

}
.

Remark 1.19. Note that thus ρ̄ is just the smallest even function of X to
R such that ρ ≤ ρ̄. Therefore, ρ is even if and only if ρ = ρ̄.

Moreover, it is also worth noticing that the mapping ρ 7→ ρ̄ is an algebraic
closure on the partially ordered set RX of all functions of X to R.

Now, from Theorem 1.14, we can also immediately derive the following

Theorem 1.20. If ψ is as in Theorem 1.14, then |ψ| is dominated by q̄.

Proof. If u ∈ U , then by using Theorem 1.14, we can see that

ψ(u) ≤ q(u) ≤ max
{
q(u), q̌(u)

}
= q̄(u)

and

−ψ(u) ≤ −q̂(u) = q̌(u) ≤ max
{
q(u), q̌(u)

}
= q̄(u).

Therefore,

|ψ|(u) = |ψ(u)| ≤ q̄(u),

and thus the required assertion is also true. �

Hence, it is clear that in particular we also have

Corollary 1.21. If ψ is as in Theorem 1.14 and q is even on U , then
|ψ| is also dominated by q.
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2. Further inequalities for the function q

Theorem 2.1. q ≤ p.

Proof. If x ∈ X, then by Remark 1.9 we have (x, 0) ∈ Γ(x). Hence, it is
clear that

q(x) = inf
{
p(u) + ϕ(v) : (u, v) ∈ Γ(x)

}
≤ p(x) + ϕ(0) = p(x).

Therefore, the required equality is also true. �

Theorem 2.2. q(0) = 0.

Proof. By Theorem 2.1, we have q(0) ≤ p(0) = 0. Moreover, from the
ϕ = ψ particular case of Theorem 1.14, we can see that 0 = ϕ(0) ≤ q(0).
Therefore, the required equality is also true. �

Theorem 2.3. q is increasing.

Proof. If x, y ∈ X such that x ≤ y, then by Remark 1.9 we have Γ(y) ⊂
Γ(x). Therefore, if (u, v) ∈ Γ(y), then we also have (u, v) ∈ Γ(x). Hence, it is
clear that

q(x) = inf
{
p(s) + ϕ(t) : (s, t) ∈ Γ(x)

}
≤ p(u) + ϕ(v),

and thus

q(x) ≤ inf
{
p(u) + ϕ(v) : (u, v) ∈ Γ(y)

}
= q(y).

Therefore, the required assertion is true. �

The increasingness of q can also be derived from Theorem 1.4, by using
Theorem 2.1 and the following

Theorem 2.4. q is subadditive.

Proof. If x, y ∈ X, then

q(x) = inf
{
p(u) + ϕ(v) : (u, v) ∈ Γ(x)

}

and

q(y) = inf
{
p(s) + ϕ(t) : (s, t) ∈ Γ(y)

}
.
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Therefore, for any α, β ∈ R, with

q(x) < α and q(y) < β,

there exist (u, v) ∈ Γ(x) and (s, t) ∈ Γ(y) such that

p(u) + ϕ(v) < α and p(s) + ϕ(t) < β.

Now, by using Remark 1.9, we can see that

(u+ s, v + t) = (u, v) + (s, t) ∈ Γ(x) + Γ(y) ⊂ Γ(x+ y).

Therefore,

q(x+ y) = inf
{
p(τ) + ϕ(ω) : (τ, ω) ∈ Γ(x+ y)

}

≤ p(u+ s) + ϕ(v + t) ≤ p(u) + p(s) + ϕ(v) + ϕ(t) < α+ β

Hence, by letting α and β tend to q(x) and q(y), respectively, we can already
infer that

q(x+ y) ≤ q(x) + β, and thus q(x+ y) ≤ q(x) + q(y). �

Theorem 2.5. q is real-valued.

Proof. If x ∈ X, then from Remark 1.11 we know q(x) 6= +∞. Moreover,
by using Theorems 2.2 and 2.4, we can see that

0 = q(0) = q(x− x) ≤ q(x) + q(−x).

Hence, it is clear that q(x) 6= −∞ also holds. Namely, if q(x) = −∞ were
true, then because of the above inequality and q(−x) 6= +∞, we would have
0 ≤ −∞. �

Theorem 2.6. q̂ ≤ q.

Proof. Now, if x ∈ X, then from the inequality 0 ≤ q(x) + q(−x), we
can also infer that q̂(x) = −q(−x) ≤ q(x). Therefore, q̂ ≤ q also holds. �

Remark 2.7. Note that for a function ρ of X to R we have ρ̂ ≤ ρ if and
only if ρ is superodd in the sense that −ρ(x) ≤ ρ(−x) for all x ∈ X.
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Theorem 2.8. For any n ∈ N and x ∈ X, we have

nq̂(x) ≤ q(nx) ≤ nq(x).

Proof. If x ∈ X and n ∈ N such that q(nx) ≤ nq(x), then by Theorem
2.4 we also have

q
(
(n+ 1)x

)
= q(nx+ x) ≤ q(nx) + q(x) ≤ nq(x) + q(x) = (n+ 1)q(x).

Therefore, the second part of the required assertion is true.
Hence, by using Theorem 2.6 and Remark 2.7, we can already infer that

−q(nx) ≤ q(−nx) = q
(
n(−x)

)
≤ nq(−x),

and thus

nq̂(x) = −nq(−x) ≤ q(nx)

for all n ∈ N and x ∈ X. Therefore, the first part of the required assertion is
also true. �

Now, as a useful consequence of Theorems 2.8, 2.2 and 2.5, we can also
state

Theorem 2.9. For any x ∈ X and k ∈ Z, with k ≤ 0, we have

kq(x) ≤ q(kx) ≤ kq̂(x).

Proof. Note that if k < 0, then by writing −k in place n and −x in place
of x in Theorem 2.8 we get

kq(x) = −kq̂(−x) ≤ q(kx) ≤ −kq(−x) = kq̂(x).

Moreover, by Theorem 2.2 and 2.5, we also have

q(0x) = q(0) = 0 = 0q(x) = 0q̂(x). �

Finally, we note that now, in addition to Theorem 2.1, we can also state

Theorem 2.10. p̂ ≤ q.

