A FUNCTIONAL EQUATION CHARACTERIZING HOMOGRAPHIC FUNCTIONS

Janusz Matkowski

Abstract. Some functional equations related to homographic functions and their characterization are presented.

1. Introduction

If $I \subset \mathbb{R}$ is an interval and $f: I \rightarrow \mathbb{R}$ is a homographic function

$$
f(x)=\frac{a x+b}{c x+d}, \quad x \in I
$$

$(a d-b c \neq 0)$ then, it is easy to verify that
$\left(^{*}\right) \quad\left(\frac{f(x)-f(y)}{x-y}\right)^{2}=f^{\prime}(x) f^{\prime}(y), \quad x, y \in I, x \neq y$,
cf. [1] where this equation has appeared in a problem related to convex functions.

Replacing here $\sqrt{f^{\prime}}$ by an arbitrary function g we get the functional equation

$$
\frac{f(x)-f(y)}{x-y}=g(x) g(y), \quad x, y \in I, x \neq y
$$

Key words and phrases: homographic function, functional equation.
with two unknown functions f and g. We show that, without any regularity assumptions, this equation characterizes the homographic function and their derivative (Corollary 1).

In Section 1, we consider the functional equation

$$
\frac{f(x)-f(y)}{x-y}=p g(x) g(y), \quad x, y \in X, x \neq y
$$

assuming that X is an arbitrary subset of $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$ such that card $X \geq 3$ and $f, g: X \rightarrow \mathbb{K}$ are the unknown functions. Theorem 1 gives the general solution for $p=1$, and Corollary 1 for $p \neq 0$.

In Section 2, Theorem 2 describes the general solution of the functional equation with four unknown functions

$$
\frac{f(x)-F(y)}{x-y}=g(x) G(y), \quad x, y \in X, x \neq y
$$

A remark on a general solution of the functional equation

$$
\frac{f(x)-F(y)}{h(x)-h(y)}=g(x) G(y), \quad x, y \in X, x \neq y
$$

with five unknown functions f, F, g, G, h defined on an arbitrary set such X such that card $X \geq 3$ ends up the paper.

Another, completely different, approach in a characterization of the homographic functions, more closer to the invariance of double ratio of four points, is implicitly given in [1].

2. Functional equation with two functions

The main result of this section reads as follows:

Theorem 1. Let $X \subset \mathbb{K}$ be a set such that card $X \geq 3$. The functions $f, g: X \rightarrow \mathbb{K}$ satisfy the functional equation

$$
\begin{equation*}
\frac{f(x)-f(y)}{x-y}=g(x) g(y), \quad x, y \in X, x \neq y \tag{1}
\end{equation*}
$$

if, and only if, either
f is an arbitrary constant and g is the zero function;
or

$$
f(x)=\frac{a x+b}{c x+d}, \quad g(x)=\frac{1}{c x+d}, \quad x \in X
$$

for some $a, b, c, d \in \mathbb{K}$ such that $a d-b c=1$.
Proof. Assume that $f, g: X \rightarrow \mathbb{R}$ satisfy equation (1).
If there is $y \in X$ such that $g(y)=0$, then, by (1), $f(x)=f(y)$ for all $x \in X$, that f is constant. It follows that $g(x)=0$ for all $x \in X$. Obviously, if f is constant and $g=0$ then equation (1) is satisfied.

Now we can assume that $g(x) \neq 0$ for all $x \in X$. From (1) we have

$$
f(x)-f(y)=g(x) g(y)(x-y), \quad x, y \in X, x \neq y
$$

Since $f(x)-f(y)=[f(x)-f(z)]+[f(z)-f(y)]$, we hence get

$$
g(x) g(y)(x-y)=g(x) g(z)(x-z)+g(z) g(y)(z-y)
$$

for all $x, y, z \in X, x \neq y \neq z \neq x$, or equivalently, dividing both sides by $g(x) g(y) g(z)$,

$$
\frac{x-y}{g(z)}=\frac{x-z}{g(x)}+\frac{z-y}{g(y)}, \quad x, y, z \in X, x \neq y \neq z \neq x
$$

whence, for all $x, y, z \in X, x \neq y \neq z \neq x$,

$$
\frac{1}{g(z)}=\frac{1}{x-y}\left[\left(\frac{1}{g(x)}-\frac{1}{g(y)}\right) z+\left(\frac{x}{g(x)}-\frac{y}{g(y)}\right)\right]
$$

Since the right side does not depend on z and, by assumption, card $X \geq 3$, it follows that there are $c, d \in \mathbb{K}$ such that

$$
\frac{1}{g(z)}=c z+d, \quad z \in X
$$

whence

$$
\begin{equation*}
g(x)=\frac{1}{c x+d}, \quad x \in X \tag{2}
\end{equation*}
$$