Proof. By Theorem 2.1 we have q ≤ p. Hence, by using Remark 1.13, we
can infer that p̂ ≤ q̂. Moreover, by Theorem 2.6, we have q̂ ≤ q. Therefore,
p̂ ≤ q also holds. �
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Now, as an immediate consequence of Theorems 2.1 and 2.10, we can also
state

Corollary 2.11. If p is odd, then q = p.

Moreover, analogously to Theorem 1.20, we can also prove the following

Theorem 2.12. |q| ≤ p̄.

Hence, by Remark 1.19, it is clear that in particular we also have

Corollary 2.13. If p is even, then |q| ≤ p.

Moreover, from Theorems 2.1 and 2.10, we can also immediately derive

Theorem 2.14. p̂ ≤ q̂ ≤ p.

Proof. By Theorem 2.1 and 2.10, we have q ≤ p and p̂ ≤ q. Hence, by
using Remark 1.13, we can infer that p̂ ≤ q̂ and q̂ ≤ ˆ̂p = p. �

3. Further additivity and homogeneity properties of q

In addition to Theorem 2.4, we can also easily prove the following

Theorem 3.1. For any x ∈ X and v ∈ V , we have

q(x+ v) = q(x) + ϕ(v).

Proof. If (s, t) ∈ Γ(x+ v), then s ∈ X and t ∈ V such that x+ v ≤ s+ t.
Hence, we can infer that t−v ∈ V and x ≤ s+t−v. Therefore, (s, t−v) ∈ Γ(x),
and thus

q(x) = inf
{
p(τ) + ϕ(ω) : (τ, ω) ∈ Γ(x)

}

≤ p(s) + ϕ(t− v) = p(s) + ϕ(t)− ϕ(v).

Hence, we can infer that

q(x) + ϕ(v) ≤ p(s) + ϕ(t),
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and thus

q(x) + ϕ(v) ≤ inf
{
p(s) + ϕ(t) : (s, t) ∈ Γ(x+ v)

}
= q(x+ v).

Now, we can easily see that

q(x+ v) = q(x+ v) + ϕ(0) = q(x+ v) + ϕ(−v) + ϕ(v) ≤ q(x) + ϕ(v),

and thus the required equality also holds. �

From this theorem, by using Theorem 2.2, we can immediately derive

Corollary 3.2. q is an extension of ϕ.

Proof. By Theorems 3.1 and 2.2, for any v ∈ V , we have

q(v) = q(0) + ϕ(v) = ϕ(v).

Therefore, the required assertion is true. �

Hence, it is clear that in particular we also have

Corollary 3.3. For any x ∈ X and v ∈ V , we have

q(x+ v) = q(x) + q(v).

In view of Theorem 2.8, we may naturally introduce the following

Definition 3.4. For any function ρ of X to R, and n ∈ N and x ∈ X, we
define

ρn(x) = n−1ρ(nx).

Remark 3.5. Note that thus ρ is n-homogeneous if and only if ρ = ρn.
Moreover, for each n ∈ N, the mapping ρ 7→ ρn has several useful properties.

For instance, we can easily see that this mapping is increasing, ρ̂n = ρ̂n,
and ρnm = (ρn)m for all n,m ∈ Z.

Theorem 3.6. If n,m ∈ N such that n divides m, then qm ≤ qn.
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Proof. In this case, we have m = kn for some k ∈ N. Hence, by Theorem
2.8, we can see that

qm(x) = m−1q(mx) = (kn)−1q(knx) ≤ (kn)−1kq(nx) = n−1q(nx) = qn(x)

for all x ∈ X. Therefore, the required inequality is also true. �

Corollary 3.7. If (kn)∞n=1 is a sequence in N such that kn divides kn+1

for all n ∈ N, then
(
qkn

)∞
n=1

is a decreasing sequence in RX .

Remark 3.8. Important particular cases are when either kn = 2n for all
n ∈ N or kn = n! for all n ∈ N.

Definition 3.9. For any function ρ of X to R and x ∈ X, we define

ρ∗(x) = inf
n∈N

ρn(x) and ρ#(x) = sup
n∈N

ρn(x).

Remark 3.10. Note that thus ρ∗ ≤ ρ1 = ρ. Moreover, if σ is an N-super-
homogeneous function of X to R such that σ ≤ ρ, then for any n ∈ N and
x ∈ X, we have

σ(x) = n−1nσ(x) ≤ n−1σ(nx) ≤ n−1ρ(nx) = ρn(x),

Hence, we can infer that

σ(x) ≤ inf
n∈N

ρn(x) = ρ∗(x),

and thus σ ≤ ρ∗ also holds.
Moreover, from the proof of the forthcoming Theorem 4.3, we can see that

ρ∗ is always N-superhomogeneous. Therefore, if ρ∗ is real-valued, then ρ∗ is
the largest N-superhomogeneous function of X to R such that ρ∗ ≤ ρ.

However, it is now more important to note that, by using Theorem 2.8,
we can easily prove the following

Theorem 3.11. q̂ ≤ q∗ ≤ q# ≤ q.

Proof. By Theorem 2.8, for any n ∈ N and x ∈ X, we have

q̂(x) ≤ n−1q(nx) = qn(x) and qn(x) = n−1q(nx) ≤ q(x).
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Hence, we can already infer that

q̂(x) ≤ inf
n∈N

qn(x) = q∗(x) and q#(x) = sup
n∈N

qn(x) ≤ q(x).

Therefore, the required equalities are also true. �

Now, as an immediate consequence of Theorems 3.11, 2.2 and 2.5, we can
also state

Corollary 3.12. q∗ and q# are real-valued and q∗(0) = 0 and q#(0) = 0.

Moreover, from Theorem 3.11, by Remark 1.13, it is clear that we also
have

Corollary 3.13. If q is odd then q = q∗ = q#.

However, it is now more important to note that from Theorem 1.14 we
can easily derive the following

Theorem 3.14. If U is a subgroup of X containing V , and ψ is a Hahn–
Banach extension of ϕ to U , then for any u ∈ U we have

q̂∗(u) ≤ ψ(u) ≤ q∗(u).

Proof. By Theorem 1.14, for each u ∈ U , we have

q̂(u) ≤ ψ(u) and ψ(u) ≤ q(u).

Hence, by using the N-homogeneity of ψ, we can infer that

q̂n(u) ≤ ψn(u) = ψ(u) and ψ(u) = ψn(u) ≤ qn(u)

for all n ∈ N. Therefore,

q̂#(u) = sup
n∈N

q̂n(u) ≤ ψ(u) and ψ(u) ≤ inf
n∈N

qn(u) = q∗(u).

Moreover, we can note that

q̂#(x) = sup
n∈N

n−1q̂(nx) = sup
n∈N
−n−1q(−nx)

= − inf
n∈N

n−1q
(
n(−x)

)
= −q∗(−x) = q̂∗(x).

for all x ∈ X. Therefore, the required inequalities are also true. �
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Remark 3.15. In the next section, we shall see that q∗ is also increasing
and subadditive. Therefore, q∗ is, in general, a better control function for ψ
than q.

Now, improving Corollaries 1.16 and 1.17, we can also state

Corollary 3.16. If ψ is as in Theorem 3.14 and q∗ is odd on U , then q∗
is an extension of ψ.

Corollary 3.17. If U is a subgroup of X such that V ⊂ U and q∗ is odd
on U , then there exists at most one Hahn–Banach extension ψ of ϕ to U .

Moreover, improving Theorem 1.20 and Corollary 1.21, we can also state

Theorem 3.18. If ψ is as in Theorem 3.14, then |ψ| is dominated by q∗.

Corollary 3.19. If ψ is as in Theorem 3.14 and q∗ is even on U , then
|ψ| is also dominated by q∗.

4. Further important properties of the function q∗

Counterparts of the following basic facts on q∗ are frequently used in con-
nections with subadditive and convex functions.

Theorem 4.1. q∗ is increasing.

Proof. If x, y ∈ X such that x ≤ y, then for each n ∈ N we have nx ≤ ny.
Hence, by Theorem 2.3, it follows that q(nx) ≤ q(ny), and thus

qn(x) = n−1q(nx) ≤ n−1q(ny) = qn(y).

Therefore,

q∗(x) = inf
k∈N

qk(x) ≤ qn(x) ≤ qn(y),

and thus

q∗(x) ≤ inf
n∈N

qn(y) = q∗(y).

This shows that q∗ is increasing. �
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The increasingness of q∗ can also be derived from Theorem 1.4, by using
the inequality q∗ ≤ p and the following

Theorem 4.2. q∗ is subadditive.

Proof. If x, y ∈ X, then we can note that

q∗(x) = inf
n∈N

n−1q(nx) and q∗(y) = inf
m∈N

m−1q(my).

Therefore, for any α, β ∈ R, with

q∗(x) < α and q∗(y) < β,

there exist n,m ∈ N such that

n−1q(nx) < α and m−1q(my) < β.

Now, by using Theorems 2.4 and 2.8, we can see that

q
(
nm(x+ y)

)
≤ q(nmx) + q(nmy) ≤ mq(nx) + nq(my).

and thus

(nm)−1q
(
nm(x+ y)

)
≤ n−1q(nx) +m−1q(my) < α+ β.

Therefore,

q∗(x+ y) = inf
k∈N

k−1
(
k(x+ y)

)
≤ (nm)−1q

(
nm(x+ y)

)
< α+ β

also holds. Hence, by letting α and β tend to q∗(x) and q∗(y), respectively,
we can already infer that

q∗(x+ y) ≤ q?(x) + β, and thus q∗(x+ y) ≤ q∗(x) + q∗(y).

Therefore, q∗ is subadditive. �

Theorem 4.3. q∗ is N-homogeneous.
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Proof. If x ∈ X and n ∈ N, then we can note that

q∗(nx) = inf
m∈N

m−1q(nmx).

Therefore, for each α ∈ R, with q∗(nx) < α, there exists m ∈ N such that

m−1q(nmx) < α, and thus (nm)−1q(nmx) < n−1α.

Hence, we can infer that

q∗(x) = inf
k∈N

k−1q(kx) ≤ (nm)−1q(nmx) < n−1α.

Now, by letting α tend to q∗(x), we can already see that

q∗(x) ≤ n−1q∗(nx) and thus nq∗(x) ≤ q∗(nx).

Moreover, by Theorem 4.2, it is clear that q∗(nx) ≤ nq∗(x) also holds.
Therefore, the corresponding equality is also true, and thus q∗ is N–homo-
geneous. �

Now, as a useful consequence of Theorems 4.2 and 4.3 and Corollary 3.12,
we can also state

Theorem 4.4. For any k ∈ Z and x ∈ X, we have

q̂∗(kx) ≤ kq∗(x) ≤ q∗(kx).

Proof. If x ∈ X, then by Corollary 3.12 we have

0q∗(x) = 0 = q∗(0) = q∗(0x).

Moreover, by Theorem 4.3, we have kq∗(x) = q∗(kx) for all k ∈ Z with k > 0.
Furthermore, from Theorem 4.2, by Corollary 3.12, we can see that q∗

is also superodd. That is, −q∗(x) ≤ q∗(−x) for all x ∈ X. Now, by using
Theorem 4.3, we can see that, for any x ∈ X and k ∈ Z, with k < 0, we have

kq∗(x) = (−k)
(
−q∗(x)

)
≤ (−k)q∗(−x) = q∗

(
(−k)(−x)

)
= q∗(kx).

Therefore, kq∗(x) ≤ q∗(kx) holds for all k ∈ Z and x ∈ X. Hence, by writing
−k in place of k, we can see that −kq∗(x) ≤ q∗(−kx), and thus

q̂∗(kx) = −q∗(−kx) ≤ kq∗(x)

also holds for all k ∈ Z and x ∈ X. �
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Remark 4.5. Now, in addition to Theorem 4.3, we can also state that q∗
is Z-superhomogeneous.