Setting this function into equation (1) we get

$$
f(x)=\frac{1}{c y+d} \frac{x-y}{c x+d}+f(y), \quad x, y \in X, x \neq y
$$

whence, as the right side does not depend on y, we conclude that

$$
\begin{equation*}
f(x)=\frac{a x+b y}{c x+d}, \quad x \in X \tag{3}
\end{equation*}
$$

for some $a, b \in \mathbb{K}$.
Substituting the functions (2) and (3) into (1) we obtain

$$
\frac{f(x)-f(y)}{x-y}=\frac{a d-b c}{(c x+d)(c y+d)}=(a d-b c) g(x) g(y), \quad x, y \in X, x \neq y
$$

which implies that $a d-b c=1$. This completes the proof.
Corollary 1. Let $X \subset \mathbb{K}$ be a set such that card $X \geq 3$ and let $p \in \mathbb{K} \backslash\{0\}$ be fixed. The functions $f, g: X \rightarrow \mathbb{K}$ satisfy the functional equation

$$
\begin{equation*}
\frac{f(x)-f(y)}{x-y}=p g(x) g(y), \quad x, y \in X, x \neq y \tag{4}
\end{equation*}
$$

if, and only if, either

$$
f \text { is an arbitrary constant and } g \text { is the zero function; }
$$

or

$$
f(x)=\frac{a x+b}{c x+d}, \quad g(x)=\frac{1}{c x+d}, \quad x \in X
$$

for some $a, b, c, d \in \mathbb{K}$ such that

$$
a d-b c=p
$$

Proof. It is enough to apply Theorem 1 with f replaced by f / p.
Corollary 2. Let $I \subset \mathbb{R}$ be a an interval. A differentiable function $f: I \rightarrow \mathbb{R}$ satisfies equation $\left(^{*}\right)$:

$$
\left(\frac{f(x)-f(y)}{x-y}\right)^{2}=f^{\prime}(x) f^{\prime}(y), \quad x, y \in J, x \neq y
$$

if, and only if, either f constant or

$$
f(x)=\frac{a x+b}{c x+d}, \quad x \in I
$$

for some $a, b, c, d \in \mathbb{K}$ such that

$$
a d-b c \neq 0
$$

Proof. Obviously, f is constant iff $f^{\prime}(x)=0$ for some $x \in I$. Therefore it is enough consider the case when f^{\prime} is of the constant sign in I. Without any loss of generality, we can assume that f^{\prime} is positive in I. Then, clearly,

$$
\frac{f(x)-f(y)}{x-y}>0, \quad x, y \in J, x \neq y
$$

Hence, setting $g:=\sqrt{f^{\prime}}$ we get the functional equation (1). Applying Theorem 1 we obtain

$$
f(x)=\frac{a x+b}{c x+d}, \quad x \in I
$$

Now it easy to verify that f satisfies equation $\left(^{*}\right)$.

3. Functional equation with four unknown functions

Applying Theorem we shall prove the following
Theorem 2. Let $X \subset \mathbb{K}$ be a set such that card $X>3$. The functions $f, F, g, G: X \rightarrow \mathbb{K}$ satisfy the functional equation

$$
\begin{equation*}
\frac{f(x)-F(y)}{x-y}=g(x) G(y), \quad x, y \in X, x \neq y \tag{5}
\end{equation*}
$$

if, and only if, one of the following cases occurs:
(i) for some $a, b, c, d, m \in \mathbb{C}$ such that $a d-b c \neq 0$,

$$
f(x)=F(x)=\frac{a x+b}{c x+d}, \quad g(x)=\frac{G(x)}{a c-b d}=\frac{1}{c x+d}, \quad x \in X
$$

(ii) the functions f and F are constant, $f=F, g(x)=0$ for all $x \in X$ and G is arbitrary;
(iii) the functions f and F are constant, $f=F, G(x)=0$ for all $x \in X$ and g is arbitrary.

Proof. Assume that $g(x) G(x) \neq 0$ for all $x \in X$. Interchanging x and y in (5) and we get

$$
\frac{f(y)-F(x)}{y-x}=g(y) G(x), \quad x, y \in X, x \neq y
$$

Dividing the respective sides of these two equations we obtain

$$
\begin{equation*}
\frac{f(x)-F(y)}{F(x)-f(y)}=\frac{m(x)}{m(y)}, \quad x, y \in X, x \neq y \tag{6}
\end{equation*}
$$

where

$$
m(x):=\frac{g(x)}{G(x)}, \quad x \in X
$$

Setting an arbitrary chosen $y=y_{0}$ in (6) we get

$$
\begin{equation*}
F(x)=\frac{\alpha f(x)+\beta}{m(x)}+\gamma, \quad x \in X \backslash\left\{y_{0}\right\} \tag{7}
\end{equation*}
$$