Moreover, by writing −x in place of x in the first statement of Theorem 4.4,
we can see that −q∗(kx) ≤ kq∗(−x) also holds for all k ∈ Z and x ∈ X.

However, it is now more important to note that, by the corresponding
definitions and the equality q̂# = q̂∗, we also have the following

Theorem 4.6. If x ∈ X and y ∈ R such that

q̂∗(x) ≤ y ≤ q∗(x),

then for all n ∈ N, we have

q̂(nx) ≤ ny ≤ q(nx).

Proof. To check the first statement of the theorem, note that by the
proof of Theorem 3.14 we have

sup
n∈N

n−1q̂(nx) = q̂#(x) = q̂∗(x) ≤ y.

Thus, in particular, we also have

n−1q̂(nx) ≤ y, and hence q̂(nx) ≤ ny

for all n ∈ N. �

Now, as a useful consequence of Theorems 4.6 and 2.2, we can also state

Theorem 4.7. If x and y are as in Theorem 4.6, then for all k ∈ Z, we
have

q̂(kx) ≤ ky ≤ q(kx).

Proof. By Theorem 2.2, we have 0y = 0 = q(0) = q(0x). Moreover, by
Theorem 4.6, we also have ky ≤ q(kx) for all k ∈ Z with k > 0.

On the other hand, if k ∈ Z such that k < 0, then by writing −k in place
of n in the first statement of Theorem 4.6 we can see that q̂(−kx) ≤ −ky, and
thus

ky ≤ −q̂(−kx) = q(kx).
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Therefore, we have ky ≤ q(kx) for all k ∈ Z. Hence, by writing −k in place
of k, we can see that −ky ≤ q(−kx), and thus

q̂(kx) = −q(−kx) ≤ ky

also holds for all k ∈ Z. �

Finally, we note that by using Theorem 3.6, we can prove the following

Theorem 4.8. If (kn)∞n=1 is a sequence in N such that for each n ∈ N
there exists m ∈ N such that n divides km, then for any x ∈ X we have

q∗(x) = inf
n∈N

qkn
(x).

Proof. By the corresponding definitions, it is clear that

q∗(x) = inf
n∈N

qn(x) ≤ inf
n∈N

qkn(x).

Moreover, for each α ∈ R, with q∗(x) < α, there exist n ∈ N such that
qn(x) < α. Furthermore, by the hypothesis, there exists m ∈ N such that
n divides km. Hence, by Theorem 3.6, we can see that qkm(x) ≤ qn(x).
Therefore, qkm(x) < α, and thus

inf
n∈N

qkn(x) < α

also holds. Hence, by letting α tend to q∗(x), we can already infer that

inf
n∈N

qkn(x) ≤ q∗(x),

and thus the required equality is also true. �

Corollary 4.9. For any x ∈ X, we have

q∗(x) = lim
n→∞

qn!(x).

Proof. By Theorem 4.8, we have

q∗(x) = inf
n∈N

qn!(x).
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Moreover, by Corollary 3.7, the sequence (qn!(x))∞n=1 is decreasing. Therefore,
we also have

inf
n∈N

qn!(x) = lim
n→∞

qn!(x).

Thus, the required equality is also true. �

Remark 4.10. This corollary allows of an easy derivation of several pro-
perties of q∗ from those of q.

For instance, from Theorem 3.1, by using Corollary 4.9, we can imme-
diately derive the following

Theorem 4.11. For any x ∈ X and v ∈ V , we have

q∗(x+ v) = q∗(x) + ϕ(v).

Hence, by Corollary 3.12, it is clear that in particular we can also state

Corollary 4.12. q∗ is an extension of ϕ.

5. One-step Hahn–Banach extensions of ϕ

Notation 5.1. Suppose that a ∈ X, and define

L =
{
k ∈ Z : ka ∈ V

}

and

U = Za+ V =
{
ka+ v : k ∈ Z, v ∈ V

}
.

Remark 5.2. Then, it can be easily seen that L is an ideal in Z. Moreover,
U is the smallest subgroup of X such that a ∈ U and V ⊂ U .

Theorem 5.3. If L 6= {0}, then there exists a unique Hahn–Banach ex-
tension ψ of ϕ to U . Moreover, we have

ψ(ka+ v) = kl−1ϕ(la) + ϕ(v)

for all k ∈ Z, v ∈ V and l ∈ L with l 6= 0.
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Proof. If ψ an additive extension of ϕ to U , then for any k ∈ Z and
v ∈ V we have

ψ(ka+ v) = kψ(a) + ψ(v) = kψ(a) + ϕ(v).

Moreover, by choosing l ∈ L such that l 6= 0, then we can also note that

lψ(a) = ψ(la) = ϕ(la), and thus ψ(a) = l−1ϕ(la).

Therefore, the unicity part of the theorem is true.
To prove the existence part of the theorem, note that now, because of

L 6= {0}, there exists l ∈ Z, with l 6= 0, such that la ∈ V . Moreover, since
−L ⊂ L, we may assume that l > 0. Define

b = l−1ϕ(la).

Then, lb = ϕ(la). Moreover, for any k ∈ L, we also have

klb = kϕ(la) = ϕ(kla) = lϕ(ka), and thus kb = ϕ(ka).

The latter observation allows us to easily show that, for any k1, k2 ∈ Z and
v1, v2 ∈ V ,

k1a+ v1 = k2a+ v2 implies k1b+ ϕ(v1) = k2b+ ϕ(v2).

Namely, if k1a+ v1 = k2a+ v2 holds, then we also have

(k1 − k2)a = −(v1 − v2) ∈ V, and thus k1 − k2 ∈ L.

Hence, we can already infer that

(k1 − k2)b = ϕ
(
(k1 − k2)a

)
= ϕ

(
−(v1 − v2)

)
= −ϕ(v1 − v2),

and thus

k1b+ ϕ(v1)−
(
k2b+ ϕ(v2)

)
= (k1 − k2)b+ ϕ(v1 − v2) = 0.

Now, we may unambiguously define a function ψ of U to R such that

ψ(ka+ v) = kb+ ϕ(v)
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for all k ∈ Z and v ∈ V . Hence, it is clear that ψ is an additive extension of
ϕ to U such that ψ(a) = b. Moreover, for any k ∈ Z and v ∈ V , we have

ψ(ka+ v) = kb+ ϕ(v) = kl−1ϕ(la) + l−1lϕ(v) = l−1
(
ϕ(kla) + ϕ(lv)

)

= l−1ϕ
(
l(ka+ v)

)
≤ l−1p

(
l(ka+ v)

)
≤ l−1lp(ka+ v) = p(ka+ v).

Therefore, ψ is also dominated by p. �

Remark 5.4. By using an extension of Definition 3.4, we can write

ψ(ka+ v) = ϕl(ka+ v) = kϕl(a) + ϕ(v)

for all k ∈ Z, v ∈ V and l ∈ L with l 6= 0.

Theorem 5.5. If L = {0}, then for any b ∈ R with

q̂∗(a) ≤ b ≤ q∗(a),

there exists a unique Hahn–Banach extension ψ of ϕ to U such that ψ(a) = b.
Moreover, we have

ψ(ka+ v) = kb+ ϕ(v)

for all k ∈ Z and v ∈ V .

Proof. If ψ an additive extension of ϕ to U , then as in the proof of
Theorem 5.3 we have

ψ(ka+ v) = kψ(a) + ϕ(v)

for all k ∈ Z and v ∈ V . Therefore, ψ is uniquely determined by ψ(a).
Moreover, by Theorem 3.14, we also have

q̂∗(a) ≤ ψ(a) ≤ q∗(a).

To prove the existence part of the theorem, we first note that now, for any
k1, k2 ∈ Z and v1, v2 ∈ V ,

k1a+ v1 = k2a+ v2 implies k1 = k2, v1 = v2.

Namely, if k1a+ v1 = k2a+ v2 holds, then we have

(k1 − k2)a = −(v1 − v2) ∈ V.



88 Tamás Glavosits, Árpád Száz

Therefore, we can only have k1 − k2 = 0, and thus also v1 − v2 = 0.
Now, we may unambiguously define a function ψ of U to R such that

ψ(ka+ v) = kb+ ϕ(v)

for all k ∈ Z and v ∈ V . Moreover, we can also note that ψ is an additive
extension of ϕ to U such that ψ(a) = b. Furthermore, by using Theorems 4.7,
3.1 and 2.1, we can easily see that

ψ(ka+ v) = kb+ ϕ(v) ≤ q(ka) + ϕ(v) = q(ka+ v) ≤ p(ka+ v)

for all k ∈ Z and v ∈ V . Therefore, ψ is also dominated by p. �

Remark 5.6. Note that now, by Theorem 1.14, ψ is increasing. Moreover,
by Theorem 3.14, we also have

q̂∗(ka+ v) ≤ ψ(ka+ v) ≤ q∗(ka+ v)

for all k ∈ Z and v ∈ V .

Theorem 5.7. If q∗ is odd at a, then the restriction of q∗ to U is the
unique Hahn–Banach extension of ϕ to U .

Proof. From Theorems 5.3, 4.4 and 5.5, we know that ϕ always has a
Hahn–Banach extension ψ to U . Moreover, by the hypothesis and Remark
5.6, we necessarily have

q∗(a) = q̂∗(a) ≤ ψ(a) ≤∗ (a),

and thus ψ(a) = q∗(a). Hence, since

ψ(ka+ v) = kψ(a) + ϕ(v) = kq∗(a) + ϕ(v)

for all k ∈ Z and v ∈ V , it is clear ψ is uniquely determined.
Moreover, by using Corollary 3.12 and Theorem 4.3, we can easily see that

kq∗(a) = q∗(ka)

for all k ∈ Z. Namely, if k < 0, then by the hypothesis and Theorem 4.3 we
also have

kq∗(a) = (−k)
(
−q∗(a)

)
= (−k)q∗(−a) = q∗

(
(−k)(−a)

)
= q∗(ka).
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Now, by Theorem 4.11, it is clear that

ψ(ka+ v) = kq∗(a) + ϕ(v) = q∗(ka) + ϕ(v) = q∗(ka+ v)

for all k ∈ Z and v ∈ V . Therefore, the required assertion is also true. �

Theorem 5.8. If L 6= {0}, then q∗ is odd at a.

Proof. Again, we can note that there exists k ∈ Z, with k > 0, such that
ka ∈ V . Hence, by using Theorem 4.3 and Corollary 4.12, we can see that

kq∗(a) = q∗(ka) = ϕ(ka)

and

kq̂∗(a) = −kq∗(−a) = −q∗(−ka) = q̂∗(ka) = ϕ̂(ka) = ϕ(ka).

Therefore, kq∗(a) = kq̂∗(a), and hence q∗(a) = q̂∗(a). Thus, the required
assertion is also true. �

Now, as an immediate consequence of our former results, we can also state

Theorem 5.9. The following assertions are equivalent:
(1) q∗ is odd at a;
(2) q∗ is odd on U ;
(3) there exists a unique Hahn–Banach extension ψ of ϕ to U ;
(4) there exists at most one Hahn–Banach extension ψ of ϕ to U ;
(5) the restriction of q∗ to U is a Hahn–Banach extension of ϕ to U .

Proof. If (1) holds, then by Theorem 5.7 it is clear that the assertions (3),
(4) and (5) also hold. Moreover, we can note that (3) and (4) are equivalent
and (5) =⇒ (2) =⇒ (1).

Therefore, we need only show that (4) also implies (1). For this, note that
if (1) does not hold, then by Theorem 5.8 we have L = {0}. Moreover, by
Theorem 4.4, we have q̂∗(a) < q∗(a). Thus, there exist b1, b2 ∈ R such that

q̂∗(a) ≤ b1 < b2 ≤ q∗(a).

Moreover, by Theorem 5.5, there exist Hanh–Banach extensions ψ1 and ψ2

of ϕ to U such that ψ1(a) = b1 and ψ2(a) = b2. Therefore, (4) does not also
hold. �
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6. Total Hahn–Banach extensions of ϕ

Theorem 6.1. There exists a Hahn–Banach extension f of ϕ to X.