for some $\alpha, \beta, \gamma \in \mathbb{R}$. From (5) and (6) we obtain

$$
\frac{f(x)-\frac{\alpha f(y)+\beta}{m(y)}-\gamma}{\frac{\alpha f(x)+\beta}{m(x)}+\gamma-f(y)}=\frac{m(x)}{m(y)}, \quad x, y \in X \backslash\left\{y_{0}\right\}, x \neq y,
$$

whence, after simplification,

$$
\begin{equation*}
f(x)[m(y)-\alpha]=[\alpha+\gamma-f(y)] m(x)+\gamma m(y)+2 \beta \tag{8}
\end{equation*}
$$

for all $x, y \in X \backslash\left\{y_{0}\right\}, x \neq y$.
Consider the case when

$$
m(x)=\alpha, \quad x \in X \backslash\left\{y_{0}\right\}
$$

Of course $\alpha \neq 0$. In this case (8) implies that $\gamma=-\frac{\beta}{\alpha}$ and, from (7),

$$
F(x)=f(x), \quad x \in X \backslash\left\{y_{0}\right\}
$$

Thus from (5) we get the functional equation

$$
\begin{equation*}
\frac{f(x)-f(y)}{x-y}=g(x) G(y), \quad x, y \in X \backslash\left\{y_{0}\right\} \tag{9}
\end{equation*}
$$

with four unknown functions. The symmetry of the left-hand side implies that

$$
\frac{g(x)}{G(x)}=\frac{g(y)}{G(y)}=a, \quad x, y \in X \backslash\left\{y_{0}\right\}, x \neq y
$$

whence

$$
G(y)=\frac{1}{a} g(y), \quad y \in X \backslash\left\{y_{0}\right\}
$$

and from (9) we get

$$
\frac{f(x)-f(y)}{x-y}=\frac{1}{\alpha} g(x) g(y), \quad x, y \in X \backslash\left\{y_{0}\right\}, x \neq y
$$

Repeating this reasoning with y_{0} replaced by $y_{0}^{\prime}, y_{0}^{\prime} \neq y_{0}$, we conclude that

$$
\frac{f(x)-f(y)}{x-y}=\frac{1}{\alpha} g(x) g(y), \quad x, y \in X \backslash\left\{y_{0}^{\prime}\right\}, x \neq y
$$

Both equations imply that

$$
\frac{f(x)-f(y)}{x-y}=\frac{1}{\alpha} g(x) g(y), \quad x, y \in X, x \neq y
$$

Applying Corollary 1 with $p:=\frac{1}{\alpha}$ we obtain the "if" part of our result.
To finish the proof it is enough to show that the function m must coincide with the constant α. For an indirect argument assume that there is $y_{1} \in X$ such that

$$
m\left(y_{1}\right) \neq \alpha
$$

Then, from (8) we get

$$
\begin{equation*}
f(x)=A m(x)+B, \quad x \in X \backslash\left\{y_{0}\right\} \tag{10}
\end{equation*}
$$

for some $A, B \in \mathbb{R}$.
We shall show that in this case m and f are constant functions in $X \backslash\left\{y_{0}\right\}$. Assume first that $A=0$. Then $f(x)=B$ for all $x \in X \backslash\left\{y_{0}\right\}$ and from (7)

$$
\begin{equation*}
F(x)=\frac{l}{m(x)}+\gamma, \quad x \in X \backslash\left\{y_{0}\right\} \tag{11}
\end{equation*}
$$

where $l:=\alpha B+\beta$. If l were zero then we would have $F(x)=\gamma$ for all all $x \in X \backslash\left\{y_{0}\right\}$, and from (7),

$$
\frac{B-\gamma}{\gamma-B}=\frac{m(x)}{m(y)}, \quad x, y \in X \backslash\left\{y_{0}\right\}, x \neq y
$$

that is $m(y)=-m(x)$ for all $x, y \in X \backslash\left\{y_{0}\right\}, x \neq y$. This is impossible as the set $X \backslash\left\{y_{0}\right\}$ has at least three points and m cannot disappear at any point. Thus $l \neq 0$.Put $C:=B-\gamma$. Setting the function (11) into (6) we get

$$
\frac{C-\frac{l}{m(y)}}{\frac{l}{m(x)}-C}=\frac{m(x)}{m(y)}, \quad x, y \in X, x \neq y
$$

whence

$$
C[m(x)+m(y)]=2 l, \quad x, y \in X \backslash\left\{y_{0}\right\}, x \neq y
$$