Proof. Denote by Ψ the family of all Hahn–Banach-extensions ψ of ϕ.
Then, it is clear Ψ is a nonvoid partially ordered set with the ordinary set
inclusion. Namely, ϕ ∈ Ψ .

Moreover, if Φ is a totally ordered subset of Ψ , then it can be easily seen
that φ = ∪Φ is an upper bound of Φ in Ψ . Thus, by Zorn’s lemma, there
exists a maximal element f of Ψ .

Thus, it remains only to show that the domain Df of f is X. For this, note
that if for some a ∈ X we have a /∈ Df , then by Theorems 5.3, 4.4 and 5.5
there exists a Hahn–Banach extension ψ of f to the subgroup U = Ra+Df .
However, this contradicts the maximality of f . �

Remark 6.2. Note that if f is as in the above theorem, then by Theorem
1.14 we can state that f is increasing. Moreover, by Theorem 3.14, we have

q̂∗ ≤ f ≤ q∗.

Therefore, if in particular q∗ is odd, then f = q∗.

Now, as an immediate consequence of our former results, we can also state
the following

Theorem 6.3. The following assertions are equivalent:
(1) q∗ is odd;
(2) q∗ is a Hahn–Banach extension of ϕ;
(3) there exists a unique Hahn–Banach extension f of ϕ to X;
(4) there exists at most one Hahn–Banach extension f of ϕ to X.

Proof. By Remark 6.2, it is clear that (1) implies (4). Moreover, from
Theorem 6.1, we know that there exists a Hahn–Banach extension f of ϕ to
X. Therefore, (4) implies (3). Moreover, if (1) holds, then by Remark 6.2 we
necessarily have f = q∗. Therefore, (1) also implies (2).

Now, since the implications (2) =⇒ (1) and (3) =⇒ (4) trivially hold,
we need only show that (4) also implies (1). For this, note that if (1) does
not hold, then there exists a ∈ X such that q∗ is not odd at a. Then, by the
proof of Theorem 5.9, there exist two Hahn–Banach extensions ψ1 and ψ2 of
ϕ to U = Za + V . Moreover, by Theorem 6.1, we can state that there exist
Hahn–Banach extensions f1 and f2 of ψ1 and ψ2 to X, respectively. Thus,
(4) does not also holds. This proves the required implication. �
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Remark 6.4. Sections 7 and 11 of [23] and [7], respectively, show that the
question of the uniqueness of the Hahn–Banach extension has also been in-
tensively studied by several authors. However, the above simple convolutional
characterization seems to be new.

Next, we show that Theorem 6.1 can be used to prove a straightforward
generalization of a weakening of [19, 1.6.1. Theorem] of Bauer, Bonsall and
Namioka. For this, we must slightly change our former assumptions.

Notation 6.5. Suppose that X is a commutative preordered group and V
is a cofinal subgroup of X in the sense that for each x ∈ X there exists v ∈ V
such that x ≤ v.

Moreover, assume that ϕ is an increasing additive function of V to R, and
for any x ∈ X define

p(x) = inf
{
ϕ(v) : x ≤ v ∈ V

}
.

Remark 6.6. Note that our present definition of cofinality is, in general,
stronger than that of Jameson [19, p. 8], but it coincides with the usual one.
Of course, if in particular the nonegativity domain P = {x ∈ X : x ≥ 0} of X
is cofinal in X in the sense that for each x ∈ X there exists y ∈ P such that
x ≤ y, then the two definitions coincide.

Note that an arbitrary subset Y of X is cofinal in X if and only if X =
Y − P . Thus, in particular P is cofinal in X if and only if X is generated by
P in the sense that X = P − P . Moreover, by [19, 1.1.3], we can also state
that P is cofinal in X if and only if X is direted by its preordering in the
sense that for any x, y ∈ X there exists z ∈ X such that x ≤ z and y ≤ z.

However, it is now more important to note that, by the above definitions,
we also have the following

Theorem 6.7. p is an increasing subadditive function of X to R extend-
ing ϕ.

Proof. If x ∈ X, then by the cofinality of V in X there exist z, w ∈ V
such that x ≤ z and −x ≤ w, and thus −w ≤ x. Hence, it is clear that

p(x) = inf
{
ϕ(v) : x ≤ v ∈ V

}
≤ ϕ(z) < +∞.

Moreover, if v ∈ V such that x ≤ v, then by using that −w ≤ v, −w ∈ V and
ϕ is increasing we can see that ϕ(−w) ≤ ϕ(v). Therefore, we also have

−∞ < ϕ(−w) ≤ inf
{
ϕ(v) : x ≤ v ∈ V

}
= p(x).
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Furthermore, by using quite similar arguments as in the proofs of Theo-
rems 2.3 and 2.4, we can see that p is increasing and subadditive. Moreover,
if v ∈ V , then by using the increasingness of ϕ we can see that ϕ(v) ≤ ϕ(s)
for all s ∈ V with v ≤ s. Therefore,

ϕ(v) = min
{
ϕ(s) : v ≤ s ∈ V

}
= inf

{
ϕ(s) : v ≤ s ∈ V

}
= p(v). �

Remark 6.8. Note that if ρ is an increasing function of X to R such that
ρ(v) ≤ ϕ(v) for all v ∈ V , then

ρ(x) = inf
{
ρ(v) : x ≤ v ∈ V

}
≤ inf

{
ϕ(v) : x ≤ v ∈ V

}
= p(x)

for all x ∈ X. Therefore, p is actually the largest increasing function of X to
R such that p(v) ≤ ϕ(v) for all v ∈ V .

Now, we can readily prove the promised application of Theorem 6.1.

Theorem 6.9. ϕ can be extended to an increasing additive function f of
X to R.

Proof. By Theorems 6.7 and 6.1, we can state that there exists a Hahn–
Banach extension f of ϕ to X. Thus, by Definition 1.6, f is an additive
function of X to R that extends ϕ and is dominated by p. Moreover, by
Theorem 1.14, f is also increasing. Therefore, the required assertion is also
true. �

Remark 6.10. In the present particular case, by Theorem 3.14, we can
also state a counterpart of Remark 6.2.

However, now the infimal convolution q = p ∗ϕ need not actually be used.
Namely, because of the particular choice of p, we have the following

Theorem 6.11. p = q.

Proof. If x ∈ X, then by the corresponding definitions

q(x) = inf
{
p(u) + ϕ(v) : (u, v) ∈ X×V : x ≤ u+ v

}
.

Therefore, for each α ∈ R, with q(x) < α there exist u ∈ X and v ∈ V , with
x ≤ u+ v, such that

p(u) + ϕ(v) < α.
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Hence, we can infer that

inf
{
ϕ(s) : u ≤ s ∈ V

}
= p(u) < α− ϕ(v).

Therefore, there exists s ∈ V , with u ≤ s, such that

ϕ(s) < α− ϕ(v), and thus ϕ(s+ v) = ϕ(s) + ϕ(v) < α.

Hence, since s+ v ∈ V and x ≤ u+ v ≤ s+ v, we can already infer that

p(x) = inf
{
ϕ(t) : x ≤ t ∈ V

}
< α.

Now, by letting α tend to q(x), we can also state that p(x) ≤ q(x). Hence, by
Theorem 2.1, it is clear that p(x) = q(x), and thus p = q also holds. �

7. Some very particular illustrating examples

The following example shows that, even in the particular case considered
in Notation 6.5, the homogenization q∗ of q = p ∗ ϕ may differ from q.

Example 7.1. Take X = R, and consider X to be equipped with the
usual addition, multiplication and inequality. Moreover, define V = Z, and
ϕ(v) = v for all v ∈ V . Then, it is clear that X is a totally ordered vector
space over R. Moreover, V is a cofinal subgroup of X and ϕ is a strictly
increasing additive function of V to R.

Furthermore, we can easily see that

p(x) = inf
{
ϕ(v) : x ≤ v ∈ V

}
= inf

{
v : x ≤ v ∈ Z

}

= min
{
v : x ≤ v ∈ Z

}
= −max

{
− v : x ≤ v ∈ Z

}

= −max
{
−v : v ∈ Z, −v ≤ −x

}
= −max

{
k ∈ Z : k ≤ −x

}

for all x ∈ X. Hence, by using the entire part function defined by

e(x) = [x] = max
{
k ∈ Z : k ≤ x

}

for all x ∈ R, we can note that

p(x) = −max
{
k ∈ Z : k ≤ −x

}
= −e(−x) = ê(x)

for all x ∈ X, and thus p = ê.
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Hence, by Theorem 6.7, we can see that ê is an increasing subadditive
function of R to Z such that ê(k) = ϕ(k) = k for all k ∈ Z. Thus, in
particular ê is a retraction of the linearly ordered set R to Z. Moreover, from
Theorem 6.11, for the function q = p ∗ ϕ, we can see that p = q. Hence, by
using Corollary 4.9 and Remark 3.5, we can infer that

q∗(x) = p∗(x) = lim
n→∞

pn!(x) = lim
n→∞

ên!(x)

= lim
n→∞

ên!(x) = lim
n→∞

−en!(−x) = − lim
n→∞

en!(−x)

for all x ∈ X.
By the definition of the function e, it is clear that e(nx) ≤ nx < e(nx)+1,

and thus

en(x) = n−1e(nx) ≤ x < n−1e(nx) + n−1 = en(x) + n−1,

and thus 0 ≤ x − en(x) < n−1 for all n ∈ N and x ∈ R. Hence, we can see
that

x = lim
n→∞

en(x)

for all x ∈ R, and moreover the convergence is uniform. The above useful
equality shows, in particular, that Q is dense in R.

Moreover, we can note that

q∗(x) = − lim
n→∞

en!(−x) = − lim
n→∞

en(−x) = −(−x) = x

for all x ∈ X. Therefore, q 6= q∗. Now, by Theorem 6.3 and Definition 1.6, we
can also state that q∗ is the unique additive function of X to R that extends
ϕ and is dominated by p.

Remark 7.2. In connection with the above example, note that if f is an
additive function of X to R such that f(1) = ϕ(1), then by the Q-homogeneity
of f we necessarily have

f(r) = rf(1) = rϕ(1) = r = q∗(r)

for all r ∈ Q. However, the equality f = q∗ need not be true.
The latter fact can only be proved with the help of the Hamel bases of X

[20, pp. 78–85]. Note that if for instance a =
√

2, then a ∈ X \Q. Therefore,
{1, a} is a linearly independent subset of X as a vector space over Q. Hence,
by using Zorn’s lemma, it can be easily seen that there exists a maximal
linearly independent subset E of X such that {1, a} ⊂ E. Thus, in particular,
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for each x ∈ X, there exists a unique function x̃ of E to Q such that the
support

Ex = {e ∈ E : x̃(e) 6= 0}

of x̃ is finite and

x =
∑

e∈Ex

x̃(e)e.

Now, by taking

σ(1) = 1, σ(a) = 2, and σ(e) ∈ R for e ∈ E \ {1, a},

we may naturally define a function ρ of X to R such that

ρ(x) =
∑

e∈Ex

x̃(e)σ(e)

for all x ∈ X. Then, it can be easily seen that ρ is additive. Moreover, we
can note that

ρ(r) = rρ(1) = rσ(1) = r = q∗(r)

for all r ∈ Q, but

ρ(a) = 2 6=
√

2 = a = q∗(a).

Thus, in particular ρ is an additive extension of ϕ to X such that ρ 6= q∗.

The following example, mentioned by Jameson [19, p. 25], shows that even
a strictly increasing linear functional of a non-cofinal subspace of a two di-
mensional partially ordered vector space need not have an increasing additive
extension to the whole space. A more complicated three-dimensional example,
for the same purposes, has formerly been offered by Peressini [25, p. 85].

Example 7.3. Take X = R2, and consider X to be equipped with the
usual coordinate-wise linear operations. Then, X is a vector space over R.