Since $l \neq 0$, it follows that m is a constant function in $X \backslash\left\{y_{0}\right\}$.
Now we can assume that $A \neq 0$. Setting f given by (10) into (8), after simple calculations, we get
$m(x)[2 A m(y)-\alpha A-\alpha+\beta-\gamma]=\gamma m(y)-\beta m(y)+\alpha B+2 \beta, \quad x, y \in X \backslash\left\{y_{0}\right\}$.
This equality implies that m is a constant function. Indeed, if $\left(X \backslash\left\{y_{0}\right\}\right) \ni$ $x \rightarrow m(x)$ were not constant then we would have

$$
2 A m(y)-\alpha A-\alpha+\beta-\gamma=0, \quad y \in X \backslash\left\{y_{0}\right\}
$$

and, as $A \neq 0$,

$$
m(y)=\frac{\alpha A+\alpha-\beta+\gamma}{2 A}, \quad y \in X \backslash\left\{y_{0}\right\}
$$

that is a contradiction.
Thus the functions m and, by (10), f are constant in $X \backslash\left\{y_{0}\right\}$. In view of (7) also F is constant. Then $D:=f-F$ is a constant and, from (5), $D \neq 0$. From (6) we get

$$
m(y)=-m(x), \quad x, y \in X \backslash\left\{y_{0}\right\}, x \neq y
$$

that is impossible.
Now consider the case when $g(x) G(x)=0$ for some $x \in X$.
Let $Z_{G}:=\{x \in X: G(x)=0\}$. Suppose that $Z_{G} \neq \emptyset$ and assume that $y_{0} \in Z_{G}$. Then, by equation (5), $f(x)=F\left(y_{0}\right)=: \gamma$ for all $x \in X$, so f is
a constant function. Similarly, if there is $x_{0} \in Z_{g}$ then $F(x)=f\left(x_{0}\right)$ for all $x \in X$. Moreover $F=f$ on $Z_{G} \cup Z_{g}$. From (5) we have

$$
\frac{\gamma-F(y)}{x-y}=g(x) G(y), \quad x, y \in X, x \neq y
$$

and, after interchanging a and y,

$$
\frac{\gamma-F(y)}{y-x}=g(y) G(x), \quad x, y \in X, x \neq y
$$

Putting $Y:=X \backslash\left(Z_{G} \cup Z_{g}\right)$ and

$$
m(x):=\frac{g(x)}{G(x)}, \quad x \in Y
$$

we hence get

$$
\frac{\gamma-F(y)}{F(x)-\gamma}=\frac{m(x)}{m(y)}, \quad x, y \in Y, x \neq y
$$

that is

$$
m(x)[F(x)-\gamma]=m(y)[\gamma-F(y)], \quad x, y \in Y, x \neq y
$$

whence, for a constant β,

$$
F(x)=\frac{\beta}{m(x)}+\gamma \text { for all } x \in Y, \quad \text { and } \quad F(x)=\frac{-\beta}{m(x)}+\gamma, \quad x \in Y
$$

It follows that $\beta=0$ and, consequently, $F(x)=\gamma$ for all $x \in Y$. Thus we have shown that F and f are constant and equal on X. Hence, setting these functions into (5) we get $g(x) G(y)=0$ for all $x, y \in X, x \neq y$. It follows that either g or G is the zero function. The proof is completed.

4. Remark on a functional equation with five unknown functions

Applying Theorem 2 we get the following
Remark 1. Let X be an arbitrary set such that card $X>3$. The functions $f, F, g, G, h: X \rightarrow \mathbb{K}$ where h is one-to-one satisfy the functional equation

$$
\frac{f(x)-F(y)}{h(x)-h(y)}=g(x) G(y), \quad x, y \in X, x \neq y
$$

if, and only if, one of the following cases occurs:
(i) for some $a, b, c, d, m \in \mathbb{C}$ such that $a d-b c \neq 0$,

$$
f(x)=F(x)=\frac{a h(x)+b}{c h(x)+d}, \quad g(x)=\frac{G(x)}{a c-b d}=\frac{1}{c h(x)+d}, \quad x \in X
$$

(ii) the functions f and F are constant, $f=F, g(x)=0$ for all $x \in X$ and G is arbitrary;
(iii) the functions f and F are constant, $f=F, G(x)=0$ for all $x \in X$ and g is arbitrary.

To get this remark it is enough to apply Theorem 2 to the functional equation

$$
\frac{\left(f \circ h^{-1}\right)(x)-\left(F \circ h^{-1}\right)(y)}{x-y}=\left(g \circ h^{-1}\right)(x)\left(G \circ h^{-1}\right)(y),
$$

$x, y \in h(X), x \neq y$.

Reference

[1] Matkowski J., Generalized convex functions and a solution of a problem of Zs. Páles, Publ. Math. Debrecen 73 (2008), no. 3-4, 421-460.

```
Faculty of Mathematics
Computer Science and Econometric
University of Zielona Góra
Podgórna 50
65-246 Zielona Góra
Poland
AND
Institute of Mathematics
Silesian University
Bankowa 14
40-007 Katowice
Poland
e-mail: J.Matkowski@wmie.uz.zgora.pl
```