Moreover, consider X to be equipped with the lexicographic ordering.
Thus, for any (x, y), (z, w) ∈ X, we write

(x, y) ≤ (z, w) if either x < z or (x = z and y ≤ w).
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Then, it can be easily seen that ≤ is a total ordering on X that is compatible
with addition and multiplication by nonnegative scalars. Thus, X is a totally
ordered vector space.

Moreover, define

V =
{

(0, y) : y ∈ R
}

and ϕ(0, y) = y for all y ∈ R.

Then, it is clear that V is a subspace of X and ϕ is a linear function of V to
R. Moreover, we can note that ϕ is strictly increasing, but V is not cofinal in
X. Namely, for instance, we have (0, y) < (1, 0) for all y ∈ R. In this respect,
it is also worth noticing that, for any (x, y) ∈ X, we have

p(x, y) = inf
{
ϕ(0, z) : (x, y) ≤ (0, z)

}

= inf
{
z ∈ R : x < 0 or (x = 0, y ≤ z)

}
=





−∞ if x < 0;
y if x = 0;

+∞ if 0 < x.

Next, we show that ϕ does not have an increasing additive extension to X.
For this, assume on the contrary that f is such an extension of ϕ to X. Then,
in particular we have

f(x, y) = f
(
(x, 0) + (0, y)

)
= f(x, 0) + f(0, y)

= f(x, 0) + ϕ(0, y) = f(x, 0) + y

for all (x, y) ∈ X. Moreover, we can note that the mapping x 7→ f(x, 0),
where x ∈ R, is also increasing and additive. Thus, by a classical result of the
theory of functional equations [1, Corollary 5, p. 15], there exists c ∈ R such
that

f(x, 0) = cx

for all x ∈ R. Therefore, we actually have

f(x, y) = cx+ y

for all (x, y) ∈ X. However, if this is true, then taking n ∈ N and noticing
that (0, 0) < (1,−n), we can infer that

0 = c0 + 0 = f(0, 0) ≤ f(1,−n) = c− n.

Hence, it follows that n ≤ c for all n ∈ N. This contradiction proves the
required assertion.
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Remark 7.4. Note that if we consider X to be equipped with the more
usual coordinatewise partial ordering instead of the total lexicographic one,
then ϕ is still strictly increasing and V is not cofinal in X. However, for any
(x, y) ∈ X, we have

p(x, y) = inf
{
ϕ(0, z) : (x, y) ≤ (0, z)

}

= inf
{
z ∈ R : x ≤ 0, y ≤ z

}
=

{
y if x ≤ 0;

+∞ if 0 < x.

Moreover, for any c ∈ R, with c ≥ 0, the function f , defined by f(x, y) = cx+y
for all (x, y) ∈ X, is an increasing linear extension of ϕ to X that is dominated
by p.

The following example is a modification of [15, Example 5.1]. For some
closely related examples, which can also be well adjusted to the present setting,
see also [14].

Example 7.5. Suppose now that X = R2 is again equipped with the
lexicographic ordering as in Example 7.3, but we have

V =
{

(x, x) : x ∈ R
}

and ϕ(x, x) = x for all x ∈ R.

Then, it is clear that V is again a subspace of X and ϕ is again a linear
function of V to R. Moreover, we can note that ϕ is again strictly increasing,
but in contrast to Example 7.3 and Remark 7.4 the subspace V is now cofinal
in X.

Furthermore, for any (x, y) ∈ X, we have

p(x, y) = inf
{
ϕ(z, z) : (x, y) ≤ (z, z)

}

= inf
{
z : x < z or (x = z, y ≤ z)

}
= x.

Namely, in each of the above cases we have x ≤ z. Therefore, x ≤ p(x, y).
Moreover, if z ∈ R such that x < z, then p(x, y) ≤ z. Hence, by letting z tend
to x, we can see that p(x, y) ≤ x also holds.

Now, in addition to Theorem 6.7, we can state that p is an increasing,
linear extension of ϕ. Moreover, by Theorem 6.11, for the function q = p ∗ ϕ,
we have p = q = q∗. Hence, by Theorem 6.11, we can see that p is actually
the unique additive extension of ϕ to X that is dominated by p.
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On the other hand, we can also note that if f is an increasing additive
extension of ϕ to R2, then in particular we have

f(x, y) = f
(
(x, 0) + (y, y)− (y, 0)

)

= f(x, 0) + f(y, y)− f(y, 0) = f(x, 0) + y − f(y, 0)

for all (x, y) ∈ X. Moreover, as in Example 7.1, we can also state that there
exists c ∈ R such that

f(x, 0) = cx

for all x ∈ R. Therefore, we actually have

f(x, y) = cx+ (1− c)y

for all (x, y) ∈ X. Hence, by noticing that (0, 0) < (1, 0) and (0, 0) < (0, 1)
we can infer that

0 = f(0, 0) ≤ f(1, 0) = c and 0 = f(0, 0) ≤ f(0, 1) = 1− c

and thus 0 ≤ c ≤ 1. Moreover, by taking n ∈ N and noticing that (0, 0) <
(1,−n), we can infer that

0 = f(0, 0) ≤ f(1,−n) = c− (1− c)n.

Hence, it follows that (1 − c)n ≤ c for all n ∈ N. Therefore, 1 − c = 0, and
thus c = 1. Consequently, f = p is the unique increasing additive extension
of ϕ to X.

Remark 7.6. Note that if we consider in X the more usual coordinatewise
partial ordering instead of the total lexicographic one, then ϕ is still strictly
increasing and V is cofinal in X. However, for any (x, y) ∈ X, we have

p(x, y) = inf
{
ϕ(z, z) : (x, y) ≤ (z, z)

}

= inf
{
z ∈ R : x ≤ z, y ≤ z

}
= max{x, y}.

Moreover, for any c ∈ [0, 1], the function f defined by f(x, y) = cx+ (1− c)y
for all x, y ∈ R is also an increasing linear extension of ϕ that is dominated
by p.

Acknowledgements. The authors are indebted to Zsolt Páles for pro-
viding a proof for Theorem 4.2.
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